Regularity Lemmas for Hypergraphs
and Quasi-randomness

Fan R.K. Chung
Bellcore, Morristown NJ 07060-1910

ABSTRACT

We give a simple proof for Szemerédi’s Regularity Lemma and its generalization for
k-uniform hypergraphs. For fixed k, there are altogether k — 1 different versions of the
regularity lemma for k-uniform hypergraphs. The connection between regularity lemmas
for hypergraphs and quasi-random classes of hypergraphs is also investigated.

1. INTRODUCTION

Szemerédi’s regularity lemma [9] asserts that if the vertex set of a graph is
partitioned in the right way, then the edges joining the sets behave in some
random-like manner. To be precise, we need some definitions. Let X and Y
denote two disjoint subsets of the vertex set V(G) of a graph G. E(X, Y) consists
of all pairs {x, y} where x € X and y € Y and {x, y} is in the edge set E(G) of G.
The density of edges between X and Y is defined to be

|E(X, V)|

2K )= T

Regularity Lemma. For every € >0 and w >0, there exist t(e, w) and n(e, w),
such that for every graph G, the vertex set can be partitioned into sets
Vo, Vis ..., V,, where w <t <t(e, w), so that |V,| < en and |V,|=m for i=1, and

t P
for all but at most € ) pairs i, j with i # j, for every X CV, and Y CV, satisfying
| X], |Y|> em, we have

18X, )= 8(V,, V)| <e.
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Since the regularity lemma can be used to extract the underlying structure of
graphs, it has found numerous applications in many areas ranging from extremal
problems [3,10], to lower bounds for complexity [5,6]. After the regularity
lemma was introduced in the 70s, it is of interest to find its analog for hy-
pergraphs. Peter Frankl and V. R6dl have announced their results generalizing
the regularity lemma to hypergraphs [4]. We give here a simple proof of several
versions of regularity lemma for hypergraphs. Some of these versions are stronger
and some are simpler than the above regularity lemma as stated.

A k-uniform G hypergraph (or a k-graph for short) consists of a vertex set V

and an edge set as a subset of the set V) of k-elements subsets of V. Roughly
speaking, for any k-graph and any r < k, if the family of all r-subsets of the vertex
set is partitioned in the right way, then the hyper-edges “joining™ parts of the
partitions behave in some random-like fashion. The statements will be given in
Section 2. Section 3 contains the proof. We also consider the relation of regularity
lemmas and equivalence classes of graph properties, so-called “quasi-random”
graphs, in Section 4.

2. REGULARITY LEMMAS FOR k-GRAPHS

Suppose G is a k-graph with vertex set V=V(G) and edge set E = E(G). Let r
denote a positive integer smaller than k. Let S, ..., S/, be disjoint subsets of

(‘:), the set of all r-subsets of V. In other words, S, can be viewed as r-graphs.
We define E,(S,, . . ,s(k))=yEE(G):|({)ns,.|=1fori=1, o) HGis

r

the special graph with edge set (k)’ we write EG(SI,...,S(k))=

E(S,,...,S,). We also denote eG(Sl,...,S(,,))=|EG(S1,...,S(k))l.rThe

r

(k, r)-densityrﬁk,, is defined as follows:

e(S1, 8, - - -, S(k))
S = :
" e(S1,Sz,..-,S(k))

& .(Sy, ..

r

For r=1, e(S,,...,8;)=|S| --|S]. We note that 8, , coincides with what
was described in Section 1 (for k=2 and r=1).
We say {S,,..., S(k)} is (k, r)-e-regular if for every choice of T, C S; with

r

eT,,..., T(k))z ee(S,,..., S(k)),

r r

we have

18 (T4, - - ., T(,:)) =8 ,(8,..., S(k))l <e.

r

For general k, there are k—1 different versions of the regularity lemma.
Namely, for each 1 =r =< k, there is one version as follows:



REGULATORY LEMMAS FOR HYPERGRAPHS 243

Theorem 2.1. Suppose 1 <r<k. For every € >0, there exists t(e€) such that for

every k-graph G, (‘:) can be partitioned into sets S, . . ., S, for some t < t(€) so
that all but en” edges of G are contained in E(S,,...,S;, )forsomei,..., i(k),
where 1= <---<j £ =tand {S;,...,S; . }is (k, rs-e-regular.

Let P denote a part;tion of Ir/ into P,,. .., P,. The cardinality of P is ¢ and
we write |P| = t. P is said to be a (k, r)-e-regular partition for a k-graph G if all
but en* edges of G are contained in Eg(P,, ..., P, ) for some distinct P, EP,
j=1,..., (I:) where {P, ..., P,.(k)} is (k, r)-e-reg'u-lar.

A partition Q of is said to be a refinement of a partition P if members of

P consist of disjoint unions of members of Q. Theorem 2.1 follows from the
following stronger version.

’ |4
Theorem 2.2. Suppose 1<r<k. For every € >0 and every partition P of ( , ),
every k-graph G has a (k, r)-e-regular partition Q which is a refinement of P and
|Q| is bounded above by a constant depending only on € and |P|. Furthermore, any
refinement of Q is (k, r)-e-regular.

It is easy to see that Theorem 2.2 implies the original regularity lemma as a
special case. We can choose the refinement of @ in Theorem 2.2 so that all its
members have approximately equal size (or all but one have equal size and the
exceptional one has fewer than the fraction e of the total).

3. PROOFS OF THE THEOREMS

The proof of Theorem 2.1 consists of a sequence of lemmas.

Lemma 1. For positive values c, and x;, for i=1,..., N with Y. ¢, =1, we
have

Furthermore, if

then
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Proof. This follows from the inequality X a> T b} =(Z ab,)* by taking @, = V/;
and b, = /Cx,. The rest of Lemma 1 is an easy exercise. L]

Let G be a k-graph on n vertices and P denote a partition of (‘:) into
P,,..., P, The index of P is defined by

ORI W
TN
ik ok

indP=2

k
where the sum ranges over all choices of (r> of the P’s. It is easy to see that

] eP,....P ) eg(P,....P ), e(P;,. ..
mszz () . (;) )52

(P,..., P
(7) (T ()

Lemma 2. Suppose Q is a refinement of P. Then

indQ=indP.

Proof. It suffices to show that for fixed Py, ..., P( k),

r

Z 2 (eG(Ql’ R | Q(k)))2 (eG(Pl, R P(k)))2

N (01,0 (P P(wy)

We use Lemma 1 by taking ¢’s to be
e(Qla R Q(k))
e(Py,..., P(k))

and x’s to be
e(Qys- - Q(k))
Q- Q(k)) ’

Therefore

(ec(Qys- -+ Q(k)))z

r

IR ‘
i=1 . QigPA e(Ql’ o e ay Q(,:))e(Pl. v e ey P(k))

r
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es(Q, ..., Q(k
Z<E e(Pl,...,P(

es(Py, .-, P(k
k

Z( Py, B )))

Lemma 2 is proved. (]

When P is (k,r)-e-irregular, Lemma 2 can be further improved. Let

| 4
Sl,...,Sp, T,,.. , T, be subsets of ) We say U={U,,..., U} is a
refinement of Sl,.. Sp by T,,..., 1f (i) U, ﬂ U=6if i#j, (ii) S, is the
disjoint union of U’s, and (iii) U, C T or UCV-T, forall { and j.

Lemma 3. Suppose S,, ..., S(

Vv
£ are disjoint subsets of ( , ) If there exist T, C S,
forj=1,..., (lrc>, so that

r

Iak,,(Tl, ceey T(k)) - 5,”(81, ey S(k))l > € Py

then any refinement U of S,, .. ., S(k

r

) by T,,..., T(k) satisfies

r

indU=ind(S,,...,S0)+eeT,,..., T
' (7) ()

r

where,

ec(Uy,..., Uy ))2 (ec(Sys- -, S(k))z
and ind(S,, ..., S/ =
(*) eS,, ..., s(k))

ind U = .
" U]ZE:U U, Uwy)

Furthermore, if {S,, ..., S(k)} is (k, r)-e-irregular, we have

ind U = ind(S,, . .., s(k)) +ee(S,, ..., s(k)) .

r

Proof. We follow the proof of Lemma 2 and set ¢’s to be
e(Ul, ceey U(k))
e(Sl, ey S(

and x’s to be
e;(U,, ..., U(k))

eU,..., U(,:))
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Let the first M of the x’s to be those with U’s contained in T’s. We then have

M e(Tl’ R T(k))
2 ¢= e(S,,. ..

and
ey, ..., U(k)) ec(Up, ..., U(k))
& Gt eS,,. .-, s(k)) (U, ..., U(k))

=8 (T, ..., T(k

Without loss of generality, we assume

8 ATy, - - T(k))> 8, (81, - - s(k)) +e.

r

Therefore

ES
)
~
~
-
-
/‘\‘\]
X
~—
N

. CiX; >(6k,r(sl’ s S(k))+ 6)' e(sl, .S ))

= (é cx; + e)(.M c,.)

[u

Therefore, by Lemma 1 we have

ind U =§cx2>(§:cx)2+
e(Sl,...,S(k)) o\

= (b‘k’r(sl, e, S(/:)))Z-F e(sl’ . S(k)) — e(Tl,r. ..

€2e(Tl’ e T(k))e(Sl’ A s(k))
indU = ind(S,, ..., S(l:)) + eSe, -, S(k)) —e(T,,..., T<k))

r

=ind(S,,. .., S(k)) + €Ty, ..., T(k))
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f {s,..., ( is (k,r)-e-irregular, there exist such Ts that
«T,,... ( )) ee(S,,..., S(k)). Therefore, Lemma 3 is proved.

Lemma 4. Let € be a positive value and P denote a partition of (‘:) into

P,,..., P, Let G be a k-graph on n vertices. Suppose more than 8(Z> edges are
in EG(P,, ..., Pi(k)) where {P,, ..., P,.(k)} is (k, r)-e-irregular. Then there is a
r r ¢

partition Q of ( ‘:) which is a refinement of P and |Q] = t-2(’) such that

inszindP+e38(Z>.

Proof. For P,,..., P, R which is (k, r)-e-irregular, we apply Lemma 3 and we

obtain Q which is a’ refinement of P by all (k,r)-e-irregular subsets
T, ., T, . We have

ll"' lk

r

indQ= 2 ind(Q,,..., Q,-(k))

......

= X indP,...,P, )*€ 2 eP,...,P )
I",-1 ..... P; 1 (’r‘) Pije—irregular (r)
(%)
= ind P+ e%s(Z)
It is not hard to see that the refinement Q of P by all choicesof T, . . ., T,.(k) has
t
cardinality at most |P[2'”’. Lemma 4 is proved T om

We are now ready to prove Theorem 2.2. From (1) we have
(%)
k
.- |4
for any partition Q of ( , )
Proof of Theorem 2.2. We start with a given partltlon P. First we refine P into

P’ with |P'|=|Ple" so that all but en"/2 edges are in E (P, . P where
g G

P are in P’ and are distinct. (This can be easily done by, for example restnctmg
P to a vertex set with less than en vertices.) We now apply Lemma 4 repeatedly

ind Q

n
k

1f the resulting partition Q is not (k, r)-e-regular. In each iteration,
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increases by at most €%2. Therefore after at most %(g)"‘ steps we have a
]

refinement Q of P with |Q| = f(2¢*), where f(i + 1)=2" " * and f(0) = | P’| such
that Q is (k, r)-e-regular. Furthermore, any refinement of Q is also (k, r)-e-
regular. This completes the proof in Theorem 2.2.

4. SZEMEREDI-PARTITIONS AND QUASI-RANDOMNESS

In [2] a large class of graph properties, shared by random graphs, are shown to be
mutually equivalent in the sense that any graph that satisfies one of the properties
must satisfy all the properties. Some examples of the properties (for graphs
G = G(n) on n vertices) are the following:

P;: G has at least (1+ o(1)n*/4 edges and at most (1 + 0(1))n*/16 4-cycles;

P,: For a fixed s, s =4, every fixed graph on s vertices occurs in G almost
equally as often as induced subgraphs of G;

P,: For any subset S of vertices of G, the number e(S) of edges induced by §
satisfies e(S) = §|S|*> + o(n®);

P,: For almost all choices of vertices u and v, the number s(u, v) of vertices
adjacent to either both u and v, or neither u nor v, satisfies s(u, v) =
(1+ o(1))n/2.

Remark 1. The description of properties P; contains occurrences of the asymp-
totic “little-oh” notation o(1). The use of these o(1)s can be viewed in two
essentially equivalent ways.

In the first way, suppose we have two properties P and P’, each with
occurrences of o(1), so that P= P(o(1)) and P’'= P'(o(1)). The implication
“P— P'” means for each € >0 there is a 6 >0 so that if a graph on n vertices
satisfies P(8), then it must also satisfy P'(€), provided n> ny(€). We say P and P’
are equivalent if P— P’ and P'— P. The above equivalence class of graph
properties including P, i=1,...,5, is termed “quasi-random.”

In the second way, we can think of considering an infinite family % of graphs
G(n). We say & satisfied P(o(1)) if for every € >0, there is an ng(e) so that all
graphs G(n) satisfy P(e) if n=ny(e).

Remark 2. The properties P;’s are satisfied by random graphs with edge density
1/2. Generalizations to properties for graphs with edge density p can be similarly
derived.

Recently, Simonovits and Sds [7] have added one more property to the above
equivalence class:

Pg: For every € >0 there exists two integers, #(€) and ng(e) such that the
vertex set of G can be partitioned into ¢ almost equinumerous classes
- P t
V,,...,V, for e ' =t=1t(e) satisfying the property thatnfor all but £\ 5
pairs (i, j), 1=i<j=t for ACV,, BCV, with [A|= € 7 |B|= e 7o we
have
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e(A,B) 1
lAl|B| 2

The theory of quasi-random can be generalized to k-graphs. In [2] a large class
of properties for k-graphs are shown to be equivalent. Furthermore, in [1] a
hierarchy of equivalence classes &, of graph properties for k-graph was estab-
lished. Namely, we have

242 2%

where in &, there is the property that the number of edges is approximately a
half, and in &, there is the “almost regular” property. In general, for i=2, &,
includes the following properties of a k-graph G on n vertices.

Q®: For every (r — 1)-graph H with vertex set V=V(G),

le(G, H) — e(G, H)| < o(n*)

where G denotes the complement of G with edge set {xE(Z): x&

E(G)} and e(G, H)=|E(G, H)| denotes the number of edges of G
induced by H, i.e.,

E(G, H) = {xEE(G) ( )CE(H)}

The above property was shown to be equivalent to the following property
which involves an invariant, so-called ‘“deviation” (that can be interpreted as
counting the occurrence of a special type of subgraphs on k + i vertices).

O dev (G) = o(1)
where dev,(G) denotes the i-deviation of G which can be defined as
follows:

dev,(G) = k+r 2 H n H B(€rs oo s €Uy sy Uyy,)

Ugy - - e Uk+r € €

where € € {u,;_;, u,;} forj=<rand ps(w,, ..., w,) is defined to be 0 if
two of the w’s are equal; to be —1if {w,,..., w,} is an edge in G and
to be 1 otherwise.

The main result of this section is to extend the result of Simonovits and Sés [7]
to hypergraphs. By using the Regularity Lemmas for hypergraphs as described in
previous section, we will show the following property is equivalent to Q' and
therefore is (k, r)-quasi-random.

QY (e): For every € >0 there exists #(€) such that <i Y 1) can be partitioned
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into ¢ classes S, . .., S, with ¢ < (¢), so that all but en* edges are in

Eg(P,..., Pj( . )) for ro1 -tuples j,, ..., j( £) satisfying
r-1 r—
eq(Xy, ... ,X( X ))

o Cl<e.
e(Xl,...,X(k)) 2|

r—1

Theorem. Q¥ & Q¥

Proof. To prove Q"= QY, we assume G(n) satisfies the property that for
every (r — 1)-graph H

le(G, H) — &(G, H)| < e'n* , ()

where €’ will be chosen later.

We now partition into (k, €)-regular subzets Siy..., S, where t<

-1
t(e) . It suffices to show that for any choice of r—1 -tuples i,,..., i( )
r—1

| k
1=i;=t, (all i;s are distinct), for X, = S,.j with e(X,, ..., X( k )) > et (4 n* we
r—1
have

eG(Xl,. . ,X( k ))

r—1

e(Xl,...,X( X ))

r—1

—%\q. 3)

We need some definition. Let H(a,, ..., a,) denote the (r — 1)-graph with the
vertex set V and edge set X, U---UX,. Let E;(I) denote the union of
E(G,H(a,,...,a)) where {a,,...,a;} ranges over all [-subsets of

{,..., rl_c 1 } and E(I') =90 if I’<0. We use the lower case e to denote the
cardinality of the set. It is not difficult to check that

eG(Xl,...,X(r,:l))=ec((r,_(1))—e(;((rfl)-1)+ec<<rfl)_2)_...

Eg(l) denote the union of e(G, H(a,,...,a,) for {a,,...,a,} ranges over
{-subsets of {1,..., (r 1 }. We have, in a similar way, that

cabu-- X p=eol(,£y)) =eal(, £1) 1) reol(, £y) -2) -

lec() — eg(D)| = ((ric 1)) - en”
l

By (1), we get



REGULATORY LEMMAS FOR HYPERGRAPHS 251

Therefore

» e ()
|eG(X1,...,X(k)) eG(Xl,...,X(k))|_ n*-2

r—1 r-1
Since
r—1

[k
(X, ., X Dtes(X, ., X v )=eXy, o X, )€t ("‘)n"
( ) (r—l) (r—l)
we have, by choosing €’ = ezt""-lnk,
eG(Xl,...,X( kl)) 1
e - o<
e(X,,...,X(k)) 2|1°°€

r—1

(3) is proved.

We now proceed to show Q% = Q. For given €' = /4> 0, we apply Q¥ to
find a partition of i—1) 5% Si» ..., S, which is (k, r)-e’-regular. Let H be a
(r —1)-graph on V. Let H(j) denote the set E(H)N S, for j=1,...,1.

& implies that for all but ’n* edges are in E;(H(a,),..., H(a( x >)) such

that !
eq(H(a,), . . ., H(a( k )))
i<,
e(H(a,), ..., H(a( X ))) 2
That is !
lec(H(a,), . .., H(a( k ))) —eg(H(ay), . . ., H(a( k )))I <2e'n*.
r—1 r—1
We have
le(G, H) — e(G, H)|
=3e'n* + > |eG(a1,...,a( x ))—eé(al,...,a( X ))|
e LR "( k ) r—1 r—1
e-regula;_l
<en*
This completes the proof of Theorem 4.1. n
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