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ABSTRACT. It is common to model a finite probability space with a graph
where nodes correspond to events and edges indicate dependent pairs of
events. This paper is an extended abstract of a full length article in which
we study chordal completions of graphs which are related to models in
which marginal and conditional probabilities can be efficiently computed.

1. Introduction

Increasingly, artificial intelligence has turned to the theory of Bayesian statis-
tics to provide a solid theoretical foundation and a source of useful algorithms
for reasoning about the world in conditions of uncertain and incomplete informa-
tion. This is true both in familiar high-level applications, such as medical expert
systems, and in low-level applications such as speech recognition and computer
vision (see [8] for an overview, [6] for medical applications, [9] for speech, [5]
for vision). However, all serious applications demand probability spaces with
thousands of random variables, and some simplification is required before you
can even write down probability distributions in such spaces. The reason this
approach is even partially tractable is that one assumes there are many pairs
of random variables which are conditionally independent, given various other
variables. One extremely useful way to describe this sort of probability space
is based on graph theory: one assumes that a graph G is given, whose vertices
V(G) correspond to the random variables in the application, and whose edges
E(G) denote pairs of variables which directly affect each other. What this means
is that if v,w € V(G),S C V(G), and every path from v to w crosses S, then
the corresponding variables X, X,, are conditionally independent given Xg. As
is well-known, this assumption implies that the probability distribution has the
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Gibbs form:
e Yo BeXu}lweo)
Z

where C runs over the cliques of G containing the vertex v, E¢ is a measure of
the likelihood of the simultaneous values of the variables in the clique C, and Z
is a normalizing constant.

A typical problem in this setting is to find the maximum likelihood estimate
of the variables X,, i.e. the minimum of the so-called energy

E(Xv) = Z EC({Xw}wEC)'
C

—

Pr(Xv) =

Unfortunately, minimizing such complex functions of huge numbers of variables
is not an easy task. One situation in which the minimum can be quickly and
accurately computed is that studied in dynamic programming [1]. This is the
case where the variables can be ordered in such a way that X is conditionally
independent of all but a few of the previous X;’s, given the values of these few. A
Markov chain is the simplest example of this, and this approach, under the name
of the Viterbi algorithm, dominates research in speech recognition. However, it
has turned out that modifications of the dynamic programming perspective are
much more widely applicable [6]. In [6], the authors propose using a chordal
completion G: this is a chordal graph with the same vertex set V(G) and edge
set containing E(G). Recall that a chordal graph is a graph in which all cycles
of length at least 4 contain chords, sometimes called a triangulated graph. (For
graph-theoretical terminology, the reader is referred to [2].) If the cliques in
G are not too large, one can carry out a variant of dynamic programming for
Gibbs fields based on G, and compute essentially all marginal and conditional
probabilities of interest.

2. Grid Graphs

In computer vision, one seeks to analyze a two-dimensional signal, finding
first edges and areas of homogeneous texture, secondly using these to segment
the domain of the signal and thirdly identifying particular regions as resulting
from the play of light and shadow on known types of objects such as faces. The
random variables that arise in this analysis are firstly I;;, the light intensity
measured by a receptor at a position (7, j) of the camera’s or eye’s focal plane,
secondly “line processes” l;; indicating an edge separating adjacent “pixels” (4, j)
and (4,7 + 1) or (i + 1,7), and many higher level variables. What interests us
is that the measured variables are parametrized by points of a lattice, and that
the structures which one calculates are found by examining local interactions of
these variables. In fact, even a high level variable like the presence of a face is
linked to local areas of the image, rather than the whole image, because a face
will usually be a subset of the image domain and its presence is more or less
independent of the scene in the background. What this means is that the cliques
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of the graph involve local areas in the lattice, and do not require long range
interaction of the pixel values I;;. The simplest example of such a graph is the
simple n by n grid, which we denote by L,,: it has vertex set

and edges joining:

(i,5) to (i +1,/),0 <3 <n,0< j <n,
(i,5) to (1, +1),0<i <n,0<j <.

What we would like to know is how big are the chordal completions of graphs
of this sort: how many edges do they have and what are their degrees? We prove
the following theorems for grid graphs:

THEOREM 1. A chordal completion of the n by n grid L, must contain at
least cn?logn edges for some constant c. Furthermore, we construct a chordal
completion of L, with (7.75)n?logn edges.

We note that throughout this paper, all logarithms are to the base 2. By
using results on the treewidth of a graph[10], we prove

THEOREM 2. A chordal completion of the n by n grid must contain a vertez
of degree cn for some absolute constant c.

The above theorems can be generalized to all planar graphs by using the
planar separator theorems [4, 7].

THEOREM 3. A planar graph on n vertices has a chordal completion with
cnlogn edges for some absolute constant c.

It is also known that there is an O(n log n) algorithm for constructing the
chordal completion of a planar graph.

How good are these bounds? Compared to random graphs, they look quite
good: P. Erdos first raised the question how large is a chordal completion of a
random graph on 7 vertices with edge density &/n for some fixed & (or random
k-regular graphs). It turns out that chordal completions of random graphs must
contain cn? edges for some constant ¢. The reader is referred to [2] for models of
random graphs or random regular graphs. Unfortunately for the application to
computer vision, the lower bounds on the size of the chordal completions of grids
are still too big to make the use of dynamic programming or its variants practical
in vision: typical values of n are 100 or more, and probability tables for the
values of 100 random variables are quite impossible. However, the construction
given in the full paper for a chordal completion of L,, is strongly reminiscent of
the approach to vision problems called “pyramid algorithms” [11], e.g. wavelet
expansions [3]. This link is interesting to explore.
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