On hypergraphs having evenly distributed subhypergraphs

F.R.K. Chung

Bell Communications Research, Inc., Morristown, New Jersey 07960, USA

R.L. Graham

AT&T Bell Laboratories, Murray Hill, New Jersey 07974, USA

Received 22 July 1991

Abstract

Chung, F.R.K. and R.L. Graham, On hypergraphs having evenly distributed subhypergraphs, Discrete Mathematics 111 (1993) 125-129.

1. Introduction and preliminaries

Let k be a fixed positive integer. By a k-uniform hypergraph G, or k-graph for short, we mean a pair (V, E), where V = V(G) is a set, called the vertices of G, and E = E(G) is a subset of $\binom{V}{k}$, the k-element subsets of V, called the edges of G (for a full discussion of hypergraphs, see [1]). If V has cardinality |V| = n, we denote this by writing G = G(n).

For a k-graph G' = (V', E'), we say that G' is an *induced subgraph of G*, written as G' < G, if there is a mapping $\lambda : V' \to V$ such that $X \in E$ if and only if $\lambda(X) \in E'$ (where for $X \in \binom{V}{k}$), $\lambda(X) := \bigcup_{x \in X} \lambda(x)$). We denote by $\# \{G' < G\}$ the number of such (ordered) mappings.

If $\mathscr{G} = \{G(n) | n \to \infty\}$ is a family of k-graphs, we say that \mathscr{G} satisfies U(r) if, for each k-graph G'(r) on r vertices,

$$\#\{G'(r) < G(n)\} = (1 + o(1))n^r/2^{\binom{r}{2}}, \quad n \to \infty.$$
 (1)

Thus, \mathscr{G} satisfies U(r) if and only if all r-vertex k-graphs occur as (ordered) induced subgraphs of G(n) asymptotically equally often as $n \to \infty$.

Correspondence to: R.L. Graham, AT&T Bell Laboratories, 600 Mountain Ave., Room 2T-102, Murray Hill, NJ 07974, USA.

0012-365X/93/\$06.00 © 1993—Elsevier Science Publishers B.V. All rights reserved

In particular, if each G(n) is a random k-graph $G_{1/2}(n) = (V(n), E(n))$ on n vertices, i.e., each $X \in \binom{V(n)}{k}$ is chosen as an edge of $G_{1/2}(n)$ independently with probability 1/2, then the corresponding family $\mathcal{G}_{1/2}$ almost certainly satisfies U(r) for any fixed r (i.e., satisfies U(r) with probability tending to 1 as $n \to \infty$).

It is not difficult to see that if \mathscr{G} satisfies U(r) then \mathscr{G} also satisfies U(s) for any $s \leqslant r$. On the other hand, it is perhaps unexpected that it is possible to reverse this implication once s is as large as 2k. More precisely, it was shown in [2] that:

If
$$\mathscr{G}$$
 satisfies $U(2k)$ then \mathscr{G} satisfies $U(r)$ for any fixed r . (2)

Families \mathscr{G} satisfying (2) have been termed *quasi-random*, since it is known that they must necessarily also satisfy a large collection of other properties all shared by families of random k-graphs (for details, see $\lceil 2-4 \rceil$).

However, it was noted in [2] that (2) is no longer valid if U(2k) is replaced by U(k+1). The main purpose of this note is to close this gap completely, by showing that (2) no longer holds even if we assume $\mathscr G$ satisfies U(2k-1). More generally, for each s, with $k \le s \le 2k-1$, there are families $\mathscr G_s$ which satisfy U(s) but not U(s+1). A less direct proof for this construction appears in [3].

2. The main construction

If G = (V, E) is a k-graph, we let

$$\chi = \chi_G : \binom{V}{k} \rightarrow \{0, 1\}$$
 be the *edge function* for G ,

defined for $X \in \binom{V}{k}$ by

$$\chi(X) = \begin{cases} 1 & \text{if } X \in E, \\ 0 & \text{if } X \notin E. \end{cases}$$

For $a \ge 0$, we define the *coboundary operator* $\delta^{(a)}$ mapping k-graphs on V to (k+a)-graphs on V as follows. If G = (V, E) is a k-graph with edge function χ , then $\delta^{(a)}G = (V, E^{(a)})$ is a (k+a)-graph with edge function $\chi^{(a)}$, given, for $Y \in \binom{V}{k+a}$, by

$$\chi^{(a)}(Y) \equiv \sum_{X \in \binom{Y}{k}} \chi(X) \pmod{2}. \tag{3}$$

Thus, Y is an edge of $\delta^{(a)}G$ if and only if Y contains an odd number of edges X of G as subsets.

For $1 \le j \le k-1$, choose a random j-graph $G_{1/2}^{(j)}$ on V and 'lift' it to a k-graph $G_j := \delta^{(k-j)} G_{1/2}^{(j)}$ on V with edge function χ_j . Next, form the 'symmetric difference' k-graph $G^*(n) = (V, E^*(n)) = \nabla_{j=1}^{k-1} G_j$ with edge function χ^* , defined by

$$\chi^*(X) \equiv \sum_{j=1}^{k-1} \chi_j(X) \pmod{2}$$
 for $X \in \binom{V}{k}$.

Theorem 2.1. For almost all choices of $G_{1/2}^{(j)}$, $\mathscr{G}^* = \{G^*(n) | n \to \infty\}$ satisfies U(2k-1) but not U(2k), provided $k \neq 2^t$, $t \geq 0$.

Proof. Consider an arbitrary fixed set $W = \{w_1, w_2, ..., w_{2k-1}\}$ of 2k-1 vertices of V. Form a matrix M with rows indexed by $X \in {W \choose k}$, and columns indexed by $Y_j \in {W \choose j}$, $1 \le j \le k-1$, with the (X, Y_j) -entry $M(X, Y_j)$ defined to be 1 if $Y_j \subset X$, and 0 otherwise. We can regard each column $C(Y_j)$ of M as a function mapping ${W \choose k}$ to $\{0,1\}$ by defining

$$C(Y_j)(X) = M(X, Y_j), \quad X \in \binom{W}{k}.$$

It is easy to see that

$$\chi_j \equiv \sum_{Y_j \in \binom{W}{j}} C(Y_j) \pmod{2}.$$

so that

$$\chi^* \equiv \sum_{j=1}^{k-1} \sum_{Y_j \in {W_j \choose j}} C(Y_j) \pmod{2}.$$

We now apply a result of Wilson [6] (see also [5]) which asserts that, when $k \neq 2^i$, M has mod 2 rank equal to $\binom{2k-1}{k}$. Actually, Wilson's result implies that if we adjoin a column of all 1's to form an augmented matrix M^+ , then for any prime p, M^+ has mod p rank equal to $\binom{2k-1}{k}$. However, when $k \neq 2^i$, then some i, with $1 \leq i \leq k-1$, has $\binom{k}{i}$ odd. Summing all the columns $C(Y_i)$, $Y_i \in \binom{V}{i}$, gives us a column of all 1's (mod 2), from which it follows that M itself has mod 2 rank equal to $\binom{2k-1}{k}$.

Now, as W ranges over all (2k-1)-element subsets of V, since the edges of the various corresponding $G_{1/2}^{(j)}$ are chosen independently and uniformly, then an easy argument shows that almost certainly each of the possible $\binom{2k-1}{k}(0,1)$ -vectors occurs $(1+o(1))n^{2k-1}/2^{\binom{2^k-1}{k}}$ times as $n\to\infty$. But this just means that for almost all choices of the $G_{1/2}^{(j)}$, each of the possible k-graphs G(2k-1) on 2k-1 vertices occurs $(1+o(1))n^{2k-1}/2^{\binom{2^k-1}{k}}$ times as an induced subgraph of $G^*(n)$ as $n\to\infty$. This implies that \mathscr{G}^* satisfies U(2k-1), as claimed.

To show that \mathscr{G}^* does not satisfy U(2k), we do the following. Let $Z = \{z_1(0), z_1(1), \ldots, z_k(0), z_k(1)\}$ be an arbitrary 2k-element subset of V. Consider the inclusion matrix \overline{M} with rows indexed by $X \in \binom{Z}{k}$, and columns indexed by $Y_j \in \binom{Z}{j}$, $1 \le j \le k-1$. Let us restrict our attention to the 2^k rows indexed by all the k-sets of the form $Z(\varepsilon_1, \ldots, \varepsilon_k) = \{z_1(\varepsilon_1), \ldots, z_k(\varepsilon_k)\}$, where $\varepsilon_i \in \{0, 1\}$, $1 \le i \le k$. For a fixed $Y_j \in \binom{Z}{j}$, since $j \le k-1$, there must exist at least one index i such that $z_i(0) \notin Y_j$, $z_i(1) \notin Y_j$. Thus, $Z(\varepsilon_1, \ldots, \varepsilon_{i-1}, 0, \varepsilon_{i+1}, \ldots, \varepsilon_k) \supset Y_j$ if and only if $Z(\varepsilon_1, \ldots, \varepsilon_{i-1}, 1, \varepsilon_{i+1}, \ldots, \varepsilon_k) \supset Y_j$. This implies that for any column of \overline{M} , the total number of 1's in the 2^k rows indexed by the $Z(\varepsilon_1, \ldots, \varepsilon_k)$ is always even. Hence, this also holds for the mod 2 sum of any set of columns of \overline{M} . Consequently, \mathscr{G}^* contains no indexed subgraph on a 2k-set Z in which an odd number of k-sets $Z(\varepsilon_1, \ldots, \varepsilon_k)$ are edges. This shows that \mathscr{G}^* does not satisfy U(2k), and Theorem 2.1 is proved. \square

In the case that $k=2^t$, an additional step is required. As before, we first construct the k-graphs $G^*(n) = (V_n, E)$. We then take the complement $\bar{G}^*(n) = (V_n', E')$ on a disjoint vertex set V_n' , and form the k-graph $\hat{G}(2n) := (V_n \cup V_n', \hat{E})$ by defining \hat{E} to be $E \cup E'$, together with a random selection of all the k-sets X which intersect both E and E'. That is, each such E is chosen independently with probability 1/2 to be an edge of $\hat{G}(2n)$.

Theorem 2.2. For almost all choices of $G_{1/2}^{(j)}$, $\hat{\mathscr{G}} = \{\hat{G}(2n) | n \to \infty\}$ satisfies U(2k-1) but not U(2k).

Proof. The case not covered by Theorem 2.1 is when $k = 2^t$, which we now assume. By the previously mentioned result of Wilson, if G(2k-1) is a k-graph on 2k-1 vertices then

$$\# \{G(2k-1) < G^*(n)\}$$

$$= \begin{cases} 2(1+o(1))n^{2k-1}/2^{\binom{2k-1}{k}} & \text{if } G(2k-1) \text{ has an } even \text{ number of edges,} \\ 0 & \text{if } G(2k-1) \text{ has an } odd \text{ number of edges.} \end{cases}$$

Since $\binom{2k-1}{k}$ is odd for $k=2^t$, the situation is reversed for the complement $\bar{G}^*(n)$. This implies that \mathscr{G}^* satisfies U(2k-1).

To see that \mathscr{G}^* does not satisfy U(2k), consider the k-graph $H = H((2k-1)^2)$ formed from disjoint copies of $H_i(2k-1) = (W_i, E_i)$, $1 \le i \le 2k-1$, where each $H_i(2k-1)$ is a complete k-graph on 2k-1 vertices, i.e., $|W_i| = 2k-1$ and $E = {W_i \choose k}$. We claim:

$$\#\{H < \hat{G}(2n)\} = 0$$
 for all n . (4)

To see this, suppose the contrary. Note that we must have $W_i \not\subseteq V_n$ for $1 \le i \le 2k-1$, since otherwise $H_i(2k-1) < G^*(n)$, which is impossible, because each $H_i(2k-1)$ has an odd number $\binom{2k-1}{k}$ of edges. Thus, for each i there is some $w_i \in V_n'$, $1 \le i \le 2k-1$. However, the k-graph induced by the vertex set $\{w_1, \ldots, w_{2k-1}\}$ has no edges, which contradicts the fact that $\overline{G}^*(n)$ only has induced subgraphs on 2k-1 vertices having an odd number of edges. This proves (4). Finally, by (2) this implies that $\widehat{\mathscr{G}}$ does not satisfy U(2k), and the proof is complete. \square

We remark that essentially the same arguments can be applied for any s with $k \le s \le 2k-1$, i.e., showing that families \mathcal{G}_s exist satisfy U(s) but not U(s+1). We omit the details.

3. Concluding remarks

It would be interesting to know whether, in fact, the cases $k=2^t$ are inherently different, or whether this is simply an artifact of the approach we have taken. For

example, we do not know, for any k=2', whether there exists a family $\mathcal{G} = \{G(n) | n \to \infty\}$ of k-graphs satisfying U(2k-1) but for which, for some H(2k),

$$\#\{H(2k) < G(n)\} = 0$$
 for all n .

References

- [1] C. Berge, Hypergraphs (North-Holland, Amsterdam, 1989).
- [2] F.R.K. Chung and R.L. Graham, Quasi-random hypergraphs, Random Structures and Algorithms 1 (1990) 105-124.
- [3] F.R.K. Chung and R.L. Graham, Quasi-random set systems, J. Amer. Math. Soc. 4 (1991) 151-196.
- [4] F.R.K. Chung, R.L. Graham and R.M. Wilson, Quasi-random graphs, Combinatorica 9 (1989) 345–362.
- [5] P. Frankl, Intersection theorems and mod p rank of inclusion matrices, J. Combin. Theory Ser. A 54 (1990) 85-94.
- [6] R.M. Wilson, A diagonal form for the incidence matrices of t-subsets vs. k-subsets, European J. Combin. 11 (1990) 609-615.