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Abstract
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1. Introduction and preliminaries

Let k be a fixed positive integer. By a k-uniform hypergraph G, or k-graph for short,
we mean a pair (V, E), where V=V (G) is a set, called the vertices of G, and E=E(G)is
a subset of (¥ ), the k-element subsets of V, called the edges of G (for a full discussion of
hypergraphs, see [1]). If V' has cardinality |V|=n. we denote this by writing
G=G(n).

For a k-graph G'=(V", E'), we say that G’ is an induced subgraph of G, written as
G’ <G, if there is a mapping A: V'— V' such that XeE if and only if 1(X)e E’ (where for
Xe(y), AX)i=J,ex A(x)). We denote by # {G'<G} the number of such (ordered)
mappings.

If 4={G(n)|n—o0} is a family of k-graphs, we say that ¢ satisfies U(r) if, for each
k-graph G'(r) on r vertices,

#{G'(r)<Gn)}=(1+o())n"/2G), n-ooo. (1)
Thus, ¥ satisfies U(r) if and only if all r-vertex k-graphs occur as (ordered) induced

subgraphs of G(n) asymptotically equally often as n— cc.
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In particular, if each G(n) is a random k-graph G,,,(n)=(V(n), E(n)) on n vertices,
i.e., each X (") is chosen as an edge of G, ,,(n) independently with probability 1/2,
then the corresponding family ¢,,, aimost certainly satisfies U(r) for any fixed r (i.e.,
satisfies U(r) with probability tending to 1 as n— o).

It is not difficult to see that if 4 satisfies U(r) then ¥ also satisfies U(s) for any s<r.
On the other hand, it is perhaps unexpected that it is possible to reverse this
implication once s is as large as 2k. More precisely, it was shown in [2] that:

If ¢ satisfies U(2k) then ¥ satisfies U (r) for any fixed r. (2)

Families ¢ satisfying (2) have been termed quasi-random, since it is known that they
must necessarily also satisfy a large collection of other properties all shared by families
of random k-graphs (for details, see [2-4]).

However, it was noted in [2] that (2) is no longer valid if U(2k) is replaced by
U(k+1). The main purpose of this note is to close this gap completely, by showing
that (2) no longer holds even if we assume ¥ satisfies U (2k — 1). More generally, for
each s, with k<s<2k—1, there are families 4, which satisfy U(s) but not U(s+1).
A less direct proof for this construction appears in [3].

2. The main construction
If G=(V, E) is a k-graph, we let
vV .
x=xG:< k )—»{0, 1} be the edge function for G,

defined for Xe(}) by

(X)= 1 if XeE,
A=V 0 if X¢E.

For a>0, we define the coboundary operator 6 mapping k-graphs on V to (k +a)-
graphs on V' as follows. If G=(V, E) is a k-graph with edge function y, then
8 @G=(V, E®)is a (k+a)-graph with edge function y?, given, for Ye(,%,), by

(N(Y)= Y, x(X)(mod2). A3)
xe(})
Thus, Y is an edge of G if and only if Y contains an odd number of edges X of
G as subsets.
For 1<j<k—1, choose a random j-graph G{/% on V and ‘lift’ it to a k-graph
G;:=86%"1GY% on V with edge function y;. Next, form the ‘symmetric difference’
k-graph G*(n)=(V, E*(n))=V¥%Z! G, with edge function y*, defined by

1*(X)= Y 1,(X) (mod2) for Xe(Z).

i=1



Hypergraphs having evenly distributed subhypergraphs 127

Theorem 2.1. For almost all choices of GV, 4*={G*(n)|n—c0} satisfies U(2k—1)
but not U(2k), provided k+#2', t=0.

Proof. Consider an arbitrary fixed set W= {w,, w,,...,wp_1} of 2k—1 vertices of V.
Form a matrix M with rows indexed by Xe("), and columns indexed by Yje(p;-’),
1<j<k—1, with the (X, Y;)-entry M (X, Y;) defined to be 1 if Y;= X, and 0 otherwise.
We can regard each column C(Y;) of M as a function mapping () to {0,1} by
defining

It is easy to see that
Y C(Y;)(mod2).
Yjé(‘f)
so that

k—1
=Y Y C(Y;(mod2).
i=1 ye)

We now apply a result of Wilson [6] (see also [5]) which asserts that, when k#2°,
M has mod 2 rank equal to (?*, ). Actually, Wilson’s result implies that if we adjoin
a column of all 1’s to form an augmented matrix M *, then for any prime p, M * has
modp rank equal to (3, !). However, when k+#2', then some i, with 1 <i<k—1, has
(¥) odd. Summing all the columns C(Y;), Y;e(%), gives us a column of all 1’s (mod 2),
from which it follows that M itsell has mod 2 rank equal to (2%, 1).

Now, as W ranges over all (2k— 1)-element subsets of V, since the edges of the
various corresponding G‘lj/’z are chosen independently and uniformly, then an easy
argument shows that almost certainly each of the possible (**; 1) (0, 1)-vectors occurs
1+ 0(1)) =17 times as n—co. But this just means that for almost all choices of
the G{,, each of the possible k-graphs G(2k—1) on 2k—1 vertices occurs
(1+o(1)n2- 1/2 ) times as an induced subgraph of G*(n) as n— oo. This implies
that ¥ * satisfies U(2k— 1), as claimed.

To show that ¥4* does not satisfy U(2k), we do the following. Let
Z=1{z,(0),z,(1),...,2,(0),z,(1)} be an arbitrary 2k-clement subset of V. Consider the
inclusion matrix M with rows indexed by Xe(f), and columns indexed by Y;e(%),
1< j<k—1. Let us restrict our attention to the 2* rows indexed by all the k-sets of the
form Z(ey,....&)={z:(e1),..., ze(&)}, where e{0,1}, 1 <i<k. For a fixed Yje(f),
since j< k—1, there must exist at least one index i such that z;(0)¢ Y, z{(1)¢ Y;. Thus,
Z(ey,..8-1,0,841,...,8)2Y; if and only if Z(ey,...,6_1,1,841,...,8)2Y;. This
implies that for any column of M, the total number of 1’s in the 2¥ rows indexed by
the Z(e,,..., &) is always even. Hence, this also holds for the mod 2 sum of any set of
columns of M. Consequently, %* contains no indexed subgraph on a 2k-set Z in which
an odd number of k-sets Z(gy,..., &) are edges. This shows that ¢* does not satisfy
U(2k), and Theorem 2.1 is proved. O
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In the case that k=27, an additional step is required. As before, we first construct
the k-graphs G*(n)=(V,,E). We then take the complement G*(n)=(V,,E’) on
a disjoint vertex set V,,, and form the k-graph G(2n) =(V,uV,, E) by defining Etobe
E U E’, together with a random selection of all the k-sets X which intersect both E and
E'. :I‘hat is, each such X is chosen independently with probability 1/2 to be an edge
of G(2n).

Theorem 2.2. For almost all choices of G, % ={G2n)|n—c0} satisfies U(2k—1)
but not U(2k).

Proof. The case not covered by Theorem 2.1 is when k=2, which we now assume. By
the previously mentioned result of Wilson, if G(2k—1) is a k-graph on 2k—1 vertices
then

#{G(2k—1)< G*(n)}

B 2(1+0(1))n2"‘1/2(2k*71) if G(2k—1) has an even number of edges,
o0 if G(2k—1) has an odd number of edges.

Since (%*; ) is odd for k=2, the situation is reversed for the complement G *(n). This
implies that ¢ * satisfies U(2k—1).

To see that % * does not satisfy U(2k), consider the k-graph H = H((2k — 1)?) formed
from disjoint copies of H;(2k—1)=(W,, E;), 1 <i<2k—1, where each H;2k—1) is
a complete k-graph on 2k — 1 vertices, ie., |W;|=2k—1 and E=("%:). We claim:

#{H<G@2n)}=0 for all n. )

To see this, suppose the contrary. Note that we must have W, & V, for 1 <i<<2k—1,
since otherwise H;(2k — 1)< G*(n), which is impossible, because each H;(2k— 1) has
an odd number (2%, ') of edges. Thus, for each i there is some w;eV,, 1<i<2k—1.
However, the k-graph induced by the vertex set {wy,..., ws,_} has no edges, which
contradicts the fact that G*(n) only has induced subgraphs on 2k — 1 vertices having
an odd number of edges. This proves (4). Finally, by (2) this implies that % does not
satisfy U(2k), and the proof is complete. [J

We remark that essentially the same arguments can be applied for any s with
k<s<2k—1,ie., showing that families ¥ exist satisfy U(s) but not U(s+ 1). We omit
the details.

3. Concluding remarks

It would be interesting to know whether, in fact, the cases k=2' are inherently
different, or whether this is simply an artifact of the approach we have taken. For
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example, we do not know, for any k=2 whether there exists a family
4 ={G(n)|n—o0} of k-graphs satisfying U(2k—1) but for which, for some H(2k),

#{H(2k)<G(n)}=0 for all n.
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