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Abstract

The cover polynomial C(D) = C(D;x, y) of a digraph D is a two-
variable polynomial associated with an arbitrary digraph D whose
coefficients are determined by the number of vertex coverings of D
by directed paths and cycles. Just as for the Tutte polynomial for
undirected graphs (cf. [11, 16], various properties of D can be read off
from the values of C(D;x, y). For example, C(D; 1, 0) is the number
of Hamiltonian paths in D, C(D; 0, 1) is the permanent of incidence
matrix of D, and C(D; 0,−1) is (−1)n times the determinant of the
incidence matrix of D (where D has n vertices). In this paper, we ex-
tend these ideas to a much more general setting, namely, to matrices
with elements taken from an arbitrary commutative ring with identity.
In particular, we establish a reciprocity theorem for this generaliza-
tion, as well as establishing a symmetric function version of the new
polynomial, similar in spirit to Stanley’s symmetric function general-
ization [13] of the chromatic polynomial of a graph, and Tim Chow’s
symmetric function generalization [5] of the usual cover polynomial.
In particular, we show that all of the generalized polynomials and
symmetric functions can also be obtained by a deletion/contraction
process.

1 Introduction.

To begin, we first make a few remarks concerning notation. A digraph D =
(V,E) is given by a set V of vertices and a set E of ordered pairs (u, v) of
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vertices, called the edges of D. An edge of the form (u, v) with u 6= v is
called a regular edge. An edge of the form (u, u) is called a loop. We assume
that D can have multiple edges and loops, i.e., many copies of the pair (u, v)
(so, strictly speaking, D is a multi-digraph). By a (directed) path P in D,
we mean a sequence P = (v1, v2, . . . , vr) where each (vi, vi+1) is an edge of D
(with a similar definition for a directed cycle in D). In general, all undefined
graph theory notation can be found in standard texts, such as [8].

We next define two operations on D, each of which produces a somewhat
simpler digraph. Given an edge e = (u, v) of D (which can be regular or a
loop), the deleted digraph D \ e = (V,E \ {e}). In other words, the edge e is
simply deleted from the edge set of D.

The other operation is the contraction of an edge e in D. This produces
the digraph D/e = (V

′
, E

′
) where V

′
and E

′
are defined as follows. If

e = (u, v) is a regular edge, then the vertices u and v are merged to form
the vertex uv. The only edges incident to uv will be those regular edges that
are of the form (x, u) or (v, y) in D. They become (x, uv) or (uv, y) in E

′
.

In particular, all loops (u, u) and (v, v) are removed, and an edge (v, u) now
becomes a loop (uv, uv) in D/e. All other edges in D remain edges in D/e.
On the other hand, if e = (u, u) is a loop, then V

′
= V \ u and E

′
is formed

by removing every edge of D which is incident to u.

We next define the cover polynomial C(D) = C(D;x, y) of D recursively:

(i) If D = In, the digraph consisting of n independent vertices and no
edges, then C(D) = xn = x(x − 1)(x − 2) · · · (x − n + 1), the falling
factorial. In particular, for the case n = 0, the corresponding digraph
D∅ has C(D∅) = 1;

(ii) If e is a regular edge then C(D) = C(D \ e) + C(D/e);

(iii) if e is a loop then C(D) = C(D \ e) + yC(D/e).

It is rather remarkable that C(D) is actually well-defined, in other words,
it does not depend on the order that various edges and loops are deleted
and contracted. This was one of the results of [7] and followed from the
following interpretation of the coefficients of C(D). If we write C(D) =∑

i,j cD(i, j)xiyj, where xi denotes the falling factorial xi =
∏i−1

j=0(x − j),
then cD(i, j) is just the number of ways of disjointly covering all the vertices
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of D with i paths and j cycles, where a single vertex is considered to be
a path of length zero, and a loop is considered a cycle of length 1. Thus,
for example, cD(0, 1) is just the number of Hamiltonian cycles of D, so it
should come as no surprise that computing C(D) for general digraphs D is
computationally challenging, to say the least (we say more about this later
in the paper). We point out that C(D) also satisfies a surprising reciprocity
relation (first independently observed by Gessel [10] and Chow [5]): suppose
D′ denotes the complement of D, i.e., the roles of edges and non-edges are
interchanged. Then we have

C(D′;x, y) = (−1)nC(D;−x− y, y) (1)

where D has n vertices.

2 Weighted digraphs.

Our first generalization will be to assign weights to the edges of D. Thus, to
each edge e of D we assign a weight w(e) where w(e) can be taken in general
to lie in some fixed commutative ring R with identity (we will ordinarily
take R to be R or C). We can naturally represent the weighted edges of
D = (V,E) by a matrix M = M(D) where the rows and columns of M are
indexed by V and for each edge e = (u, v), the (u, v) entry of M is given by
M(u, v) = w(e). For the case of ordinary (unweighted) digraphs, each edge
has weight 1. In Figure 1, we give an example of a weighted digraph and its
associated matrix. (The weights make look like integers but they are really
from our commutative ring R!)
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Figure 1: A weighted digraph D and its associated matrix M .
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We will now define the cover polynomial C(M) = C(M ;x, y) for the
matrix M analogously as was done for an unweighted digraph D. We will
switch between using a weighted digraph D or its associated matrix M as
is convenient. Again, we will give a recursive definition based on a weighted
version of deletion and contraction for matrices. Let M be a matrix and
consider an entry e = M(u, v). The deleted matrix M \ e is formed by just
replacing the (u, v) entry of M by 0. The contraction M/e of M is formed
by first replacing row u of M by row v of M , and then deleting row v and
column v of M . Thus, M/e has one fewer row and column than M does.
Note that the same rule applies whether e is a diagonal (loop) entry or a
non-diagonal (regular edge) of M . We illustrate this process in Figure 2.

 

0 3 0 1
2 5 0 0
4 0 0 0
0 6 0 0
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0 0 0

M\e

Figure 2: Deletion and contraction for the matrix M

The cover polynomial C(M) = C(M ;x, y) is now defined recursively as
follows:
Definition 1:

(1a) If M = Mn(0), the n by n matrix of all 0’s, then C(M) = xn, where
for the empty matrix M0(0), we set C(M0(0) = 1;

(1b) If e = (u, v) with u 6= v, then we define C(M) = C(M\e)+M(u, v)C(M/e);

(1c) if e = (u, u) then we define C(M) = C(M \ e) +M(u, u) y C(M/e).

For example, for the matrix shown in Figure 2, we have

C(M) = (5x3 + 16x2 + 11x)y + x4 + 10x3 + 23x2 − 10x. (2)
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We can state the above formula in terms of the weighted digraph D as
follows:

Definition 2:

(2a) If D = In consisting of n vertices and no edges, then C(D;x, y) = xn

where for n = 0 we set C(D;x, y) = 1;

(2b) If e is a regular edge, then C(D) = C(D \ e) + w(e)C(D/e);

(2c) If e is a loop, then C(D) = C(D \ e) + w(e) y C(D/e).

In Figure 3, we show the corresponding weighted digraph deletions and
contractions.
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Figure 3: Deletion and contraction for the corresponding digraph D

We are next going to explicitly define the polynomial C(D;x, y) for a
weighted digraph D. We will eventually show that this is identical to the
cover polynomial C(M) of the associated matrix M = M(D). A path-cycle
cover S of D is a collection of paths and cycles which disjointly cover all the
vertices of D. The weight of a path or cycle is defined to be the product
of the weights of all the edges in the path or cycle. The weight w(S) of S
is defined to be the product of all the weights of the paths and cycles in it.
Finally, the coefficient cD(i, j) is the sum of all the weights of the path-cycle
covers which consist of exactly i paths and j cycles. We claim the following
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also defines the cover polynomial.

Definition 3:

C(D;x, y) =
∑
i,j

cD(i, j)xiyj (3)

We can also write C(D;x, y) in the following form (which will be useful later
when we deal with symmetric functions):

C(D;x, y) =
∑
S

x#π(S)y#σ(S)w(S) (4)

where S ranges over all path-cycle covers of D, #π(S) denotes the number
of blocks in the partition π(S) of the vertices induced by the paths of S, and
#σ(S) denotes the number of blocks in the partition π(S) of the vertices
induced by the cycles of S.

For positive integers r and s, we consider two sets of colors, say Fp and
Fc where |Fp| = r and |Fc| = s. Given some path-cycle cover S of D, an
S-feasible (r, s)-coloring of D, is a assignment of colors so that all the vertices
in each cycle of S have the same Fc color, all the vertices in each path of S
have the same Fp color, and further, vertices in different paths have different
colors. (Vertices in different cycles can have the same color). We can rewrite
(4) as follows:

C(D; r, s) =
∑
S

∑
κ

w(S) (5)

where S ranges over all path-cycle covers and κ ranges over all feasible col-
orings of S.

In the next section we will show that all three definitions are equivalent,
that is, they define the same polynomial. As a consequence, this implies that
the deletion/contraction definitions are well-defined, i.e., the final result is
independent of the order of the edges chosen.

In Table 1, we tabulate the various weighted path-cycle covers for the weighted
digraph D shown in Figure 3. Notice that if we rewrite (2) in terms of xk,
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cD(i, j) path-cycle cover weight sum

c(1, 0) uwvx 24 24
u | wvx 6
u | vxw 12

c(2, 0) u | xwv 2 60
uw | vx 24
uwv | x 4
uwx | v 12
uw | x | v 4
wv | u | x 1

c(3, 0) vx | u | w 6 16
xw | u | v 2
wx | u | v 3

c(4, 0) u | v | w | x 1 1
c(1, 1) uwv | xx 20 32

u | xwvx 12
u | wv | xx 20

c(2, 1) u | wv | xx 5 31
u | v | wxw 6

c(3, 1) u | v | w | xx 5 5

Table 1: Table of weighted path-cycle covers for D.

then we have

C(M) = (5x3 + 31x2 + 32x)y + x4 + 16x3 + 60x2 + 24x. (6)

These coefficients are exactly the weighted path-cycle sums appearing in the
table.
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3 Proof of equivalence.

We first claim that we can replace (2b) in Definition 2 of C(D) by the fol-
lowing:
(2b′) For any β ∈ R, if e is a regular edge then

C(D) = C(D \ βe) + βC(D/e),

where D \ βe is the digraph with the new edge weight w(e)− β on the edge
e, and D/e is the usual contraction.
To see that (2b) is equivalent to (2b′), we observe the following:

Lemma 1 C(D \ e) + w(e)C(D/e) = C(D \ βe) + βC(D/e).

Proof: Note that if β 6= w(e) then we have by (2b)

C(D \ βe) = C((D \ βe) \ (w(e)− β)e) + (w(e)− β)C(D/e)

= C(D \ e) + (w(e)− β)C(D/e).

On the other hand, if β = w(e) then the claim follows by definition. �

Lemma 2 Suppose the D has vertex set V = V1 ∪V2 where V1 ∩V2 = ∅. Let
Di denote the induced digraph on Vi, i = 1, 2. Further, suppose that D has
all the edges of the form (u1, u2) for all u1 ∈ V1, u2 ∈ V2, each of weight 1.
Then

C(D) = C(D1)C(D2).

Proof. It suffices to show that C(D; r, s) = C(D1; r, s)C(D2; r, s) for positive
integers r and s. We use the formulation in equation (5). For each feasible
(r, s)-coloring of D1 and D2, the union (together with the edges from D1 to
D2 joining appropriate endpoints of paths in the same color) is a feasible
(r, s)-coloring of a path-cycle cover of D. Furthermore, the weight of the
cover of D is the product of the weights of the covers of D1 and D2 (since all
the crossing edges have weight 1). Thus, we have

C(D; r, s) = C(D1; r, s)C(D2; r, s)
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for any choice of positive integers r, s. This implies

C(D;x, y) = C(D1;x, y)C(D2;x, y)

for indeterminates x and y. �

Theorem 1 The three definitions of C(D) are equivalent.

Proof: It easily checked that Definitions 1 and 2 are equivalent, since one is
expressed in the language of matrices and the other in terms of digraphs.
We will first show that Definition 3 implies Definition 2. The proof will
proceed by induction. Suppose that D contains a regular edge e. We consider
the family F of path-cycle covers which consist of i paths and j cycles. Thus,

w(F) =
∑
F∈F

w(F ) = cD(i, j).

We can write F = F1 ∪ F2 where

F1 = {F ∈ F : e /∈ F},
F2 = {F ∈ F : e ∈ F}.

Clearly,

w(F1) = cD\e(i, j).

Note that for any F ∈ F1, the induced cover F/e is a path-cycle cover of
D/e with i paths and j cycles. Also, w(F ) = w(e)w(F/e). Therefore,

cD(i, j) = w(F) =
∑
F∈F

w(F )

=
∑
F∈F1

w(F ) +
∑
F∈F2

w(F )

=
∑
F∈F1

w(F \ e) + w(e)
∑
F∈F2

w(F/e)

= cD\e(i, j) + w(e)cD/e(i, j)

by Definition 3. Thus,

C(D;x, y) =
∑
i,j

cD(i, j)xiyj

=
∑
i,j

(
cD\e(i, j) + w(e)cD/e(i, j)

)
xiyj

= C(D \ e;x, y) + w(e)C(D/e;x, y)
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which is (2b).
Next, suppose that e′ = (u, u) denotes a loop at vertex u with weight w(e′).
Again, we consider the set F of path-cycle covers of D, each of which has i
paths and j cycles. Set F = F′1 ∪ F′2 where

F′1 = {F ∈ F : e′ /∈ F},
F′2 = {F ∈ F : e′ ∈ F}.

As before, it is clear that w(F′1) = cD\e′(i, j). Also, for F ∈ F′2 we have
w(F ) = w(e′)w(F ′) where F ′ is the path-cycle cover induced from F on the
vertex set V \ {u}. Therefore,

w(F) =
∑
F∈F

w(F )

=
∑
F∈F′

1

w(F ) +
∑
F∈F′

2

w(F )

=
∑
F∈F′

1

w(F \ e′) + w(e′)
∑
F∈F′

2

w(F/e′)

= cD\e′(i, j) + w(e′)cD/e′(i, j − 1)

by Definition 3. Therefore,

C(D;x, y) =
∑
i,j

cD(i, j)xiyj

=
∑
i,j

(cD\e′(i, j)x
iyj + w(e′) y cD/e′(i, j − 1)xiyj−1

= C(D \ e′;x, y) + w(e′) y C(D/e′;x, y),

i.e.,

C(D) = C(D \ e′) + w(e′) y C(D/e′)

which is (2c).
For the final case, suppose D = In, the digraph consisting of n isolated
vertices. In this case, there is only one path-cycle cover, namely n paths of
length 0, so by Definition 3, C(In) = xn. This is just (2a) and so the proof
that Definition 3 implies Definition 2 is finished.
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It remains to show that Definition 2 implies Definition 3. For the case
that D = In, the proof that (3) holds is straightforward. Assume that D has
a regular edge e. Thus,

C(D) = C(D \ e) + C(D/e)

cD(i, j) = cD\e(i, j) + w(e)cD/e(i, j)

=
∑
e/∈F

w(F ) +
∑
e∈F

w(F ) by induction

=
∑
F

w(F )

where the sums are over all path-cycle covers F with i paths and j cycles.
This shows that (3)) holds. This completes the proof of Theorem 1. �

4 A generalized cover polynomial

In the recursive of C(D) (Definition 2), a choice was made in (2a) on how to
define the value of C(D) when D = In, the digraph with n vertices and no
edges. The choice was to define C(In) = xn. Of course, other choices are pos-
sible, resulting in other polynomials. In particular, inspired by [7], D’Antona
and Munarini [4] introduced what they termed the geometric cover poly-
nomial C̃(D;x, y). This polynomial satisfies the same deletion/contraction
rules as the usual cover polynomial (i.e., (2b) and (2c)), but (2a) is replaced
by defining C̃(In) = xn. The polynomial C̃(D) is similar in many ways to
C(D) but also differs from it in some important aspects. In this section we
consider a more general polynomial Ct(D) which generalizes both of these
polynomials.

The polynomial Ct(D;x, y) is defined for any real t (which could be nega-
tive). It is generated by using the deletion/contraction rules of Definition 2,
except that (2a) is replaced by (2at):

(2at) : Ct(In;x, y) = xn,t
def
= x(x− t) · · · (x− (n− 1)t) =

n−1∏
i=0

(x− it).

Thus, the cover polynomial is just C1(D) and the geometric cover polynomial
is just C0(D). We can also explicitly express Ct(D;x, y) in several alternate
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forms which will be useful later. For example, we can also write

Ct(D;x, y) =
∑
S

x#π(S),ty#σ(S)w(S) (7)

where S ranges over all path-cycle covers of D (compare with (4)).

We point out that for t 6= 0, we can express Ct in term of the usual cover
polynomial C(Dt) of a modified digraph Dt. Specifically, Dt will have the
same vertices and edges as D but the edge weights in Dt are all divided by
t, i.e., weight wt(e) = w(e)

t
.

Then the cover polynomials Ct(D) and C(Dt) are related as follows (where
n denotes the number of vertices of D):

Lemma 3

Ct(D;x, y) = tnC(Dt;x/t, y) (8)

Proof: By (4) we can write

Ct(D;x, y) =
∑
S

x#π(S),ty#σ(S)w(S)

=
∑
S

#π(S)︷ ︸︸ ︷
x(x− t)(x− 2t) . . . y#σ(S)w(S)

=
∑
S

#π(S)︷ ︸︸ ︷(x
t

(
x

t
− 1) . . .

)
t#π(S)y#σ(S)w(S) (9)

=
∑
S

#π(S)︷ ︸︸ ︷(x
t

(
x

t
− 1) . . .

)
t#π(S)y#σ(S)wt(S)t|E(S)|
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Ct(D;x, y) =
∑
S

#π(S)︷ ︸︸ ︷(x
t

(
x

t
− 1) . . .

)
t#π(S)y#σ(S)wt(S)tn−#π(S) (10)

=
∑
S

#π(S)︷ ︸︸ ︷(x
t

(
x

t
− 1) . . .

)
y#σ(S)wt(S)tn

= tnC(Dt,
x

t
, y)

where wt(S) =
∏

e∈S wt(e) and |E(S)| = n −#π(S) denotes the number of
edges in S. �

Making the substitutions x = rt, y = s for positive integers r, s, we can
rewrite (8) as follows:

Lemma 4 For positive integers r, s and any real t 6= 0, we have

Ct(D; rt, s) =
∑
S

∑
κ

t#π(S)w(S) (11)

where S ranges over all path-cycle covers of D, and κ runs over all S-feasible
(r, s)-colorings of the vertices of D, that is, all vertices in any cycle get one
of s colors, all of the vertices in any path get one of r colors, and vertices in
different paths get different colors.

The extension of Lemma 1 for general values of t clearly holds (by definition).

To extend Lemma 2 for general values of t 6= 0, we do the following. Let
D1 = (V1, E1) and D2 = (V2, E2) be weighted digraphs with edge weight

functions w1 and w2, respectively. Define the product D1

(t)

× D2 to be the
digraph with vertex set V1 ∪ V2, edge set E1 ∪ E2 (with all edge weights
preserved), and in addition, all the addition “crossing” edges (u1, u2) with
u1 ∈ V1, u2 ∈ V2, each having weight t.

Lemma 5

Ct(D1

(t)

×D2;x, y) = Ct(D1;x, y)Ct(D2;x, y). (12)
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Proof: From (11), we have for any r, s ∈ P,

Ct(D1

(t)

×D2; rt, s) =
∑
S

∑
κ

t#π(S)w(S)

=
∑
S1,S2

∑
κ1,κ2

t#π(S1)+#π(S2)+#π(X)w(S1)w(S2)t#π(X)

where #π(X) denotes the number of paths of S which contain a crossing
edge, the factor of t#π(X) coming from the #π(X) additional crossing edges.
Of course, κi denotes an Si-feasible (r, s)-coloring of Di. Continuing, we have

Ct(D1

(t)

×D2; rt, s) =
∑
S

∑
κ

t#π(S)w(S)

=
∑
S1,S2

∑
κ1,κ2

(
t#π(S1)+#π(X)w(S1)

) (
t#π(S2)+#π(X)w(S2)

)
=
∑
S1,κ1

t#π(S1)+#π(X)w(S1)
∑
S2,κ2

t#π(S2)+#π(X)w(S2)

= Ct(D1; rt, s)Ct(D2; rt.s). (13)

Since (13) holds for all r, s ∈ P, then Lemma 5 follows. �

The extension of Lemma 2 to the case of t = 0 is worth noting. The proof
is not difficult and can be found in [4]. In this case, C0(D) = C̃(D) is just
the geometric cover polynomial and Lemma 2 becomes the natural product
theorem (which the Tutte polynomial satisfies, for example):

Lemma 6 If D if the disjoint union of D1 and D2 then

C̃(D) = C̃(D1)C̃(D2)

5 Evaluating Ct(D;x, y) at specific points

The question of the computational difficulty of evaluating C(D;x, y) and
C̃(D;x, y) at various points in the (x, y)-plane has been addressed by a num-
ber of researchers ([1, 2, 3]. This is similar to the well known analogs for
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the Tutte polynomial for which it is known that there are just eight points
in the (x, y) plane at which it can be evaluated efficiently (with the ex-
ception of the points on the curve (x − 1)(y − 1) = 1; cf. [11, 12, 17]).
It turns out that for the cover polynomial C(D;x, y) there are only three
points in the (x, y) plane for which C(D;x, y) can be evaluated in poly-
nomial time for arbitrary (unweighted) digraphs D. These are the points
(x, y) = (0, 0), (0,−1) and (1,−1). For all other points it is #P -hard to
evaluate C(D;x, y) for general D. For general weighted digraphs D on n
vertices, C(D; 0,−1) = (−1)nDeterminant(D) (which is easy to compute)
while C(D; 0, 1) = Permanent(D) (which is #P -hard to compute). In this
sense, we can think of C(D; 0, y) as interpolating between the determinant of
D and the permanent of D as y goes from -1 to 1. It is not hard to see why
C(D; 0,−1) = (−1)nDeterminant(D). Setting x = 0 in C(D;x, y) results in
a polynomial in y alone, so that the only coefficients cD(i, j) left have i = 0,
i.e., correspond to path-cycle covers with only cycles. Thus, cD(0, j) is a
weighted sum over all permutation choices of entries of D. Since the sign
of the permutation π is exactly (−1)n+#π, and when y = −1, consecutive
powers of y in the polynomial alternate in sign, then we end up with the
determinant of D (i.e., for M , the adjacency matrix corresponding to D). In
Figure 4, we show one such interpolation for a small random matrix M .

The third point for which C(D;x, y) can be evaluated in polynomial time is
the point (1,−1). For this case, C(D; 1,−1) = C(D; 0, 1)−C(D′; 0, 1) where
D′ is the digraph formed from D by adding a new vertex x0 to V with all
weight 1 edges (x0, v) and (v, x0) for all v ∈ V . To see this, let us rewrite
C(D;x, y) in the following form (cf. (4)):

C(D;x, y) =
∑
S

x#π(S)y#σ(S)w(S) (14)

where S ranges over all path-cycle covers of D. Thus, substituting x = 1
shows that the only S which can contribute to the sum have #π(S) ≤ 1 since
1k vanishes for k ≥ 2. So the allowable path-cycle covers S have at most
one path. However, those with one path exactly correspond to cycle covers
of D′, by connecting the ends of the path to the added vertex x0 to form a
cycle in D′. The sign change comes from the factor of (−1)n in the value
of C(D; 0,−1) = (−1)nDeterminant(D). It also follows that for an n by n
matrix M , the characteristic polynomial for M is given by C(λIn−M, 0,−1)
where In denotes the n by n identity matrix.

15



 

1 −3 4 2
7 5 −1 3
3 5 −4 7

−2 −6 4 3

M =  C(M;0,−1) = −60y4 + 709y3 − 131y2 − 1120y

Determinant(M) = 230

Permanent(M) = -612

Figure 4: Transition from determinant to permanent for a random matrix M

As pointed out in [2, 3], the geometric cover polynomial C̃(D;x, y) be-
haves differently from this perspective. For this polynomial, there are only
two points at which it can evaluated in polynomial time for general digraphs,
namely, (0, 0) and (0,−1) (which give the same values as for C(D;x, y) since
the base values on In are the same when x = 0). The point is that C̃(D;x, y)
doesn’t collapse like C(D;x, y) does when x = 1.

The same analysis shows that for Ct(D;x, y), its values at (0, 0), (0,−1)
and (t,−1) can all be computed in polynomial time. Presumably, at all other
points, it is #P -hard to evaluate in general.

6 Reciprocity

A rather amazing reciprocity theorem for C(D;x, y) for unweighted digraphs
D was discovered independently by Gessel [10] and Chow [5]. To state it,
we define the complement D′ of D to be the digraph in which the roles of
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edge and non-edge are interchanged. That is, the edges of D′ are exactly the
non-edges of D. In terms of the corresponding adjacency matrices for the
digraphs, M ′ = Jn −M where Jn denotes the n by n matrix of all 1’s, and
we assume that D has n vertices.

Theorem [5, 10] For all unweighted digraphs on n vertices;

C(D′;x, y) = (−1)nC(D;−x− y, y). (15)

Chow’s proof [5] was a consequence of a more general result derived from
his symmetric function generalization of the cover polynomial, and used an
impressive array of tools from symmetric function theory. We will return to
this in the next section.

Our goal in this section is to show that this reciprocity relationship holds
much more generally for the polynomial Ct(D;x, y) for all weighted digraphs
and all values of t. In this case, D′ is defined to be the dual digraph formed
from D by replacing each edge weight w(e) in D by w′(e) = t − w(e). (In
terms of matrices, M ′ = tJn −M where M has dimension n).

Theorem 2. For all weighted digraphs D and all t,

Ct(D
′;−x− ty, y) = (−1)nCt(D;x, y) (16)

Note that the dual of D′ is just D.

Proof: Let n denote the number of vertices of D. We first deal with the
case t = 0. In this case we observe that

cD(i, j) = c−D(i, j)(−1)n−i

since any path-cycle cover of D with i paths and j cycles has n − i edges.
Therefore

C0(D;x, y) =
∑
i,j

cD(i, j)xiyj

=
∑
i,j

c−D(i, j)(−1)n(−x)iyj

= (−1)nC0(−D;−x, y)

as required.
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Now, suppose t 6= 0. The proof will proceed by induction on the number
of edges of D. We first will deal with the base case for D = In, where we
assume the theorem holds for In−1. (The result for n = 0 is immediate). Let
D = I1, i.e. M = [0], the 1 by 1 zero matrix. Then the dual matrix M ′ = [t].
Thus,

Ct(M ;x, y) = x and Ct(M
′;x, y) = x+ ty

since M ′ = [t] consists of a single loop of weight t. Therefore

Ct(M
′;−x− ty, y) = (−x− ty) + ty = −x = −Ct(M ;x, y)

as required.

Next, assume that D = In for some n > 1. Thus, M is an all 0 matrix of
dimension n with the dual matrix M ′ = tJn. We want to show

Ct(tJn;−x− ty, y) = (−1)nxn,t = (−1)nCt(In;x, y). (17)

Let label the vertices of the dual digraph D′ as {v1, v2, . . . , vn}. We consider
the edges ei = (v1, vi) in D′ for i = 2, 3, . . . , n, where e1 is the loop at v1. We
have w(ei) = t for 1 ≤ i ≤ n. Let D′i = D′i−1 for 1 ≤ i ≤ n with D′0 = D′.
We will now start reducing D′ by one loop at a time, using the induction
hypothesis as we proceed. Thus,

(−1)nCt(D
′;−x− ty, y)

= Ct(D
′ \ e,−x− ty, y) + tyCt(tJn−1 − In−1,−x− ty, y)

= C(D′1,−x− ty, y) + ty(−1)nCt(In−1, x, y) (by induction)

= Ct(D
′
1 \ e2,−x− ty, y) + tCt(D

′
1 \ e2,−x− ty, y)

+ ty(−1)nCt(In−1, x, y) (by deletion and contraction)

= C(D′2;−x− ty, y) + C(tJn−1 − In−1;−x− ty, y)

+ tyCt(tJn−1 − In−1,−x− ty, y) (by induction) (18)

= Ct(D
′
2 \ e3,−x− ty, y) + 2tCt(tJn−1 − In−1,−x− ty, y)

+ ty(−1)nCt(In−1, x, y)

= . . . . . . . . . . . . . . .

= C(D′n;−x− ty, y) + (n− 1)Ct(tJn−1 − In−1,−x− ty, y)

+ ty(−1)nCt(In−1, x, y)
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Note that the vertex set in D′n can be regarded as consisting the disjoint
union of two parts: {v1} and {v2, v3, . . . , vn} with all edges (vi, v1) going
from {v2, v3, . . . , vn} to {v1} and all having weight t. We can now apply the
product theorem of Lemma 5 to obtain

Ct(D
′
n;−x− ty, y) = Ct(I1,−x− ty, y)Ct(tJn−1 − In−1,−x− ty, y) (19)

= (−x− ty)Ct(tJn−1 − In−1,−x− ty, y)

Substituting into (18), we obtain

(−1)nCt(D
′;−x− ty, y)

=
(
(−x− ty) + (n− 1)t

)
Ct(tJn−1 − In−1,−x− ty, y)

+ ty(−1)nCt(In−1x, y)

= (−x− ty − (n− 1)t)(−1)nCt(In−1, x, y) + ty(−1)nCt(In−1;x, y)

(by induction)

= (x− (n− 1)t)xn−1,t = xn,t.

This proves Theorem 2 for the base case that D has no edges.

Next, suppose our digraph D has n vertices and at least one regular edge
e = (u, v), u 6= v. We assume by induction that Theorem 2 holds for all
digraphs with fewer than n vertices and also for all digraphs on n vertices
with fewer edges than D. We know

Ct(D;x, y) = Ct(D \ e;x, y) + w(e)Ct(D/e;x, y)

= (−1)nCt(tJn − (D \ e),−x− ty, y) (20)

− w(e)(−1)nCt(tJn−1 − (D/e);−x− ty, y) (by induction)

Let F denote tJn − (D \ e). Certainly e ∈ F and has weight t.

Claim:

F/e = tJn−1 − (D/e) (21)

Proof: Check the weights of the edges in tJn−1−(D/e) and F/e. All weights
of edges not involving the new (contracted) vertex uv remain the same. Also
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all weights of edges involving uv remain the same as well. Also, the loop at
uv has weight t− w(v, u). This proves the Claim.

Simplifying (20), we have

Ct(D;x, y) = (−1)nCt(F,−x− ty, y)− w(e)(−1)nCt(F/e,−x− ty, y).
(22)

Now we will use Lemma 1 (for Ct), namely

Ct(F ) = Ct(F \ βe) + βCt(F/e) (23)

with β = w(e). Thus,

Ct(D;x, y) = (−1)n
(
Ct(F,−x− ty, y)− w(e)Ct(F/e,−x− ty, y)

)
= (−1)nCt(F \ w(e)e,−x− ty, y). (24)

by deletion and contraction using the edge w(e)e. However, it is not hard to
check that

F ′ = F \ w(e)e =
(
tJn \ (D \ e)

)
\ w(e)e = tJn −D.

Therefore, we have

Ct(D;x, y) = (−1)nCt(tJn −D,−x− ty, y) (25)

which is what was needed.

Finally, suppose D has only loops. Let e denote a loop at vertex v with
weight w(e). Then by induction

Ct(D;x, y) = Ct(D \ e, x, y) + w(e)yC(D/v;x, y)

= (−1)nCt(tJn − (D \ e);−x− ty, y) (26)

+ (−1)n−1w(e)yCt(tJn−1 − (D \ v);−x− ty, y).

Set F = tJn − (D \ e). It is easy to check that

F/v = tJn−1 − (D \ v).
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Thus, (26) can be rewritten as:

Ct(D;x, y) = (−1)n
(
Ct(F ;−x− ty, y)− w(e)yC(F \ v,−x− ty, y)

)
= (−1)n

(
Ct(F \ w(e)e,−x− ty, y)

)
(27)

However, checking all the relevant edge weights confirms that

F \ w(e)e =
(
tJn − (D \ e)

)
\ w(e)e = tJn −D. (28)

Hence, plugging into (27) gives us:

Ct(D;x, y) = (−1)nCt(tJn −D,−x− ty, y) (29)

which is exactly what was needed to complete the proof of Theorem 2. �

It should be noted that the theorem also applies for t = 0. Since
C0(D;x, y) = C̃(D;x, y) is the geometric cover polynomial and the dual
D′ = −D, the reciprocity result we get in this case is:

C̃(−D;−x, y) = (−1)nC̃(D;x, y)

which isn’t particularly impressive!

7 Symmetric functions

In [13], Stanley introduced what he called the chromatic symmetric function
XG of a graph G, generalizing the usual chromatic polynomial χG for G.
The basic setup is this. For an undirected graph G = (V,E), we say that
κ : V → P is a proper coloring of G if κ maps adjacent vertices to different
values (= colors). We let x1, x2, x3, . . . be (commuting) indeterminates and
suppose V = {v1, v2, . . . , vd}. Then define

XG = XG(x) = XG(x1, x2, x3, . . .) =
∑
κ

xκ(v1)xκ(v2) . . . xκ(vd)

where the sum ranges over all proper colorings κ of G. XG is clearly a sym-
metric function in the xi and as such, can be expanded using different bases
in the algebra of symmetric functions (cf. [13, 14, 15]). Also, if we let XG(1n)
denote the function we get by substituting xi = 1 for 1 ≤ i ≤ n and xj = 0
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for j > n, then we have XG(1n) = χG(n). It was natural to ask whether
this approach could be applied to other graph polynomials such the Tutte
polynomial, the cover polynomial, etc. Indeed, this was successfully carried
out for the cover polynomial C(D) for digraphs by Tim Chow (in his 1995
dissertation; see [5]).

In this section, we will show how this extension to a symmetric function
can be done for the general cover polynomial Ct(D),where D is any weighted
digraph with edge weights in a commutative ring R with identity, and t is
any real number. In fact, we will enlarge the category of digraphs D we
consider by assuming that in addition to the edge weights w(e) of D, each
vertex v of D has some positive integer weight w0(v) ∈ P attached to it as
well. We can call D a doubly-weighted digraph.

Let us denote this general symmetric function by Ξt(D) = Ξ(D) where we
will usually suppress the dependence on t when t = 1. We will show that
Ξ(D) satisfies a reciprocity theorem (which Chow [5] did for his symmetric
function). In addition, we will show that Ξ(D) can be obtained by a dele-
tion/contraction procedure.

We now introduce the quantities we will need to define Ξ(D). We will
work with two sets of commuting indeterminates: x = (x1, x2, . . .) and
y = (y1, y2, . . .). For a vector β = (β1, β2, . . .), we define

xβ = xβ11 x
β2
2 . . . . . . .

Definition: For a partition λ = (λ1, λ2, . . .) of n, denoted by λ ` n, we
define the usual symmetric function

mλ =
∑
β

xβ

where β ranges over all distinct permutations of λ.
For example, for the partition λ = (3, 3, 2, 1, 0, 0, . . .) ` 9, we have

mλ(x) = m3,3,2,1(x) =
∑

i,j,k,l distinct
i<j

x3
ix

3
jx

2
kxl

.
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Definition: The sign of a partition λ ` n is defined by sgn(λ) = (−1)|λ|−#λ

where #λ is the number of blocks of λ and |λ| denotes
∑

i λi = n.

Definition: For a partition λ = (λ1, λ2, . . .), we use the notation
rλ! = r1!r2! . . ., where ri denotes the number of blocks of λ of size i.

Definition: The augmented function m̃λ(x) is defined by

m̃λ(x) = rλ!mλ(x).

We also define the usual power symmetric function:

Definition:

pj(x) =
∑
i

xji and for λ ` n, pλ(x) = pλ1pλ2 . . . .

Both m̃λ and pλ are defined to be 1 if #λ = 0.

Suppose S is a path-cycle cover of D. By π(S) we mean the partition of
the vertices induced by the paths of S. If B is a block of π(S) then the
weight w0(B) of B denotes the sum of all the vertex weights w0(v) for v ∈ B.
Also, by w0(π(S)) we mean the partition (w0(B1), w0(B2), . . .) formed by the
weights of the blocks of π(S). We will usually abbreviate this by deleting
w0 when the meaning is clear. For example, pσ will stand for pw0(σ), etc.
Further, we denote the number of blocks of π(S) by #π(S), the number of
vertices of π(S) by |π(S)|, the number of edges of S by |E(S)|, and finally, the
sum of the weights of the vertices

∑
v w0(v) of D by w0(D). The analogous

definitions apply to σ(S), the vertex partition induced by the cycles of S.

Finally, we denote by w(S) the product of all the edge weights w(e) for
e ∈ S, with w(π(S)) and w(σ(S)) defined accordingly.

We now give the first definition of our symmetric function generalization
Ξ(D; x). (We will only consider the case t = 1 at this point. More general
values of t will be treated later).

First definition of Ξ(D; x,y).

Ξ(D; x,y) =
∑
S

m̃π(S)(x)pσ(S)(y)w(S) (30)
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where S ranges over all path-cycle covers of the (doubly-weighted) digraph
D.

If all the vertex weights in D are 1 (the usual case), then the next result
follows immediately from the definitions.

Proposition.
Ξ(D; 1i, 1j) = C(D; i, j).

where 1k = (

k︷ ︸︸ ︷
1, 1, . . . , 1, 0, 0, 0, . . .), i.e., xi = 1 for 1 ≤ i ≤ k, and xi = 0 for

i > k.

Note that in this case, m̃λ(1
i) is equal to the number of ways of coloring the

blocks of a partition λ with i distinct colors, and is equal to i#λ. Similarly,
pλ(1

j) is equal to the number of ways of coloring the blocks of λ with j (not
necessarily distinct) colors, and is equal to j#λ.

We first show a simple example. Let D be the digraph shown in Figure
5, where we will assume all the vertex weights are 1. In this case w0(B) for
a block of a partition is just the cardinality of B.

D

vu  
c a
b d

c
b

d
a

Figure 5: Computing Ξ(D) for a simple example

A quick computation shows that

C(D;x, y) = cdy2 + (ab+ cx+ dx)y + ax+ bx+ x2 − x (31)

D has seven path-cycle covers S. We list them below with their contributions
to Ξ(D).
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path-cycle cover S π(S) σ(S) term in sum contribution

S1 u→ v ∅ m̃π(S1) · 1 = m2(x) a
∑

i x
2
i

S2 v → u ∅ m̃π(S2) · 1 = m2(x) b
∑

i x
2
i

S3 u | v ∅ m̃π(S3) · 1 = 2m1,1(x) 2
∑

i xixj
S4 u v m̃π(S4)pσ(S4) = m1(x)p1(y) d

∑
i xi
∑

j yj
S5 v u m̃π(S5)pσ(S5) = m1(x)p1(y) c

∑
i xi
∑

j yj
S6 ∅ u� v 1 · pσ(S6) = p2(y) ab

∑
i y

2
i

S7 ∅
u
�

v
� 1 · pσ(S7) = p1,1(y) cd

(∑
i yi
)2

Table 2: Table of weighted path-cycle covers for D.

Thus, we find

Ξ(D; x,y) = (a+ b)
∑
i

x2
i + 2

∑
i<j

xixj + (c+ d)
∑
i

xi
∑
j

yj

+ ab
∑
i

y2
i + cd

(∑
i

yi
)2
.

Therefore,

Ξ(D; 1i, 1j) = (a+ b)i+ 2

(
i

2

)
+ (c+ d)ij + abj + cdj2

= cdj2 + (c+ d)ij + abj + i2 + (a+ b− 1)i

= C(D; i, j)

as it should!

We now give the second definition of Ξ(D). Let D be a (doubly weighted)
digraph.

Second definition of Ξ(D; x,y) (Deletion and contraction).

(i) If e is a regular edge then

Ξ(D; x,y) = Ξ(D \ e,x,y) + w(e)Ξ(D/e,x,y);

The contracted digraph Ξ(D/e,x,y) is formed as shown in Figure 6. The
contracted vertex uv has weight w0(uv) = w0(u) + w0(v). In the deleted
digraph Ξ(D \ e,x,y), the edge e is simply removed.

25



Db

a

vu

d

c

D/e

a

vue

d

e’
e’

Figure 6: The contracted digraph Ξ(D/e,x,y)

(ii) If e is a loop at v and w0(v) = d then

Ξ(D; x,y) = Ξ(D \ e,x,y) + w(e)pd(y)Ξ(D/e,x,y);

In the contracted digraph Ξ(D/e,x,y), the vertex v and all incident edges
are removed, whereas in the deleted digraph Ξ(D \ e,x,y), only the loop e
is removed. As usual, we define Ξ(∅; x,y) = 1 for the empty digraph.

(iii) (The base case): If D has no edges and has vertex set {v1, v2, . . . , vr}
with w0(vi) = αi, 1 ≤ i ≤ r, then

Ξ(D; x,y) = m̃α(x) = m̃α1,α2,...,αr(x).

If r = 0 then D is the empty digraph and we set Ξ(D; x,y) = 1.

Our next task will be to show that these two definitions are equivalent.

Assuming that Ξ(D; x,y) is defined by (30), we have

Lemma 7

Ξ(D; x,y) =
∑
(S,κ)

w(S)
∏

u is in a path

x
w0(u)
κ(u)

∏
v is in a cycle

y
w0(v)
κ(v) .

where the sum is over all path-cycle colorings (S, κ) where is S is a path-cycle
cover and κ is a coloring κ : V → P so that vertices in the same path or cycle
have the same color, and vertices in different paths have different colors.

Proof: For each S, the paths and cycles are colored independently so the
sum over κ factors into a product of a symmetric function in x and a sym-
metric function in y. Each cycle is monochromatic, giving the term pσ(S)(y).
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Coloring the paths with distinct colors gives the term m̃π(S). �

Lemma 8 Suppose Di are digraphs on disjoint vertex sets Vi for i = 1, 2.
Form the combined digraph D by connecting D1 and D2 with all the edges
(u1, u2) from D1 to D2, each having weight 1. Then

Ξ(D) = Ξ(D1) Ξ(D2).

Proof: This follows from (8) since a path-cycle coloring can be viewed as
combining a path-cycle coloring of D1 and a path-cycle coloring of D2. �

Theorem 3. The two definitions for Ξ(D; x,y) are equivalent.

Proof (sketch). To prove equivalence, we use induction on the number
of edges of D. First, we check the base case D = In with vertex weights
α = (α1, α2, . . .). Here, Ξ(In) = m̃α(x), corresponding to the partition α ` n.
This is because each feasible coloring κ maps each block to a distinct color
(i.e., number), and this gives a term in the sum∑

κ

xα1

κ(v1)x
α2

κ(v2) . . . .

For a regular edge e, we have

Ξ(D) = Ξ(D \ e) + w(e)Ξ(D/e).

In general, the proof mimics the proof of equivalence given for C(D). The
proof is essentially the same except that now in D/e, the vertex weight of the
new combined vertex has a vertex weight equal to the sum of the old vertex
weights of the endpoints of the contracted edge. By induction, Ξ(D \ e) and
Ξ(D/e) are the same by either definition. The same argument applies when
e is a loop. This completes the proof (sketch). �

Remark. Although up to now we have only considered the case t = 1,
the previous arguments can easily be extended to apply to more general t.
Namely, we can define for any t ∈ R, t 6= 0,

Ξt(D; x,y) = tw0(D)Ξ(Dt;
x

t
,y) (32)
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where the only change we make to D in forming Dt is to change the edge
weights from w(e) to w(e)

t
.

Note that since for a partition λ,

lim
t→0

t|λ|m̃λ

(x

t

)
= pλ(x) (33)

then

Ξ0(D; x,y) =
∑
S

w(S)pπ(S)(x)pσ(S)(y) (34)

is the symmetric function version of the geometric cover polynomial C̃(D;x, y).
In particular, for disjoint digraphs D1 and D2 we have the product formula

Ξ0(D1 ∪D2; x,y) = Ξ0(D1; x,y)Ξ0(D2; x,y). (35)

8 Reciprocity for Ξt(D)

We first need a few definitions.

Definition: For a symmetric function g(x,y), the notation [g(x,y)]x→(x,y)

means that, treating g as a symmetric function in the x’s with coefficients in
the y’s, the set of x variables is to be replaced by the union of the x and y
variables.

Definition: The involution ω is the (standard) algebra endomorphism acting
on the algebra of symmetric functions sending eλ to hλ (cf.[15]). In particular,
its effect on pλ is given by

ωpλ = sgn(λ)pλ.

where we recall that sgn(λ) = (−1)|λ|−#λ where for λ ` n, |λ| =
∑

i λi = n,
and #λ denotes the number of blocks of the partition λ.
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The reciprocity theorem for Ξt(D) can be stated as follows;

Theorem 4. Let D be an n-vertex digraph with edge weights w(e) and
vertex weights w0(v), and let D′ denote the dual digraph tJn −D with edge
weights w′(e) = t− w(e) and the same vertex weights w0(v). Then

Ξt(D; x,y) = (−1)
∑

v w0(v)−n[ωxΞt(D
′,x,−y)]x→(x,ty). (36)

Remark. We point out that this just the statement of the reciprocity theo-
rem in Chow [5] except we allow arbitrary edge weights instead of 0 and 1,
we include vertex weights and we have an arbitrary real value for t instead
of t = 1. The proof in [5] used various symmetric function change of basis
formulas and depended on edge weights being 0 or 1. Our proofs, on the
other hand, follow our proof of reciprocity for Ct(D) and are based on the
deletion/contraction characterization of Ξt(D). Of course, all these results
can be interpreted as applying to an arbitrary matrix M with entries in some
commutative ring R with identity.

Proof. First, we treat the case t = 0. In this case, we have by (34)

Ξ0(D; x,y) =
∑
S

pπ(S)(x)pσ(S)(y)w(S)

=
∑
S

pπ(S)(x)w(π(s)) · pσ(S)(y)w(σ(S))

We now consider Ξ0(−D; x,−y) with D′ = −D,w′(e) = −w(e) and y′i = −yi.
Thus,

Ξ0(−D; x,−y) =
∑
S

pπ(S)(x)w′(π(s)) · pσ(S)(−y)w′(σ(S))

For each path-cycle cover S, we consider

pπ(S)(x)w′(π(S)) = pπ(S)(x)w(π(S))(−1)# of edges inπ(S) (37)

= pπ(S)(x)w(π(S))(−1)#π(S)−|π(S)|

and

pπ(S)(−y)w′(σ(S)) = pσ(S)(y)(−1)σ(S)w(σ(S))(−1)|σ(S)| (38)
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Combining (37) and (38), we obtain

Ξ0(−D; x,−y) =
∑
S

(−1)|π(S)|−#π(S)+σ(S)pπ(S)pσ(S)w(S) (39)

Note that sgn(π(S)) = (−1)π(S)−#π(S). Thus, by the definition of ωx, we have

ωx(Ξ0(−D; x,−y)) =
∑
S

(−1)|π(S)|−#π(S)+σ(S)sgn(π(S))

× pπ(S)(x)pσ(S)(y)w(S)

=
∑
S

(−1)|π(S)|−#π(S)+σ(S)(−1)π(S)−#π(S)

× pπ(S)(x)pσ(S)(y)w(S)

=
∑
S

(−1)w0(S)−|π(S)|pπ(S)(x)pσ(S)(y)w(S)

= (−1)
∑

v w0(v)−n Ξ0(D; x,y).

Thus, since t = 0,

[ωxΞ0(−D; x,−y)]x→(x,ty) = ωxΞ0(−D; x,−y)

= (−1)
∑

v w0(v)−n Ξ0(D; x,y).

as required.

For the case t 6= 0, we use the fact that Ξt(D; x,y) = t
∑

v w0(v)Ξ(Dt;
x
t
,y) (see

(32)). Consequently, it suffices to restrict our attention to the case t = 1.
We will proceed by induction on the number of edges of D.

First, we consider the base case D = In. Thus, D has vertices {v1, v2, . . . , vn}
with weights w0(vi) = αi and no edges. For n = 1, D = I1 consists of a single
vertex v with weight w0(v) = α. Also the dual graph D′ consists of the vertex
v with (the same) weight w′0(v) = α together with a loop e at v with edge
weight w′(e) = 1. In this case,

Ξ(D; x,y) = m̃α(x) = pα(x),

Ξ(D′; x,y) = m̃α(x) + pα(y) = pα(x) + pα(y),
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ωxΞ(D′; x,−y)) = (−1)α−1pα(x) + pα(−y)

= (−1)α−1pα(x) + (−1)αpα(y),

[ωxΞ(D′; x,−y))]x→(x,y) = (−1)α−1(pα(x) + pα(y)) + (−1)αpα(y)

= (−1)α−1pα(x)

and this case is done.

Next, we consider the case that D = In for some n > 1. Thus, D consists of
n independent vertices vi with the vertex weight vector α = (α1, α2, . . . , αn).
Therefore,

Ξ(D; x,y) = m̃α(x)

The dual graph D′ = Jn−D has edges consisting of all pairs (vi, vj), including
loops. All edges in D′ have weight 1. Denote the edge (vi, v1) = ei, 2 ≤ i ≤ n.
We consider

Ξ(D′; x,y) = Ξ(D′ \ e2) + Ξt(D
′/e2)

= Ξ(D′2) + Ξ(D′′2), (40)

where D′2 = D′ \ e2 and D′′2 = D′/e2. The (contracted) digraph D′′2 is iso-
morphic to Jn−1 on the vertex set {v(1,2), v3, . . . , vn} with all edge and vertex
weights of D′ unchanged except that the contracted vertex v(1,2) replacing v1

has weight α1 + α2. Continuing from (40),

Ξ(D′; x,y) = Ξ(D′2) + Ξ(D′′2)

= (Ξ(D′2 \ e3) + Ξ(D′2/e3)) + Ξ(D′′2)

= Ξ(D′3) + Ξ(D′′3) + Ξ(D′′2)

where D′3 = D′2 \ e3 and D′′3 = D′2/e3. The (contracted) digraph D′′3 is iso-
morphic to Jn−1 on the vertex set {v(1,3), v2, . . . , vn} with all edge and vertex
weights of D′ unchanged except that the contracted vertex v(1,3) replacing v1

has weight α1 + α3.
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We can continue this process until we reach

Ξ(D; x,y) = Ξ(D′2) + Ξ(D′′2)

= Ξ(D′3) + Ξ(D′′3) + Ξ(D′′2)

= . . . . . . . . . . . .

= Ξ(D′n−1 \ en) + Ξ(D′n−1/en) +
n−1∑
k=2

Ξ(D′′k)

= Ξ(D′n) + Ξ(D′′n) +
n−1∑
k=2

Ξ(D′′k)

= Ξ(D′n) +
n∑
k=2

Ξ(D′′k)

where the (contracted) digraph D′′n is isomorphic to Jn−1 on the vertex set
{v(1,n), v2, . . . , vn−1} with all edge and vertex weights of D′ unchanged except
that the contracted vertex v(1,n) replacing v1 has weight α1 + αn.

Observe now that the vertex v1 ∈ D′n has all edges (v1, vi), 2 ≤ i ≤ n, and
none of the form (vi, v1). In other words, D′n consists of D0, a single vertex
v1 of weight α1 with a loop of weight 1 connected to all vertices in D1,(a copy
of Jn−1) on the vertex set {v2, v3, . . . , vn} with the original vertex and edge
weights. Hence we can apply Lemma 8 to obtain:

Ξ(D′n) = Ξ(D0)Ξ(D1) (41)

We know

Ξ(D0) = m̃α1(x) + pα1(y) = pα1(x) + pα1(y). (42)

Now consider

[ωxΞ(D′; x,−y)]x→(x,y) =

[
ωxΞ(D0; x,−y) +

n∑
i=2

ωxΞ(D′′i ; x,−y)

]
x→(x,y)

.

(43)

By induction we have

[ωxΞ(D′′i ; x,−y)]x→(x,y) = m̃α(i)(x)(−1)|α
(i)|−n+1
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where α(i) = (α2, . . . , βi, . . . αn) and βi = αi + α1. In particular, the sum
|α(i)| of all the entries of α(i) is just |α|, the sum of all the original vertex
weights. Now by (41), (42) and induction, we have

[ωxΞ(D′n; x,−y)]x→(x,y) =
[
ωx
(
Ξ(D0)Ξ(D1; x,−y)

)]
x→(x,y)

= (−1)|α|−n+1m̃α(x)[ωx
(
Ξ(D1; x,−y

)
]x→(x,y)

= (−1)|α|−n+1m̃α(x)[ωx
(
pα1(x) + pα1(−y)

)
]x→(x,y)

= (−1)|α|−n+1m̃α(x)[(−1)α1−1pα1(x) + pα1(−y)]x→(x,y)

= (−1)|α|−n+1m̃α(x)
(

(−1)α1−1
(
pα1(x) + pα1(y)

)
+ pα1(−y)

)
= (−1)|α|−nm̃ᾱ(x)pα1(x)

where α = (α2, α3, . . . , αn).

Now substituting into (43), we get

[ωxΞ(D′; x,−y)]x→(x,y) = m̃ᾱ(x)(−1)|α|−npα1(x) +
n∑
i=2

m̃α(i)(x)(−1)|α|−n+1

= (−1)|α|−n

(
m̃ᾱ(x)pα1(x) −

n∑
i=2

m̃α(i)(x)

)
?
= (−1)|α|−nm̃α(x). (44)

To prove (44), consider

m̃ᾱ(x)pα1(x) = m̃ᾱ(x)
∑
i

xα1
i .

By Lemma 8, we have

m̃ᾱ(x)pα1(x) =

(∑
κ

n∏
i=2

xαi

κ(vi)

)∑
i

xα1
i

where κ ranges over all feasible colorings of In−1 on {v2, . . . , vn} so that
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distinct vertices have different colors. We consider(∑
κ

n∏
i=2

xαi

κ(vi)

)∑
j

xα1
j =

∑
κ

 n∏
i=2

xαi

κ(vi)

( ∑
j 6=κ(vi)∀i

xα1
j +

n∑
j=2

xα1

κ(vj)

)
=
∑
κ′

n∏
i=1

xαi

κ′(vi)
+
∑
κ

(
n∏
i=2

xαi

κ(vi)

( n∑
j=2

xα1

κ(vj)

))

= m̃α(x) +
∑
κ

(
n∏
i=2

xαi

κ(vi)

( n∑
j=2

xα1

κ(vj)

))

since each κ can be extended to a feasible coloring κ′ of In on {v1, v2, . . . , vn}
by choosing a value for κ(v1) which is different from the values κ(vi). Thus,

m̃ᾱ(x)pα1(x) = m̃α(x) +
∑
κ

(
n∏
i=2

xαi

κ(vi)

( n∑
j=2

xα1

κ(vj)

))

= m̃α(x) +
n∑
j=2

∑
κ

(
xα1

κ(vj)

n∏
i=2

xαi

κ(vi)

)

We note that for each j,

∑
κ

xα1

κ(vj)

n∏
i=2

xαi

κ(vi)
= m̃α(j)(x).

where α(j) denotes the vertex weight vector with α(j)(vi) = α(vi) for i =
2, . . . , n except that α(j)(vj) = α(v1) + α(vj). Therefore we have

m̃ᾱ(x)pα1(x) = m̃α(x) +
n∑
j=2

m̃α(j)(x).

This proves (44) and the proof for the base case D = In is complete.

For the general case, suppose that D has an edge e.

Case 1. e is a regular edge.
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Suppose that all digraphs with fewer edges satisfy the reciprocity theorem
(36). Then, by induction,

Ξ(D; x,y) = Ξ(D \ e; x,y) + w(e)Ξ(D/e; x,y)

= (−1)w0(D)−n[ωxΞ(Jn − (D \ e)),x,−y)]x→(x,y)

× (−1)w0(D)−n+1w(e)[ωxΞ(Jn − (D/e)),x,−y)]x→(x,y) (45)

Set F = Jn \ (G \ e). Clearly, e ∈ F with weight 1. Following the proof of
(21), we have

F/e = Jn−1 − (G/e)

and the vertex weights in F/e are the same as in G/e. The loop at the new
vertex vu in F/e (coming from contracting the edge e′ = (v, u)) has weight
1− w(e′). Thus, (45) can be rewritten as

Ξ(D; x,y) = (−1)w0(D)−n[ωxΞ(F ; x,−y)]x→(x,y)

× (−1)w0(D)−n+1w(e)[ωxΞ(F/e; x,−y)]x→(x,y) (46)

We now use the following fact (the proof follows the same method as that of
Lemma 1):

Ξ(F ) = Ξ(F − w(e)e) + w(e)Ξ(F/e). (47)

Then we obtain

Ξ(D; x,y) = (−1)w0(D)−n[ωxΞ(F ′; x,−y)]x→(x,y)

(48)

where

F ′ = F − w(e)e = (Jn − (D \ e)) \ w(e)e = Jn −D. (49)

This takes care of this case.

Case 2 Suppose the only edges of D are loops.
Let e be a loop in D at the vertex v with edge weight w(e) and vertex weight
w0(v). Then, by induction,

Ξ(D; x,y) = Ξ(D \ e; x,y) + w(e)pαw0(v)
(y)Ξ(D/e; x,y)

= (−1)w0(D)−n[ωxΞ(Jn − (D \ e); x,−y)]x→(x,y)

+ (−1)
∑

u6=v w0(u)−n+1w(e)pαw0(v)
(y)[ωxΞ(Jn − (D/v); x,−y)]x→(x,y)

(50)
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Set F = Jn − (D \ e). As before, it is easy to see that

F \ v = Jn−1 − (G \ v).

Hence, (50) can be rewritten as

Ξ(D; x,y) = (−1)w0(D)−n[ωxΞ(F ; x,−y)]x→(x,y)

× (−1)
∑

u6=v w0(u)−n+1w(e)pαw0(v)
(y)[ωxΞ(F \ v; x,−y)]x→(x,y)

(51)

We now use the fact that

F \ w(e)e = (Jn − (D \ e))− w(e)e = Jn −D

Therefore we have (finally!)

Ξ(D; x,y) = (−1)
∑

v w0(v)−n[ωx

(
Ξ(F \ w(e)e; x,−y) + w(e)pαw0(v)

(−y)Ξ(F \ v; x,y)
)

]x→(x,y)

+ (−1)
∑

u6=v w0(u)−n+1w(e)pαw0(v)
(y)[ωxΞ(F \ v; x,−y)]x→(x,y)

= (−1)
∑

v w0(v)−n[ωxΞ(F \ w(e)e; x,y)]x→(x,y)

= (−1)w0(D)−n[ωxΞ(Jn −D; x,y)]x→(x,y)

as required. This completes the proof of Theorem 4 when t = 1.

To finish the proof of Theorem 4, we now need to consider the case of
general t 6= 0, 1. We will repeatedly use the definition of Ξt and use the
preceding results for t = 1. We consider

Ξ(D; x,y) = tw0(D)Ξ(Dt;
x

t
,y) (by the definition of Ξt)

= (−1)w0(D)−ntw0(D)[ωxΞ(Jn −Dt;
x

t
,−y)]x

t
→(x

t
,y)

(using the case of t = 1)

= (−1)w0(D)−n[ωxt
w0(D)Ξ(Jn −Dt;

x

t
,−y)]x

t
→(x

t
,y)

(by the definition of Ξt)

= (−1)w0(D)−n[ωxΞt(tJn −D; x,−y)]x→(x,ty).

Thus, Theorem 4 is proved. �
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To show that Theorem 4 implies Theorem 2, we first consider the case
that t = 1. Thus, it suffices to show that for positive integers i and j,

Ct(D; i, j) = (−1)nCt(D
′;−i− tj, j)

follows from (36), where D′ = tJn−D. To do this, we first consider the case
of t = 1. We define

Z(H; x,y)
def
= [ωxΞ(H; x,y)]x→(x,y) .

From Theorem 4, we have

Ξt(D; x,y) = (−1)w0(D)−nZ(H; x,y).

It suffices to show that for any doubly-weighted digraph H,

Z(H; 1i, 1j) = (−1)w0(D)C(H;−i− j, j).

To do this, we follow the strategy in [5] and consider ωxm̃π(x). From [9],
we know

m̃π(x) =
∑
σ≥π

µ(π, σ)pσ(x)

where µ(π, σ), the Möbius function for the partition lattice partially-ordered
by refinement, is given by

µ(π, σ) = sgn(π)sgn(σ)
∏
i

i!ri

where π is a refinement of σ, and ri denotes the number of blocks of σ that
are composed of i blocks of π. We also know from [9] that

fπ(x)
def
= sgn(π)ωxm̃π(x)

=
∑
σ≥π

|µ(π, σ)|pσ(x)

and consequently (e.g., see [5])

fπ(1k) =
∑
σ≥π

|µ(π, σ)|k#σ

= k#π = (−1)#π(−k)#π.
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Also,

pσ(−x) = (−1)|σ|pσ(x)

Thus,

Z(H; x,y) = [ωxΞ(H; x,−y)]x→(x,y)

=

[
ωx
∑
S

m̃π(S)(x)pσ(S)(−y)w′(S)

]
x→(x,y)

=
∑
S

sgn(π(S))fπ(S)(x,y)(−1)|σ(S)|pσ(S)(y)w′(S).

where S ranges over all path-cycle covers of H, and w′(S) denotes a product
of the edge weights in H. Therefore, replacing x by 1i and y by 1j, we get

Z(H; 1i, 1j) =
∑
S

sgn(π(S))fπ(S)(1
i+j)(−1)|σ(S)|pσ(S)(1

j)w′(S)

=
∑
S

(−1)|π(S)|−#π(S)(−1)#π(S)(−i− j)π(S)(−1)|σ(S)|j#σ(S)w′(S)

=
∑
S

(−1)|π(S)|+|σ(S)|(−i− j)#π(S)j#σ(S)w′(S)

= (−1)w0(D)
∑
S

(−i− j)#π(S)j#σ(S)w′(S)

= (−1)w0(D)C(H;−i− j, j)

as claimed. Therefore we have proved that

C(D; i, j) = (−1)nC(D′;−i− j, j) (52)

To show that Theorem 4 implies Theorem 2 for general t, we use Lemma
3.

Ct(D; i, j) = tnC(Dt, x/t, y)

= tn(−1)nC(Jn −Dt,−x/t− y, y) (by using (52))

= (−1)nCt(tJn −D;−i− tj, j)

as desired.
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9 Concluding remarks.

In [7], the authors introduced the path-cycle cover polynomial C(D;x, y),
a polynomial generated from way that the vertices of a digraph D can be
covered by (directed) paths and cycles. This has generated a fair amount
of follow-up work during the past two decades by various researcher study-
ing its properties, e.g., the geometric cover polynomial of D’Antona and
Munarini [4], the computational complexity of evaluating C(D;x, y) at spe-
cific points in the (x, y)-plane [1, 2, 3], symmetric function generalizations
of C(D;x, y) [5], etc. All of this work applied to ordinary (unweighted) di-
graphs. In this paper, we extend our earlier work by defining a new cover
polynomial Ct(D;x, y) which generalizes our earlier polynomial in several
significant ways. First, D can be taken to any weighted digraph D in which
each edge e is assigned an arbitrary weight w(e) ∈ R, where R is some ar-
bitrary commutative ring with identity. Furthermore, each vertex v if D
can be equipped with an arbitrary positive integer weight w0(v).. Finally,
the subscript t can be any real number. The case of t = 1 is our original
cover polynomial, while the case of t = 0 is the geometric cover polyno-
mial. We also introduce a symmetric function generalization Ξt(D; x,y) for
our “doubly-weighted” digraphs D, analogous to Chow’s symmetric function
generalization Ξ(D; x,y) of C(D;x, y) (see [5]) and Stanley’s symmetric func-
tion generalization X(G) of the chromatic polynomial of a graph G (see [13]).
In particular, we show that Ξt(D) satisfies a surprising reciprocity formula,
something that Chow (and also Gessel [10]) observed for Ξ(D). We also show
that both Ct(D) and Ξt(D) can be defined by a deletion/contraction process.

Of course, in this generality, our results actually apply to arbitrary (square)
matrices M with entries in some commutative ring with identity. It would
be interesting to expand Ξt using different bases for the symmetric (or quasi-
symmetric) functions to see what combinatorial interpretations the corre-
sponding coefficients might have (cf.[6]). Previous work connected properties
of the original cover polynomial to the theory of rook polynomials, G-descents
in graphs (see [7] and also [6]) and the theory of P -partitions. No doubt the
generalized polynomial Ct(D) has corresponding connections but we have
not explored these yet.

In [5], Chow makes the following tantalizing observation. Suppose we
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define

Ξ̂(D; x,y) =
∑
S

(−2)#σ(S)m̃π(S)(x,y)pσ(S)(y)

where the sum is over all path-cycle covers S of a digraph D. Then

Ξ̂(D; x,y) = ωxΞ̂(D; x,−y).

He suggests that Ξ̂(D; x,y) could be studied in the same way that Ξ(D; x,y)
was. It is certainly reasonable to conjecture that new and interesting prop-
erties held for Ξ̂(D; x,y) as well as for the analogous generalized function
Ξ̂t(D; x,y)! Clearly much remains to be done.
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