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Abstract

In a seminal paper from 1935, Erd}os and Szekeres showed that for each n there exists a least value
g(n) such that any subset of g(n) points in the plane in general position must always contain the vertices
of a convex n-gon. In particular, they obtained the bounds

2n�2 + 1 � g(n) �

�
2n� 4

n� 2

�
+ 1 ;

which have stood unchanged since then. In this note we remove the +1 from the upper bound for

n � 4.

1. The main result

In 1935, Paul Erd}os and George Szekeres published a short paper \A combinatorial problem
in geometry" [1] which was destined to have a profound inuence on the development of
combinatorics (and especially Ramsey theory) during the next 60 years (cf. [3]). In particular,
in this paper Erd}os and Szekeres rediscovered Ramsey's theorem, which had only just appeared
(unknown to them) �ve years earlier. Their investigations arose from a geometrical question of
the talented young mathematician Esther Klein (soon to become Mrs. Szekeres). She asked,
\Is it true that for every n, there is a least value g(n) such that any set X of g(n) points in
the plane in general position always contains the vertices of a convex n-gon?"

Erd}os and Szekeres gave several proofs of the existence of g(n) in [1] and established the
following bounds:

2n�2 + 1 � g(n) �

 
2n� 4

n� 2

!
+ 1 : (1)

They also conjectured that the lower bound in (1) in fact always holds with equality. This
is known [2] to be the case for n � 5.

Despite repeated attempts over the years, no general improvement on (1) has been found.
In this note, we make a very small improvement on the upper bound of (1). Namely, we

show

g(n) �

 
2n� 4

n � 2

!
(2)

for n � 4.
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While this is admittedly rather modest, we hope that it might suggest methods which could
give rise to more substantial reductions in the upper bound.

Proof of (2): By an m-cap we mean a sequence of m points x1, x2; : : : ; xm such that the
polygonal path connecting them is concave, i.e., the xi have increasing x-coordinates and the
path from x1 to xm turns clockwise at each intermediate vertex. Similarly, an m-cup is a set of
points y1; y2; : : : ; ym with increasing x-coordinates such that the polygonal path joining them
is convex, i.e., the path from y1 to ym always turns counterclockwise.

5 - cap 6 - cup

Figure 1: Caps and cups

The following result from [1] follows easily by induction.

Lemma 1. If X � E
2 is in general position and jX j >

�
a+b�4
a�2

�
then X contains either an

a-cap or a b-cup.

In fact, as shown in [1], this bound is sharp.

Theorem If X � E
2 is in general position and jX j �

�
2n�4
n�2

�
for n � 4, then X contains the

vertices of a convex n-gon.

Proof: Suppose the contrary. Rotate X if necessary so that no line determined by two points
of X is either horizontal or vertical. We can further assume without loss of generality that all
lines determined by two points of X have slopes less than 0.1 in absolute value (by uniformly
compressing X in the y-direction, if necessary).

De�ne A := fx 2 X : x is the left-hand endpoint of some (n� 1)-cap in Xg.

Case 1. jAj >
�
2n�5
n�3

�
.

Then by Lemma 1, A contains an (n � 1)-cup, say, y1; y2; : : : ; yn�1. Since yn�1 2 A, there

y1 yn�2
zn�1

z2
yn�1 = z1

y2

Figure 2: A cup joining a cap

exists an (n� 1)-cap yn�1 = z1; z2; : : : ; zn�1 in X . However, this is impossible since either y1,
y2; : : :yn�1; z2 is an n-cup, or yn�2; z1; z2; : : : ; zn�1 is an n-cap (see Fig. 2).

Case 2. jAj <
�
2n�5
n�3

�
.
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Then B := X nA satis�es jBj >
�
2n�4
n�2

�
�
�
2n�5
n�3

�
=
�
2n�5
n�3

�
and, similarly as in Case 2, we reach

a contradiction.
This leaves as the only possibility:

Case 3. jAj = jBj =
�
2n�5
n�3

�
= 1

2

�
2n�4
n�2

�
.

For any b 2 B, consider the set A [ fbg. Since this set has size greater than
�
2n�5
n�3

�
then by

Lemma 1, it contains an (n � 1)-cup, say with right-hand endpoint y. Now, if y 2 A then as
in Case 1, we reach a contradiction. Hence we must have y = b.

Thus, each b 2 B is the right-hand endpoint of an (n � 1)-cup with left-hand endpoint
in A. It follows in a similar way that each a 2 A is the left endpoint of an (n � 1)-cap with
right-hand endpoint in B.

We now form a directed bipartite graph G with vertex sets A and B, and edge set E
consisting of all pairs (u; v), where either u 2 A is the left-hand endpoint and v 2 B is the
right-hand endpoint of some (n� 1)-cap in X , or v 2 A is the left-hand endpoint and u 2 B

is the right-hand endpoint of some (n� 1)-cup in X .
By the preceding remarks, it follows that all vertices of G have outdegree at least one. This

implies G has some (directed) cycle C = ai1bi1 � � �airbir .
Now consider an edge (a; b) 2 E. Let L+(a) denote the half-line starting at a and going

down with slope 0.1, and let R�(b) denote the half line starting at b and going down with slope
�0:1. Also, let S(a; b) denote the line segment joining a and b. Finally, let Y (a; b) denote the
region of E2 (strictly) below the path L+(a)S(a; b)R�(b) (see Fig. 3).

L+(a)

R�(b)

S(a; b)
a

b

(n� 1)-cap

Y (a; b)

Figure 3:

Claim 1. X has no point in Y (a; b).

Otherwise, if x 2 X \ Y (a; b) then the (n � 1)-cap spanned by (a; b) together with x forms a
convex n-gon in X , which is a contradiction.
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By an analogous argument for (b; a) 2 E, with L�(a), R+(b), Y (b; a) de�ned accordingly
(see Fig. 4), we also see that Y (b; a) can contain no point of X .

S(a; b)
L�(a)

Y (b; a)

(n � 1)-cup

a b

R+(b)

Figure 4:

Next, consider two connected edges (a; b) and (b; a0) in E. We cannot have a = a0, since if
we did, then X would contain a convex (2n�4)-gon (formed by the (n�1)-cap and (n�1)-cup
spanned by a and b), which is impossible.

Claim 2. a0 must lie above the line through a and b.

Proof: Suppose not. Then from the geometry of the situation (see Fig. 5), either a0 2 Y (a; b)
or a 2 Y (b; a0), a contradiction. A similar argument shows if (b; a) 2 E and (a; b0) 2 E then b0

a0

a0

b

a

Y (b; a0)

Y (a; b)

Figure 5:

must lie below the line through b and a.
Finally, consider the cycle C = ai1bi1 � � �airbir occurring in G. If r = 1 then we �nd a convex

(2n� 4)-gon, which is impossible. So, we may assume r � 2. By Claim 2, each of the angles
between adjacent edges, ai1bi1 ; bi1ai2 ; ai2bi2 � � �airbir ; birai1 must turn in a counterclockwise
direction. Hence, the lines through the consecutive edges ai1bi1 ; bi1ai2 ; ai2bi2 � � � have increasing
slopes, and any pair of these lines intersects at an angle of less than 2 arctan 0:1 < 12�.
However, since all of the slopes of the lines are between �0:1 and 0.1, and C is a cycle, we
reach a contradiction.

We are inclined to believe (as did Erd}os and Szekeres) that the lower bound 2n�2 + 1 is
the true value of g(n). However, we admit that there is little real evidence yet for this belief.
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