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Abstract 

Chung, F.R.K. and R.L. Graham, On hypergraphs having evenly distributed subhypergraphs, 

Discrete Mathematics 111 (1993) 125-129. 

1. Introduction and preliminaries 

Let k be a fixed positive integer. By a k-uniform kypergrapk G, or k-graph for short, 

we mean a pair (V, E), where V= V(G) is a set, called the vertices of G, and E = E(G) is 

a subset of (I), the k-element subsets of V, called the edges of G (for a full discussion of 

hypergraphs, see Cl]). If V has cardinality IV1 =n. we denote this by writing 

G=G(n). 

For a k-graph G’=( V’, E’), we say that G’ is an induced s&graph of G, written as 

G’< G, if there is a mapping 1: V’+ V such that XEE if and only if I(X)EE’ (where for 

X4, j4X):= ux.x 3.(x)). We denote by # {G’< G} the number of such (ordered) 

mappings. 

If ‘3 = {G(n) 1 n + CC } is a family of k-graphs, we say that 3 satisfies U(r) if, for each 

k-graph G’(r) on r vertices, 

#{G’(r)<G(n)}=(l+o(l))n’/2(~), n+cc. (1) 

Thus, 9 satisfies U(r) if and only if all r-vertex k-graphs occur as (ordered) induced 

subgraphs of G(n) asymptotically equally often as n--tm. 
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In particular, if each G(n) is a random k-graph G,,,(n)=( V(n),E(n)) on IZ vertices, 

i.e., each XE( Vr) ) is chosen as an edge of G1,2(~) independently with probability l/2, 

then the corresponding family 91/z almost certainly satisfies U(r) for any fixed Y (i.e., 

satisfies U(r) with probability tending to 1 as n+a3). 

It is not difficult to see that if 99 satisfies U(r) then $59 also satisfies U(s) for any s d r. 

On the other hand, it is perhaps unexpected that it is possible to reverse this 

implication once s is as large as 2k. More precisely, it was shown in [2] that: 

If 9 satisfies U(2k) then $9 satisfies U(r) for any fixed r. (2) 

Families 9 satisfying (2) have been termed quasi-random, since it is known that they 

must necessarily also satisfy a large collection of other properties all shared by families 

of random k-graphs (for details, see [2-41). 

However, it was noted in [2] that (2) is no longer valid if U(2k) is replaced by 

U(k+ 1). The main purpose of this note is to close this gap completely, by showing 

that (2) no longer holds even if we assume 9 satisfies U(2k- 1). More generally, for 

each s, with kds62k- 1, there are families gS which satisfy U(s) but not U(s+ 1). 

A less direct proof for this construction appears in [3]. 

2. The main construction 

If G=( V, E) is a k-graph, we let 

X=XG: k” 
0 

+ {0, 1 j be the edge function for G, 

defined for XE(:) by 

x(X)= 
1 if XEE, 

0 if X&E. 

For a 20, we define the coboundary operator a(‘) mapping k-graphs on V to (k+a)- 

graphs on V as follows. If G =( V, E) is a k-graph with edge function x, then 

6(“)G=( V, Et”)) is a (k+a)-graph with edge function x@), given, for YE( kya), by 

$“‘(Y)= c x(X) (mod2). 
XSC) 

(3) 

Thus, Y is an edge of 6(“)G if and only if Y contains an odd number of edges X of 

G as subsets. 

For 1 < j d k - 1, choose a random j-graph G$ on I/ and ‘lift’ it to a k-graph 

G.:=GCk-j) G$ on V with edge function Xj. Next, form the ‘symmetric difference’ 

k-graph G*(n)=( V, ~*(n))=Vjk~: Gj with edge function x*, defined by 

k-l 

x*(X)=x xj(X) (mod2) for XE : . 

j= 1 0 
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Theorem 2.1. For almost all choices ofG$, 3* = { G*(n)ln+a} satisfies U(2k- 1) 

but not U(2k), provided k#2’, ta0. 

Proof. Consider an arbitrary fixed set W= { w 1, w2,. . . , wzk- 1 } of 2k - 1 vertices of I’. 

Form a matrix M with rows indexed by XE(~), and columns indexed by Yj~(y), 

1 d j< k - 1, with the (X, Yj)-entry M(X, Yj) defined to be 1 if YjC X, and 0 otherwise. 

We can regard each column C( Yj) of M as a function mapping (I) to (0, l} by 

defining 

C(Yj)(X)=M(X, Yj), XE . 

It is easy to see that 

xj= C C(Yj)(mod2). 
YjSfW) i 

so that 

k-l 

X*E C 1 C( Yj)(mod2). 
j= 1 ~~~(7) 

We now apply a result of Wilson [6] (see also [S]) which asserts that, when k#2’, 
M has mod 2 rank equal to ( 2k; ’ ). Actually, Wilson’s result implies that if we adjoin 

a column of all l’s to form an augmented matrix M ‘, then for any prime p, M + has 

mod p rank equal to ( 2k; ’ ). H owever, when k # 2’, then some i, with 1 d id k - 1, has 

(F) odd. Summing all the columns C( Yi), YiE( r), gives US a column of all l’s (mod 2), 

from which it follows that M itself has mod 2 rank equal to ( 2k; ‘). 

Now, as W ranges over all (2k- I)-element subsets of V, since the edges of the 

various corresponding G$ are chosen independently and uniformly, then an easy 

argument shows that almost certainly each of the possible ( 2k; ‘) (0, I)-vectors occurs 

(1 +o(l))n2k-1/2(2X;‘) times as it-+ cc. But this just means that for almost all choices of 

the G:j,\, each of the possible k-graphs G(2k- 1) on 2k- 1 vertices occurs 

(1 +o(l))n2k-1/2’zX3 times as an induced subgraph of G*(n) as n+ co. This implies 

that 3* satisfies U(2k- l), as claimed. 

To show that 3* does not satisfy U(2k), we do the following. Let 

Z=fz,(O),z,(l),..., zk(O), i&(I)} be an arbitrary 2k-element subset of I’. Consider the 

inclusion matrix M with rows indexed by XE(~), and columns indexed by YjE(:), 

1 d j d k - 1. Let us restrict our attention to the 2k rows indexed by all the k-sets of the 

form Z(al ,...,&k)={Z1(&1),..., zk(&k)}, where EiE{O, l}, 1 <i<k. For a fixed Yj~(~), 

since j< k- 1, there must exist at least one index i such that Zip Yj, Zip Yj. Thus, 

Z(a 1,...,&i-1,O,&i+l,..., ak)xYjifand only if Z(s, ,..., ~~_~,l,c~+i ,..., aL)zYj. This 

implies that for any column of M, the total number of l’s in the 2k rows indexed by 

the Z(cl,. . . , &k) is always even. Hence, this also holds for the mod 2 sum of any set of 

columns of fi. Consequently, 9* contains no indexed subgraph on a 2k-set Z in which 

an odd number of k-sets Z(E~, , &k) are edges. This shows that 9* does not satisfy 

U(2k), and Theorem 2.1 is proved. i? 
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In the case that k=2’, an additional step is required. As before, we first construct 

the k-graphs G*(n)=(V,,,E). We then take the complement G*(n)=(Vi,E’) on 

a disjoint vertex set V,‘, and form the k-graph G(2n) := (V,, u Vi, i) by defining E^ to be 

Eu E’, together with a random selection of all the k-sets X which intersect both E and 

E’. That is, each such X is chosen independently with probability l/2 to be an edge 

of G(2n). 

Theorem 2.2. For almost all choices of G (&,C@={G^(2n)In--+co$ satisjies U(2k-1) 

but not U(2k). 

Proof. The case not covered by Theorem 2.1 is when k = 2’, which we now assume. By 

the previously mentioned result of Wilson, if G(2k- 1) is a k-graph on 2k- 1 vertices 

then 

#{G(2k-l)<G*(n)} 

=i 

2(1 +o(l))nzk-‘/2(zXL1) if G(2k- 1) has an even number of edges, 

0 if G(2k- 1) has an odd number of edges. 

Since ( 2ki ’ ) is odd for k = 2’, the situation is reversed for the complement G*(n). This 

implies that 3* satisfies U(2k- 1). 

To see that 3* does not satisfy U(2k), consider the k-graph H=H((2k- l)*) formed 

from disjoint copies of Hi(2k- l)=( Wi, Ei), 1 < i<2k- 1, where each Hi(2k- 1) is 

a complete k-graph on 2k - 1 vertices, i.e., 1 Wi I= 2k - 1 and E = (Ii). We claim: 

#{H<G(2n)}=O for all II. (4) 

To see this, suppose the contrary. Note that we must have Wi $ V, for 1 <i< 2k - 1, 

since otherwise Hi(2k- l)< G*(n), which is impossible, because each Hi(2k- 1) has 

an odd number (2k;1 ) of edges. Thus, for each i there is some WiE Vi, 1 <i<2k- 1. 

However, the k-graph induced by the vertex set { wi,. . . , wZk_ 1 } has no edges, which 

contradicts the fact that G*(n) only has induced subgraphs on 2k- 1 vertices having 

an odd number of edges. This proves (4). Finally, by (2) this implies that $ does not 

satisfy U(2k), and the proof is complete. 0 

We remark that essentially the same arguments can be applied for any s with 

k <s d 2k - 1, i.e., showing that families gS exist satisfy U(s) but not U(s + 1). We omit 

the details. 

3. Concluding remarks 

It would be interesting to know whether, in fact, the cases k=2’ are inherently 

different, or whether this is simply an artifact of the approach we have taken. For 
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example, we do not know, for any k=2’, whether there exists a family 

9= {G(n)ln+m} of k-graphs satisfying U(2k- 1) but for which, for some H(2k), 

#{H(2k)<G(n)}=O for all n. 
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