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GUESSING SECRETS 
WITH INNER PRODUCT QUESTIONS 

Fan Chung* Ronald Graham t Linyuan Lu 

A b s t r a c t  

Suppose we are given some fixed (but unknown) subset X of 
a set ~ = ~ ,  where F2 denotes the field of two elements. We 
would like to learn as much as possible about the elements 
of X by asking certain binary questions. Each "question" Q 
is some element of ~, and the "answer" to Q is just the inner 
product Q- z (in Fz ) for some z E X. However, the choice of 
x is made by a truthful (but possibly malevolent) adversary 
A, whom we may assume is trying to choose answers so as to 
yield as little information as possible about X. In this paper, 
we study various aspects of this problem. In particular, we 
are interested in extracting as much information as possible 
about X from A's answers. Although A can prevent us 
from learning the identity of any particular element of X, 
with appropriate questions we can still learn a lot about X. 
We determine the maximum amount of information that can 
be recovered and discuss the optimal strategies for selecting 
questions. For the case that IX[ = 2, we give an O(n s) 
algorithm for an optimal strategy. However, for the case that 
IX[ > 3, we show that no such polynomial-time algorithm 
can exist, unless P = NP. 

1 I n t r o d u c t i o n  and  b a c k g r o u n d  

The following information-theoretic identification prob- 
lem was introduced in [1, 2]. A fixed (but unknown) 
subset X of some finite set l~ is given. A game is played 
between two players: the "seeker" S and the "adver- 
sary" A. The object of the seeker S is to learn as 
much as possible about the elements of X by asking 
A binary questions. Each question is in general just 
some map Q : fi -+ {0,1}, so that  l~ is partitioned 
into f~ = Q - l ( 0 ) u  Q-I(1) .  For each Q, A chooses 
some element x E X, and answers Q with the value 
Q(x) e {0,1}. Thus, S knows that XNQ-X(Q(x))  • 0. 
Of course, A could always use the same element x E X 
to answer every question S asks, and so, S would never 
know anything about any of the other elements of X.  

As shown in [1, 2], with IX] = k, S can always 
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choose a sufficiently rich set of questions so that  no 
matter how A selects the answers, the surviving set of 
possible k-element sets of secrets (consistent with all the 
answers) forms an intersecting k-uniform hypergraph, 
i.e., a family F of k-sets of F~ so that any F, F '  E F 
satisfy F n F' ¢ ~ (and this is the most that S can 
achieve). Any set of questions which always results in 
an intersecting hypergraph will be called a separating 
strategy for S. 

In this paper, we will take l'~ to be ~2 for some 
integer n, where F2 denotes the field of two elements. 
Each "question" Q will just  be some element of 12, and 
an answer to Q will be the inner product Q-x (in F2 ) for 
some x E X.  (In fact, we will only need to use Q with 
rather small weight, where the weight w(Q) is defined 
to be the number of coordinates of Q which are equal to 
1). As we will see, with this restriction, S can no longer 
guarantee that any two surviving possible secret k-sets 
X and Y are intersecting. Rather, the best that S can 
hope for (and, in fact, which can always be achieved 
by what we call a weak separating strategy) is that  two 
somewhat larger sets Odd(X) and Odd(Y) are always 
intersecting, where for V = {V1,..-,  V~} C F~2 , we have 

k k 

Odd(V) := { Z  eiV~ : ei = 0 or 1 and Z e, is odd}. 
i ~ l  i----1 

In the next section we show that the set of Q of weight 
at most 2 k -  1 forms a weak separating strategy for 
secret k-sets in F~. 

2 Separating strategies for k secrets 

The first issue we must address is the question of just  
how much separation can be achieved by inner product 
questions when we consider sets of k secrets, say, X -- 
(X1 , . . .  ,X~}. We remark that for arbitrary questions 
(i.e., functions from f~ to {0,1}), we can guarantee that  
any two surviving k-sets are intersecting, i.e., have a 
nonempty intersection. 
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For any k-set X = {X1 , . - . ,  X~} C_ f~, define 

k k 

Odd(X) ={ZeiXi : ~i=Oor land ~e, isodd} 
i=1  i=1  

For any two k-sets X and Y in ~, we say that  X and Y 
axe strongly disjoint if Odd(X)  f) Odd(Y) = ~. 

LEMMA 2.1. For k-sets X and Y in ~,  the following 
conditions are equivalent: 

( i )  Odd(X) n Odd(Y) = ¢; 

(ii) X t  - r t  ¢ ( X 1  - X 2 , . . . , X k - x  - -  x k , r t  - 

Y2,- . . ,  Yk-x - Yk); 

(iii) There exists F e f~ such that 

F .  XI  -- F . Xu - - . . .  =_ F .  X~ 

F -  Yl =- F .  }"2 -- . . .  ---- F .  Yk(mod 2); 

Let Kk,~ be the labeled complete bipartite graph with 
vertex set X and Y ,  and with each edge e = XiY~ 
labeled with f ( e )  = X i  - Y j .  

(iv) For some spanning tre~ T of Kk,k, 0 
Odd(f (e) : e E T);  

(v) For every spanning tree T of Kk,k, 0 ~g 
Odd(f (e) : e e T ) .  

P r o o f :  (ii) :~ (iii). 
Define A0 = X1 -- YI and A~ = X~ - X i+x ,Ak- l+ i  = 
Y i - Y i + a , 1  <_ i < k - 1 .  Choose a basis for W = 
{ h l , . . - ,  A2k-2)  , say, W = {A~, . . . ,  A ' )  where each AI 
is some Aj .  Extend this together with A0 to a basis for 
~ ,  say,  

= A i , - - - ,  r , , . . . ,  r , _ , _ , ) .  

The matrix 

A ! 

A o 

A1 

r n - - r - - 1  

is invertible, say, with inverse D, so that A'D = In, the 
n x n identity matrix. Define 

D(a) = 

Thus 

D(1, 1) 
D(2, 1) 

D(n, 1) 

, the first column of D. 

1 
0 

A'-D(1) = 

Since all the A~,i > 0, axe linearly dependent on 
A ~ , . . . , A "  then A i - D ( 1 )  = 0,1 < i < 2 k -  2, and 
Ao • D(i) = 1, as required for (iii). [] 

The proof that  (iii) =h (ii) is immediate since if 
A 0 = E i>0~iAI  and F - A i  = 0 for i > 0 then 
F -  A0 = ~-~i>o elF" Ai = 0, contradicting (iii). 

(ii) 4:~ (i) 

A0 e (At,..., A2k-2) 
k-1 k--I 

x ,  - Y1 = - x , )  + ej( _i - 
i = 1  j = l  

k ~ l  k ~ l  

i=l ~$=1 

Odd(X) N 0dd(Y)  # 0 

The other implications involving (iv) and (v) axe easily 
established by similar arguments. [] 

Note that in the preceding proof, the matrix A~ 
has (row) rank r + 1. Hence, it also has column rank 
r + 1, which implies there are r + 1 columns of A ~, 
say At(al),  . . . ,  A ' (ar+l)  which are linearly independent 
over F2. Thus, there are ei E F2 such that  

r + l  

E i A ' ( a l )  = 

1 
0 

0 
• r+1 

Since h i , . . . ,  A2k_2 are all linearly dependent on the 
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A~, 1 < i < r, then in fact 

r + l  

i----1 
i ° 

0 2k--1 

where A(j)  denotes the j t h  column of the matr ix  

A = 

A 0 
Al  

A 2 k -  2 

Hence, the vector F ----- ( F ( 1 ) , . . . ,  F(n) )  with 

31 i f j = a i a n d e i = l , l < i < r + l ,  
F ( j )  = 0 otherwise. 

satisfies 

F - A 0  = F . ( X ~ - Y 1 ) = I  

F . A ~  = 0 , 1 < i < 2 k - 2 .  

and has w ( F )  < r + 1 <_ 2k - 31. 

In general, we will call a set ~c of inner product  
questions a weak separat ing s t ra tegy (for k-sets of 
secrets) if no ma t t e r  how A chooses answers, any two 
surviving k-sets X and  Y have 0 d d ( X )  n Odd(Y) ~ Ib 
(i.e., the family of sets Odd(X)  are intersecting). Thus,  

Y ( 2 k - 1 ) = { F E f ~  : w ( F ) < 2 k - 1 }  

is a weak separat ing s t ra tegy (with v '2~-1 ~_~,=, (?) ques- 
tions). 

This proves the following: 

LEMMA 2.2. The set ~'(2k - 1) = {F  E t2 : w ( F )  < 
2 k -  1 } is a weak separating strategy for k-sets of secrets. 

We point out  t ha t  the bound of 2 k -  1 above cannot  
be improved, as the following example shows. 

E x a m p l e .  n --- 2k - 3l. 

1 2 . . .  k k + l  . . .  2 k - 1  
Xl  = 1 0 . . .  0 0 . . .  0 

X =  X2 0 1 . . .  0 0 . . .  0 

Xk 0 0 . . .  1 0 . . .  0 

Claim: 

. . .  k - - 1  
Yl = 1 . . .  1 
Y2 = 1 . . .  1 

. . .  

Yk = 1 . . .  1 

k k + l  . . .  2 k -  1 
0 1 . . .  1 
1 0 . . .  1 

. . .  

1 1 . . .  0 

If F E ~ - ~  has 0 < w ( F )  < 2 k -  1 then for some i 
and j ,  either F . X i  = 0, F . X j  = 1 or F-Yi = 0, F.Yj = 1. 
To see this, consider two cases: 

C a) There exist 1 < i , j  <_ k such tha t  F( i )  ¢ F ( j ) .  
Then F -  X~ ¢ F -  Xj .  

(b) There exist k < i, j _< 2 k -  1 such tha t  F( i )  ~ F ( j ) .  
Then F -  Yi+t-~ ¢ F .  Yj+z-k. 

Since the hypothesis implies F( i )  ~ F ( j )  for some i 
and j ,  then either (a) or (b) mus t  occur (or otherwise 
F(i )  = F(k )  = F ( j )  for i < k < j ) .  Of course, the all 
l ' s  question of weight 2 k -  1 does separate Odd(X)  and 
Odd(Y).  [] 

Observe tha t  x E Odd(X)  =~ w(x)  is odd and y e 
Odd(Y) :¢ w(y) is even, and consequently Odd(X)CI 
Odd(Y) = 0- This shows t h a t  for general n, if even 
a single inner product  question F of weight 2k - 1 
is omit ted from Y:(2k - 1), then  the resulting set of 
questions does not  form a weak separating strategy. 

3 I n v e r t i n g  t h e  a n s w e r s  f o r  k = 2 

In this section we restrict our a t tent ion to the case k -- 2 
with Y:(3) = {F  e f/  : w ( F )  = 3} as our weak 
separating strategy. Since IX1 -- 2 =~ 0 d d ( X )  = X 
then  any two surviving pairs mus t  have a common 
element. Thinking of pairs of elements of f~ as edges of a 
graph with vertex set ft,  then  the surviving edges must  
either form a star S with some center Xo, or a triangle 
T on 3 vertices {)(1, X2, Xs}. In the first case, it follows 
tha t  Xo must be one of A ' s  secrets. In the second case, 
we can only say tha t  A ' s  secret pair (=  edge) must  be 
one of the three edges of  T (so, in particular,  we cannot 
conclude that  any specific element of ~2 is a secret of A) .  

We will now describe a recursive algori thm ALG 
for inverting the answers to ~ (3 )  which runs in t ime 
O(n 3) on f~ = ~2- We will assume (inductively) 
tha t  ALG(ft) gives the following information on the 
surviving intersecting set S of edges: 

(i) S is a star  with center Xo, or 
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(ii) S is a triangle on the set { X x , X 2 , X a } ,  and in 
particular, any edge X i X j  survives. 

As a special case of (i), S could contain exactly one 
edge. For example, for n = 5, suppose the answers to 
the total  of (51) + (25) + (~) = 25 questions is given in 
lexicographic order is as follows: 

1110011110001100010111001. 

The unique solution to the above set of answers is the 
pair 01110 and 10100. 

In this case, ALG randomly chooses one vector as 
the center of "star". The other one is simply ignored. 
However, it is possible (and easy) to modify the ALG 
algorithm to distinguish this special case. So whenever 
all secrets can be determined, it will produce both. We 
will omit the details here. 

Let us decompose In] := {1, 2, 3 , . . . ,  n} = J l  U J2 t3 
J3 where J1 = {1 < z < n / 3 } , J - 2  = {n/3  < z < 
2n]3},J3 = {2n/3 < x < n} and define Ii = [n}\ Ji, 1 < 
i_<3. 

We begin ALG by executing ALG(I~), ALG(12) and 
ALG(13) (note that the weight 3 questions on I~ are also 
weight 3 questions on In]). 

First we introduce some notation. If A E fl = F~2 
then A/II denotes the restriction of X to Ii, and 
indicate this by writing A/ll = --A2A3. Similarly, we 
write the other two restrictions of A as A/I2 = AI - Az 
and A/I3  = A1A2 - - .  

Observe that  if U V  is an edge in S, the interesting 
set of surviving edges in fl, then 

(i) If ALG(I1) has the answer that  X/I1  is a star with 
center A = - A ~ A 3  then either U/I1 = - A 2 A 3  or 
V/I1 = - A 2 A 3  (with similar remarks applying to 
/2 and Is). 

(ii) If ALG(I~) gives a triangle A B C  then both U/Ii  
and VI i i  are vertices of A B C .  

We consider three cases: 

Case (a): ALG(II)  yields a star with center 

A = - A 2 A 3 ,  

ALG(I~) yields a star with center 

B "-  B 1  - -  B 3 ,  

ALG(I3) yields a star with center 

C = CIC2 - .  

Let us say two restrictions U/l l  and V/ I# , i  # j ,  are 
compatible if all common coordinate positions of the 
two sequences are equal, e.g., U]I1 = -U2U3 and 
VII9 = V1 - Va are compatible if and only if Ua = Va. 
Define the merge [A, B] of two compatible restrictions 
to be the (unique) n-tuple W in fl which generates 
the corresponding restrictions A and B.  For example, 
[-DgDa, D1 - D s ]  = D1D2Ds. Let G denote the 
compatibility graph on the vertex set of centers A, B and 
C in /1 ,  I2 and/3 ,  respectively, with edges between every 
pair of compatible vertices. 

Observe that  G must  have at  least one edge, since 
for each edge U V  in S (the set of surviving edges), there 
are only two choices for each I~ of which endpoint of UV 
to use for the restriction (=  star center). Thus, some 
endpoint U or V must occur twice, say, A = U/I1 and 
B = U/I2. In this case, A and B are compatible, and 
[A,B] = V. 

Claim: ALG(~I) must give a star as the answer if 
ALG(ir~), i = I, 2,3, yield stars. 

Proof: It suffices to show that for any edge in G, the 
merge [A, B] is a point which must be in every surviving 
edge in S. Suppose A = -QR, B = P-Randthe 
merge [A, B] = PQR is not in a surviving edge UV. 
One of the points in UV must have a projection in 
It which is equal to A. Without loss of generality, we 
assume that  U/Iz = A, and U/I2 # B ,  which implies 
that  U -- P'QTI with p t  # p .  We can also assume 
V = P Q I R  and Qi # Q since each surviving edge must 
contain one point with projection B,  and the merge 
[A, B] is not  in UV. 

Now we consider the surviving edge V W .  We 
must have W/I1 = A since otherwise V/Y1 = A, a 
contradiction. Similarly, considering U W ,  we conclude 
W]I2 = B.  This implies tha t  W = P Q R .  

Now we consider C -- C I C 2 - ,  which is the 
star  center given by ALG(Is) .  We have C1C9- e 
{U/I1 ,V]I1}  = { p t Q _ , p Q , _ } .  Without  loss of gen- 
erality, we may assume (716'2- -- p i Q _ .  We now con- 
sider the edge V W .  We see tha t  C i C 2 -  cannot be one 
of  {VII3,  W]I3},  which is impossible. This completes 
the proof of the claim. 

We now consider the following cases: 

(1) Suppose G has one edge, say, 

Since U = [A, B] is determined then every UtV ~ E S 
must project the same majority point to ABC. Hence, 
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C 

A 
w 

A B 

G 

Figure 1: G has one edge. 

[A, B] is an endpoint of every edge in S, i.e., f~ has a 
star with center [A, B]. 

(ii) Suppose G has three edges: 

C 

A B 

G 

Figure 2: G has three edges. 

Observe that in this case [A, B] -~ [A, C] = [B, C]. 
Thus, as in (i), we see that  f~ must have a star with 
center [.4, B]. 

(iii) Suppose G has two edges, say, 

C 

A = - A  2A 3 B =  B1-B 3 

G 

Figure 3: G has two edges. 

Then for any UV • 51, we must have either U/Ii  ---- 
A, VII2 ..~ B or VIII  -- A, U/I~. -- B (since otherwise, 

A and B would be compatible.) 

If the star in fl (which ALG(fl) gives) has center 
Z and at least two edges ZW1, Z W 2 , . . . ,  then for each 
edge ZWI, Z must project to the same point of A and 
B (for otherwise A and B could be compatible). Let us 
simplify our notation and write 

A --- - Q R  
B -- P - R  l 

C = P Q -  where R ~ R'  

Since R ~ R I, there must be some coordinate ko • Ja 
such that R(ko) ~ R~(ke). Now, consider the answers 
to all the questions Fi,j,ko where i • J l , j  • J2 (i.e., 
take the inner product with the vector having l 's  in 
positions i , j  and /co). The two possibilities for the 
star in $1 are that either the center is Xo = P Q R  
and the other endpoints are of the form P Q ' R  ~ with 
Q~ arbitrary, or the center is X~ = P Q R  ~ and the 
other endpoints are of the form P~QR with P '  arbitrary. 

We next ask each of the ]Ix[ 1/21 questions F~5,k o , 
where i • I i , i  • I2. Suppose P( i )+Q( j )+R(ko)  = a so 
that P( i )+Q( j )+  l~(ko) = 1 - ~ .  I f  Fi,j,ko is answered 
by A (so that all pairs with three coordinate sums 1 -  
are eliminated, then exactly all the points P~QR with 
P'(i) ~ P(i) are ruled out as possible mates for X~. On 
the other hand, if F~,j,~ o is answered 1 - a ,  then by the 
same argument any point PQ'R '  with Q'(j) ¢ Q(j) is 
ruled out as a possible mate for Xo. Note that  Xo is the 
trivial mate for X~, and vice versa. At the end of the 
process, one of the two points Xo and X~ will have all its 
possible mates (except for its trivial mate) eliminated 
and the other one must be the surviving star center 
(and in addition, we know a lot about the endpoints 
of the star). If we make comparisons with the existing 
answers to all the questions, we can rule out the bogus 
star center in linear time (since each F~,i.ko rules out a 
value of P(i) or Q(j)). 

It is quite possible that  both points have only their 
trivial mates surviving. In this case, the surviving set 
contains the only edge XoX~. ALG will randomly 
choose one point as its center for later use (in the 
induction step). 

Case(b) Two of ALG(Ii) give stars and the third gives 
a triangle, say, /1 has a star with center A = -A2Aa,  
I2 has a star with center B = B1 - Ba, and /3 has a 
triangle in P = P1P2- ,Q = Q 1 Q 2 - , R  - R 1 R 2 - .  

Suppose UV G S. 
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(1) If A and B are not compatible then A and B are 
projections of both endpoints U and V. Since Is 
has different projections of both U and V then 
U and V can be recovered (and tested) from the 
[{A, B}, {P, Q, R}] merges. 

(2) Suppose A and B are compatible. If A = U/It  
and B = VII2, then again U and V can be 
recovered from the [{A, B}, {P, Q, R}] merges. On 
the other hand, all other edges, which project the 
same endpoint to A and B, must  share the common 
vertex [A, B]. 

Hence in any case, we have all the information to 
determine the center (if ALG(~) gives a star) or the 
three vertices of a triangle (if ALG(f/) gives a triangle). 

Case(c) At least two of ALG(I2) give triangles, say, 
ALG(I1) gives a triangle on {A ,B ,  C} and ALG(I2) 
gives a triangle on {P ,Q,R} .  Then all possible 
endpoints of edges in S are contained in the set 
[{A, B, C}, {P, Q, R}], and each of these can be indi- 
vidually tested. 

Put t ing all the preceding cases together we have 
the following recursive bound on c(n), the number of 
comparisons needed on the (~) + (~) + (~) an.qwers to 
determine the  required output for ALG(f~). 

9 ~ 3 

The term 3 ~n -c (~- )  comes from the execution of the 
/9~(n)s is an upper bound three ALG(I~). The term ~2J 

of the number of comparisons needed to make the final 
resolution, the most costly being the individual testing 
of each of the possible (29) pairs of points arising from 
[{A, B, C}, {P, Q, R}] in Case (c). This implies the 
bound 

e(r~) < 12~t 3 + O(n3)- 

We have implemented this algorithm. It  takes only 
a few seconds to process n = 256-bit binary strings on 
a Pent imum II PC (under Linux). It seems to demand 
a lot of memory when n is large. On our Department  
Unix machine, it can handle n = 400 with ease. 

4 N P - h a r d n e s s  for  k = 3 

In this section we will show that no weak separating 
strategy ~r can have a polynomial-time algorithm for 
inverting A's answers when k = 3, unless P = NP. 

Suppose 9 c" is some weak separating strategy. We 
can assume without loss of generality that  ~ also 
includes all the weight 2 questions Fi,~, i, j E In]. Let 
G be a fixed graph with vertex set In] and edge set E.  
We will suppose that  A answers the questions F E ~" 
as follows: 

1 i f F = F i j  a n d i j E E ,  
A ( F )  = 0 otherwise. 

Claim: G is 4-chromatic if and only if there is a valid 
secret triple of the form {0, ul, u2 }, where 0 denotes the 
vector (0, 0 , . . . ,  O) e 7 -  

Proof o I Claim: 

Assume G is 4-chromatic. Then E can be decom- 
posed into two bipartite graphs G] and G2 on In] with 
edge sets Et  and F~, respectively (see Fig. 4). 

G1 

I12 

E2 

Gz 

Figure 4: Part i t ion into two bipartite graphs. 

Define the vectors ul E 7 ,  i = 1,2, by 

j" 0 if k E Ai 
~i(~) 1 if k E Bi. 

It is clear that  with this choice that  {0, ul ,  u2} is a valid 
secret triple for A,  i.e., all the answers A(~')  given are 
consistent with A having the secret triple {0, ul ,  u2}- 

For the other direction, assume {0,vl,v2} is a 
valid secret triple for ACT). Reverse the preceding 
construction and construct two bipartite graphs Ci as 
follows: 

Define A~ := {k : v i ( k ) = O } , B i : = { k  : vh(k )=  
1} and Ei = {{a,b} : a E A~,b E Bi}.  Thus, 
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A(F~,~) = 1 if and only if i j  E E1 or 17,2, and the proof 
of the Claim is complete. [] 

Observe that  if {x, y, z} is a valid secret triple for 
some set of answers A(F),  F e Y, then any 3-element 
subset of Odd(x, y, z) --- {z, y, z, z + y + z} also is. 

Now suppose we have a polynomial-time algorithm 
ALG which can invert the answers A(F) ,  defined as 
before according to edge set of G, producing a solution 
{z, y, z, z + y + z} as an Odd set satisfying the  answers 
A(F) .  Thus yr must have polynomial size. Now, if 
0 E {x, y, z, x + y + z}, then by the preceding remarks 
G must be 4-chromatic. On the other hand, since jc 
is a weak separating strategy, then any two satisfying 
Odd quadruples must intersect. So we can assume that 
0¢ {z,~,z,z+y +z}. 

Now, if G is 4-chromatic then there must be a 
satisfying Odd set of the form {0, u, v, u + v}, which 
intersects {x, Y, z, x + y + z}. Hence, u, v or u + v must 
be equal to one o f ~ , y , z  or x + y  +z .  However, we can 
efficiently test whether there is a satisfying triple of the 
form {0, z, x~} as follows. Namely, sequentially check 
each F E ~ with A(F )  = 1 to see whether F -  x = 1. If 
not, then add the (algebraic) constraint F -  x ~ -~ 1 to a 
matrix M of such constraints on x'. At the end, we can 
use Gaussian elimination on M to decide whether or not 
an appropriate x ~ exists (this can be done in polynomial 
time in n). 

G is 4~chromatic if and only if this process succeeds 
for same element of { x , y , z , z  + y + z} paired with 0. 
However, it is known [3] that determining if a graph 
is 4-chromatic is NP-hard. Hence, the existence of 
our hypothetical polynomial time algorithm A LG would 
imply that  P = N P ,  an assertion not widely believed. 

Of course, slm]lar conclusions apply for k > 3. 

estimate for how much better an adaptive separating 
strategy is then our usual non-adaptive ( i.e., oblivious) 
algorithms. As proved in [1], for k = 2, any adaptive 
separating strategy for fl must have at least 3 log 2 N - 5 
questions, and need not have more than 4 log s N + 3 
questions (for N > 2). Surely no oblivious algorithm 
can be this good! Of course, for k > 2, we know even 
less. 
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5 C o n c l u d i n g  remarks  

There are still quite a few aspects of this problem which 
need greater understanding. For example, probabihstic 
arguments show (see [1] ) that (in the case of k - 2) 
there are weak separating strategies for ~ with only 
O(n) questions. (We achieve O(n s) in this paper using 
~(3).  ) We do not currently know of any constructive 
way of producing such strategies. 

In the more general case [1] where ~ = {1, 2 , . . . ,  N} 
and questions are just functions mapping ~ to {0, 1}, 
it is possible to construct separating strategies (using 
properties of quadratic residues modulo primes) of size 
O(log2N) but  we have no idea how to invert these 
answers. Finally, in this setting we have no non-trivial 


