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1. Introduction

Suppose G is a graph with node set N and edge set E consisting of unordered
pairs of N. The Laplacian of G, denoted by L{G), is defined to be D — A where
A is the adjacency matrix of G (i.e., A;; = 1if {4,5} is in E and 0 otherwise),
and D is a diagonal matrix with (D);; = d(3), the degree of the i-th node. Lapla-
cians and the distribution of their eigenvalues imply many important properties
of graphs [7,14,15,18,22,29], and lead to many applications in a variety of areas
[2,6,13,27,28,32,34,35]. A natural generalization of graphs are so-called hyper-
graphs. In particular, a k-uniform hypergraph (or, a k-graph for short) has a
node set N and edges consisting of k-subsets of N. (Thus, ordinary graphs are 2-
graphs.) Many attempts have been made to define the analogue of the Laplacian
for hypergraphs and/or some notion of eigenvalues of k-graphs [3,16]. However,
various obstructions seem to make the generalization to k-graphs difficult.

In this paper, we will define the Laplacian of a k-graph by considering vari-
ous homological aspects of hypergraphs. The eigenvalues of the Laplacians will
be examined and relations to the other graph properties will be derived. In
particular, the eigenvalues of some specified hypergraphs will be evaluated.

In an earlier paper [10], the cohomological aspects of hypergraphs over the
finite fleld Z; (and, in general, Z,) were investigated. The Laplacians for the
case of Z; have quite different properties from the Laplacians considered here.
In this paper, since the operations are over C, the field of complex numbers, the
eigenvalues of the Laplacian can be considered. This paper is organized as fol-
lows. The definition of the Laplacian will be given in Section 2. The homological
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setting will be described in Sections 3 and 4. Various properties of the eigenval-
ues of the Laplacian are discussed in Section 5. Some special hypergraphs will be
discussed in Section 6. In Section 7 we consider the Laplacian of random graphs.
In Section 8, relations of the Laplacian to other graph invariants are discussed
and further problems are raised.

2. The definition of the Laplacian

Suppose G is a k-graph with node set N and edge set E which is a subset of
(]Z ), the set of all k-sets of N. For a (k — 1)-subset z of N, its degree, denoted
by d(z), is | {y € E : ¢ C y} |. The average degree d is ﬁ Za"e(kal) d(z)
where the cardinality of N is n. We say G is d-regular if d(z) = d for all z.
The Laplacian of G involves the following matrices whose columns and rows are
indexed by [N, ] the set of (k — 1)-tuples of distinct elements in N:

(i): D = D(G), the diagonal matrix. For z € [,N,], D(z,x) is defined
to be d(z). Also, D(z,y) =0ifz # y.

(ii): A = A(G), the adjacency matrix. For z,y € [N,], Az,y) is
lifz = z2929...26-1, Yy = y122...2x—;, where Z;,y; € N, and
Y1,%1,... ,Zk—1 is in E and 0 otherwise. Therefore, A(z, ) is zero.

(iif): K = K(G), the complete graph. That is, for z,y € [ N,], K(z,y)
s 1ifz = zi20... 201 and y = y122...24—1 for z; # 3, and 0
otherwise.

(iv): I = I;_1, the identity matrix.

Now we are ready to define the Laplacian L(G) of a k-graph G, where k > 3,
as follows:

L(G) =D — A+ p(K + (k — )I).

where p = d/n is called the density of G.

Sometimes we write K = K + (k — 1)I and L(G) = D— A+ pK for a k-
graph G, k > 3. When k = 2, we have L(G) = D — A. As we shall see, the
Laplacian corresponds in a natural way to a self-adjoint operator 96 + péd for
some simplicial complex where p is a positive constant (uniquely determined by
the graph G), as we will discuss in Section 3 and 4. Furthermore, the eigenvalues
of the Laplacian defined above play an important role in capturing the essential
properties of the graphs.

Lemma 2.1. If k > 3, L(G) has an eigenvalue pn with the corresponding
eigenvector having all coordinates 1’s.

Let f; denote the vector with all coordinates 1’s. Since we have

(D_A)fl = 07
(K + (k- 1)I)f, nfi,

we conclude that Lf) = pnf), and f; is a eigenvector of L(G) with eigenvalue
on.
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Let \i > > ... > /\[kzl] denote the eigenvalues of the adjacency matrix A

of a d-regular k-graph G. The well-known results of Perron-Frobenius [17,21,31]
state that \; = d and for i # 1, | A; |< d (except when A is reducible). Since
the eigenvectors associated with A;,¢ # 1, are orthogonal to the all 1’s vector, it
is easy to see that the Laplacian L(G) has eigenvalues d,d — Xq,... ,d — \,.
For a general k-graph G, we define A; so that L(G) has eigenvalues d — )\;
where d is the average degree. Let us define the spectral value of L(G) to be
A= AMG)= max | Ai |. If we can find a good upper bound for X, then several

isoperimetric properties of the k-graphs can be derived. For example, for 2-
graphs, the “smallness” of A implies various properties of the graphs such as:
the expansion property (each subset of the node has “many” neighbors), the
discrepancy property (each subset induces about the average number of edges),
among others. The reader is referred to [7,11] for more details on 2-graphs.

3. The Laplacian of 2-graphs

The Laplacian of a 2-graph is quite simple in comparison to the Laplacian
for general k-graphs. Still, it is helpful to review the homological setting for the
case of k = 2. Throughout this section G is a 2-graph with node set N = N(G)
and edge set E = E(G) consisting of unordered pairs of N. We can define the
1-simplicial complex C; to be a vector space over R generated by all ordered
pairs of N. In addition, we require (u,v} = —(v,u). (Namely, C; can be viewed
as an exterior algebra with uAv = —vAu = (u,v). We will not use “A” notation
here.) The boundary operator 3 is defined by d(u,v) = u — v and

13}
—

05} Co
s

In other words, 0 : C; — Cj can also be interpreted as a matrix W of size

n(n — 1) x n where the rows are indexed by [4 ] and the columns are indexed by
(Y] Forz e [¥],yeF],

1 ifz=(y,u) for some u
W(z,y)=¢ -1 ifz = (v,y) for some v,
0  otherwise.

The coboundary operator 6 is just the transpose of W.

For a 2-graph G, let G denote an orientation of G. That is, each edge (i.e.,
unordered pair) is assigned a direction (i.e., an ordered pair) and together the
directed edges form E(G). C1(G) is defined to be C; N E(G) and Co(G) = {u €
N :u is in some edge of E{G)}. As we can see, the Laplacian is independent of
the choice of the orientation of G.

The boundary operator d and the coboundary operator 6 are just the restric-

tion of the above operators to C1(G) and Cy(G),
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Cl&)  Go(O),
é

0 corresponds to the matrix W) with

W(g)(m )= W(z,y) ifre Cl(é) and y € Co(é)
Y 0 otherwise

and & corresponds to the transpose of W(5).

We have L(G) = 60 = W& (W) = D — A. Therefore L(G) is semi-
positive definite and has one eigenvalue 0 with corresponding eigenvector being
the all 1’s vector. In general, for a function f : N — C, we have Lf(v) = 68(v) =

Z (f(v) = f(u)). The Laplacians L(G) can be viewed as a discrete analog
u,vE%(G)
of the (continuous) Laplace operator on a manifold which maps a function to
the corresponding function involving the differences from neighboring points.

4. A homology theory for hypergraphs

Suppose k > 1. The simplicial complex Cy is a vector space over R generated
by [4Y,] satisfying the property that for f in Cy and z,y € (Y1), flz) =
(-1)*f(y) = sign(z,y)f(y) where t is the number of transpositions in zy~t if
z is a permutation of y. For z € [¥] and y € [V, ], sign(z,y) is defined to
be sign(x,uy) where u is in = but not in y. The boundary operator & can be
described as follows:

8 8 8
—_ — —
& Cr—2
— — —
5 5 5

For z in Cy_1,8z = Z sign(z,y)y where y is a permutation of a (k — 1)-

v
subset of .

The coboundary operator § is the dual of 8. It is easy to verify the following;:
Lemma 4.1. 830 =0 and 66 = 0.

Let G be a k-graph. For each edge z = {z1,...,z:} of G, we can choose a
k-tuple £ = z1...z). These # consequently form Cj_ 1(@) (as it turns out, the
choice of the permutatlons & does not affect the Laplacian of G). For r < k,
C-(G) consists of all r-tuples y so that y is contained in dz for some z in Cri1 (@).

We consider the Laplacian 86 + p80 restricted to Ci_1(G),Cr_2(G) and
Cr-3(G). It is not difficult to verify the following.

Lemma 4.2 For y,z € Ck-g(G) k>3,
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sign(z, y) sign{z, 2)  if the union of the elements of y and z forms

862(y) = an edge x of G,
v= d(y) - sign(y, 2) if z is a permutation of y,
0 otherwise,

where 06z(y) denotes the coefficient of y in 96z. In other words, 86z =

Z 96z(y)y. In a similar way, we have the following:
y
Lemma 4.3. For y,z € Cr_o(Q),

sign(y, ') sign(z,2’) if the intersection of elements of y and z
is a (k — 2)-set 2/,

(k — 1) sign(y, 2) if z is a permutation of y,

0 otherwise.

96z(y) =

Now, let f denote a cochain in Cx_2(G). That is, f = e[ M] f(z)-z and
T lk—1

f satisfies f(x) = sign(z,y)f(y) if y is a permutation of z.
Here we use the following notation: For a (k — 1)-tuple © = xy...2x_1 in

[Y,], we define z = >y 5=z Sign(y, z) -y where £ = z1,... ,zx—1. Therefore

@ = 3 sign(y,0)fw)

= (k-1)lf(z).

We consider the following:

06f(y) = Z d(y)sign(y,2)f(z) + D  sign(z,y)sign(z, 2)f(2)

Uzwz—zeE
= Z Z sign(z, y) sign(z, uw) f (Tw)
N u€EN—
[k 2] z:@GE
wC{
= Df@ - > sign(y,vw)Af(vw)
we[, N,)]
wlv=9g
= Df(@@)—-Af( Y sign(y,vw)vw)
welkgg]
g=wlUv

= Df(y) - Af(9)
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In a similar way, we have

80f(y) = > (k—1)sign(y,2)f(z)+ > sign(y,w)sign(z,w)f(z)

zwz=?§ g}ﬂzw:ge(kfz)
= (k-1)f(y) + Z sign(y, w) Z sign(z, uw) f(z)
wel Y] b
WwCY
= (k=Df@+ Y sign(y,w) Y f(uw)
wel ;Y] weN—y
wCH

= (k-Df@+ Y sien(y,w)Kf(70)
wel N,

g=wUv

= (k-1Df@+Kf (@)

Hence 60f(y) = ((k — 1)I + K)(7).
Therefore we can view L{G) as 06 + p60 where p is the density of G.
In particular, d-regular graphs have edge density p = % and therefore we have

L(G)=dIl — A+ 2%
n

We remark that one of the main reasons for the different formulation of the
Laplacians for 2-graphs and for k-graphs, & > 3, is that Cy_s, k > 3 is generated
by an oriented basis while the opposite is true for k = 2. In fact for k > 3, the
cochains form a vector space of dimension ( kfl). Although the Laplacian L has
as an eigenvector the all 1’s vector (as seen in Lemma 2.1), it is easy to see that
all the cochains are orthogonal to the all 1’s vector when k& > 3, while this is not
so for k = 2.

5. Spectral values of the Laplacian

Throughout this section, we again assume G is a d-regular k-graph. We will
prove a number of isoperimetric inequalities in terms of the spectral values. First,
we prove a lower bound for the spectral value A(G).

THEOREM 5.1. A(G) > /d(1 —d/n)

Proof: We consider M =dIl — L = A — %k It is easy to check that M has
eigenvalues A;, 1 <4 < [2;] where [;21] = n(n —1)...(n — k — 2), satisfying
A1 = 0 and the spectral value A = maz; 2, \;. We consider the trace of MM7.
We have
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v

([&21] = 1A% ZA?

TrMMT
dl2] - ;[kﬂ]

Therefore
M > d(1~d/n)
and Theorem 5.1 is proved.

As we will see in Section 7, a random d-regular graph has the spectral value of
size O(v/d). Furthermore several explicit constructions in Section 6 also achieve
a spectral value of size O(v/d), which is within a constant factor of the least
possible value.

We now consider using the spectral value to derive isoperimetric inequalities
for a graph G.

THEOREM 5.2. Let S be a subset of the node set N of a d-regular k-graph G.
The number e(S) of edges x of G with x C S satisfies the following:

o411 - 222(%)

Proof: We consider a vector f indexed by [,Y,], satisfying f(z) = 1if £ C S
and f(z) = O otherwise. We now consider the bilinear product (f, Lf) where
L = L(G). 1t is easily seen that

(f, Af) = kle(S).
Since (f, %K’ f)= %k (ISI) + 4(k—1)] [i]’ we conclude

k
d /|8 dik -1
e (ao-5()) - s
= <f’(L'—D)f>
< MAS)
= A

Theorem 5.2 is proved.

We note that ¢ (71} is the expected number of edges contained in |S|. The
quantity |e(S) — £ (]‘Z|)| is often called the discrepancy of S, and the discrepancy
of (G is defined to be the maximum discrepancy over all subsets S, (see [5,7,11]
for more discussion on this). The above theorem provides an upper bound for
discrepancy in terms of the spectral value.

The inequality in (1) implies that if the spectral value is small in comparison
with d, then the number of edges in S is close to the expected quantity. As
an immediate consequence, the number of edges involving nodes in S but not
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entirely contained in S is also close to the expected value (which is almost all
the edges involving S, when |S| is small in comparison with n.)

The following isoperimetric equality is slightly stronger than that in Theorem
5.2.

THEOREM 5.3. Let F denote a subset of (kljl) where N is the node set of a d-

regular k-graph G. We define eq(F) = H(fi, fo,z) : fi, o €F, fiufa =2 € E}|.
Then we have

lea(£) — geK(F)l < %IF| + d(kkhgl)

where K denotes the complete graph with edge set .

|F|

Proof: We consider a vector f indexed by [«N,] with f(z) =1ifZ € F and 0
otherwise. We consider

(f,Af) = kleg(F).

Also,
(50 = Lher () + L= 1) Pk - 1
Therefore
Blea(F) - Zex(F) ~ Lw-yip)
= (f(L-D)f)
< ML
= AF|(k—1)!

It would be useful to prove the reverse directions of the above theorem by
bounding the spectral value in terms of the discrepancy. However, the following
problem for 2-graphs still remains unresolved [7].

Congecture: Suppose G is a 2-graph satisfying

e(S) -p(igl); < ofs|

where p is the density. Is it true that A(G) < ca for some absolute constant

c?

Now, we consider isoperimetric inequalities of a somewhat different flavor.
For a subset S of the node set N of a k-graph G, we define the neighborhood of
S as follows:

I'(S) ={ue N:{u} Uw € E(G) for some (k — 1)-subset w of S}.

THEOREM 5.4. Let S be a subset of the node set N of a d-reqular k-graph G
where k > 3. Then for any S C N, we have
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2]
I0($)| 2 N
A2 {1 - k) 4 18]
(k=11 en

Proof: We define a vector f indexed by [,Y,;], so that f(x) =1if 2 C S and 0
otherwise. Suppose that the eigenvalues of the Laplacian L(G) are d — A; where
A1 = 0 and the orthonormal eigenvectors are denoted by v;.

Suppose f = Zaivi and therefore Zaf = ||IflIZ = klfll]. We consider the
following inner product:

( fa- k)-SR
A 2 A~ ~
— aAn -2ia Lk + Sk k)
2 S A
= (fAAf) - SR RS
d2
= (aan-Lpsy

On the other hand, we have

(f(dI = L),(dl = L)f)

d . d -
(4= 2R), (A= SR)S)

Z ai)?

= < (15)-a)

18} 12
- (- )

Furthermore, we have

(FA,Af) = > HueN:w=aw" v =bw" and abw” € E}|
w,w’G[k‘El]
= > Hwe[]:wwe E}f
ueEN
. Sy HwelS)) m e By’
- IT(S)
2
B IT(S)]
2[5 ]2

IT(S)|
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All together, we get

PENE
TS > oY B
2 _ k- a2
A [k_l] [kzl] + n[ k ]
&[5

Py
A2 (1 — k-1 + a 1]
[k—nl] n k
We note that for the case of k = 2, the statement of Theorem 6.6 is also true.

It is shown in [1] and [36] that for a d-regular 2-graph G with node set N , for
any S € N we have

d*[S]
22 (1- ) + 28l

where A is the spectral value of the Laplacian L(G)=D - A.

For dense 2-graphs (e.g. having d > n®/32) small discrepancy implies certain
bounds for the spectral value by using some recent work on “quasi-randomness” .
The reader is referred to [5,8,11] for the interrelationships of many random-like
properties for dense graphs. Here we sketch the connection of spectral value with
several invariants related to quasi-randomness.

Let p denote the density of a k-graph G. We define a function fi Nx...x
N — R such that f(vi,...,00) = 1 —p if {v1,..., vk} is an edge of G; and
f(vi,...,v5) = —p otherwise. The 2-deviation of G, denoted by devy(G), is
defined by

L)l z

(5.1) n*2dewy(G) = Z flur,ug,v3, ..., 0) fur, va, v, . .., vp)

U1,v1,u2,v2
uU3,... Uk €N

f(’U],U/2,'U3,... ,Uk)f(’U],'UQ,'U:;,... ,Uk)

THEOREM 5.5.

lk—1]
1
k+2 4
n (devz(G)ﬁ—O(;))_ ;:1 A;

where d — X’s are the eigenvalues by the Laplacian.
Proof: This follows from the fact that
X = Tr(dl - L)

Tr(A— pK)*
n* 4 2(devy (G) + O(%))

Il

I
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since for z,y € (}), (L(G))(z,y) = f(u1,...,us) where the union of the ele-
ments of X and Y is uq,... ,u.

In [5] it was shown that the discrepancy of G is at least enf(dev,G)* and
therefore for a 2-graph G, discoG > cA'®n=14 for some constant ¢. The same
approach does not seem to yield nontrivial upper bounds for \ for general k > 3.

6. Laplacians of Cayley graphs and its generalizations

In this section we consider Laplacians of k-graphs and their generalizations
with density ranging from 1/2 to n='*/! for a constant £. As we will see,
the spectral value of these explicitly constructed graphs are quite close to the
optimum.

First we consider a special type of matrices whose eigenvalues can be easily
determined. Let g be a real-valued function defined on Z,, integers modulo p.
The matrix M) is of size n*~1 x n*=1 with (z,y)-entries to be g(zy + ...+ zy)
forz = (x1,... ,24_1) and y = (yy, 2o, . .. y Th—1)-

THEOREM 6.1. The matriz M,(f? has eigenvalues 3 g(z) and €|y g(z)6*|
where 8 is an nth root of unity #1 and e =1 or —1.

Proof:
Proof: We will first construct vectors using 6 and 1 and subsequently show these
are indeed eigenvectors of M. We define the vector f = fouv to be

F@,y) = 079U+ 4 97+ 4 (972742 4 g=2-vy7) %

where e =1 or —1.

Now (Mf)(y,2) =3, g(z +y+2)f(x, 2)
We note that

D 9@+ y+ 2079 = 07V S ga 4y o+ 2) (By)
Therefore

Mfou = e 3 g(2) (09)%] fos

Therefore fy,, are eigenvectors. In fact, foy are all the eigenvectors (by con-
sidering the rank of M). Theorem 6.1 is proved.

Now we can consider Cayley k-graphs Ch,s with node set Z, and edges
{z1,...,z} if and only if z; + ... 4+ 24 is in S for some fixed set S.

THEOREM 6.2. The matriz Cf, has eigenvalues 2oc9(x) and €Y g(x)6
where 0 is an nth root of unity #1 ande =1 or —1.

We note that the above Cayley graph is, in fact, defined with edge set N*.
We remark that hypergraph properties discussed in Section 5 still hold with this
slight modification.
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THEOREM 6.3. The Laplacian of the Cayley graph C’,(Lkg has spectral value
. L dis — o
0;“,21/)8(.'179 | where ¢Yg(z)isl—pifz e S, andis —pifz g S

Proof: Let g denote the function tg(z) = 1 if  is in S and 0 otherwise. Since
the Laplacian of C, g satisfies L — D = M, ; lSIM k) o usmg the proof of

Theorem 6.1, the eigenvector with the elgenvalue |S] for w also has eigen-
value |S| for |S[ M (k) . Therefore L — D has eigenvalues 0 and €| 3 _,, ¥s(2)0°|
for § # 1 since ¢s( ) — £ Pn(z) = Ps(x).

The Paley graph P,Sk) is just a special case of the Cayley graph Cflkg taking
n to be some prime congruent to 1 mod p and S to be the set of quadratic
residues of p. Therefore we have the following:

THEOREM 6.4. The Laplacian of the Paley graph P,gk) has spectral value at

most /p/2.

Proof: For 6 # 1, it is well known [23] that
1> x(@)67] < Vp.

where x is the usual non-principal quadratic character given by x{(z) = 1 if z
is a quadratic residue and —1 otherwise. Therefore, A < ,/p/2 since 1/;(x) =
x(x)/2 + % where @ denotes the set of quadratic residues.

There are several ways to obtain generalization of Paley k-graphs. Suppose
H is a subgroup of GF(p)* with index a=! (ie., a = [H|/(p — 1)). We can
construct Ppko? to be the Cayley graph C, g with edge density a.

THEOREM 6.5. The Laplacian of the generalized Paley graph P,Sf.) has spectral
value at most \/p/2.

Proof: By Theorem 6.3, we want to bound 3 vs(z)¢’ for j # 0 and ( = 5
Let ®y denote the set of all nontrivial characters x from GF(p)* to C* such
that x|H =1 and x(0) = 0. It is not difficult (see [23,33]) to check that

¢H:az X

XEPH
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and [®g| = a~! ~ 1. Therefore we have

> ws(z)eE

z€GF(p)

al >3 x(@)gT

ze€GF(p) x€PH

< ay | Y x@T
X€EQH |zeGF(p)

< a|®u|yp

< (1-a)p

The proof for Theorem 6.5 is completed.

Another family of constructions are the so-called coset graphs (see [6]). We
consider GF(p') and let X denote a coset =+ GF(p) where GF(p') = GF(p)(z)
and the coset k-graph Cf;’)t is the Cayley graph C;(;Itc,)x with edge density nl—t
where n = p? — 1.

THEOREM 6.6. The coset k-graph C’;ft) has n = pt — 1 nodes, degree p and
spectral value at most (t —1)/p.

Proof: The proof follows from the following generalization of the character sum
inequality which was conjectured in [6] and proved by N. Katz [25]:

| Y xet+a)l<@E-1)vp

aE€EGF(p)

where x is a nontrivial multiplicative character of GF(p?).

7. The spectral value of the Laplacian of a random graph

When we say a random graph with density p has spectral value c/pn, we
mean that with probability approaching 1 almost all graphs on 7 nodes with
density p have spectral value c,/pni where ¢ denotes some absolute constant.
The proofs for determining the spectral value of a random dense graph (p being
a positive constant) are considerably easier than the proofs for sparse graphs
(p= % for constant degree d).

For sparse graphs, there are basically two different approaches for estimating
the spectral value. One usual method is to examine the trace of A! for some
large t << logn (see [4,16,24]) along the line given in Friedman [16]. The
second method, used by Kahn and Szemerédi, is to reduce the problem so that
the adjacency matrix of the random graph operates on selected finitely many
vectors with expected behaviors. Both methods use elaborated techniques and
careful analysis. Although similar approaches can be carried on for hypergraphs
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to obtain an upper bound of ¢,/pn, we will not give the arguments here. Instead,
here we give a short proof of a (weak) upper bound O(n'/?*¢) for dense random
graphs with constant edge density p. We consider A? for some large constant
t > k. For z,y € (kljl), the (z,y)-entry of A* can be estimated depending on
the set intersection of z and y. If 2 and y share w common elements, the (z, y)-
entry of A? differs from the expected value of pt=*+T2-wpt—k+2-w Ly at most
ctplt—k+2-w)/2p(t—k+2-w)/2 [p g gimilar way, the (z,y)-entry of K* differs from
the expected value of n*~*72=% by at most ¢ +nt—*+2-%)/2_ S0, let us consider
% for f orthogonal to the all 1’s vector where M = (L — D)t = (A — pK)*.
Thérefore,

(LAY = (f.Mf).
< 1D M(zy)f(@)f(y)]
z,y
<

Do IM (@ yI(f() + 2 (9))/2

k-1
n—k+1\[(k—1\ (4 ri2-w _
< et (Z (k—l—w)< . )p(t k+2-w) /2, (¢ k+1)/2) 3 2 (w)

w=0

<t (p(t~k+2)/2n(t—k+2—w)/2) {f, ).
Therefore A\t < ¢/tplt—k+2)/2 p(t=2+w)/2 By taking large ¢, we obtain,

A< c(pn)1/2+e

for any € > 0.

8. Concluding remarks

In previous sections, we have examined relations between the spectral value
of the Laplacian and several graph invariants. Numerous questions remains
unresolved several of which we mention here.

One natural question is the following: Is it true that small spectral value
implies “quasi-randomness” (its definition is given in [5,11,12]). The answer is
however negative. It is not difficult to check that the following k-graph with
edge density 1/2 has spectral value at most ¢sgrin but is not quasi-random. Let
G (k—1) denote a random (k — 1)-graph on n nodes. Construct a k-graph H so
that o = {2,... ,zx} is an edge of H if and only if | (,*,) NE{Gk-1)]| is odd.
It is shown in [8,12] that H is not quasi-random but it is not difficult to check
H has spectral value of the same order as a random k-graph.

One possible definition for a “strong” Laplacian (which can be related to
“quasi-randomness”) is as follows: Here we will only describe the definition for
3-graphs G while it can be easily generalized to k-graphs. We define L* = D—Tg
where for p1,p2,ps € [ Y], Te(p1,p2,ps) is defined to be 1 — p if the union of
p1,p2 and p;3 is an edge and p otherwise. As usual, here p denotes the edge
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density of G. This "strong” Laplacian seems to have intriguing potential but
appears difficult to deal with.

The Laplacian and the eigenvalues of (2-) graphs have numerous applications
ranging from extremal graph theory to randomized algorithms and approxima-
tion algorithms. Hypergraphs are general structures with rich properties. The
Laplacian of a hypergraph is not only interesting on its own right but is also
related to various applications such as amplifying random bits [35], communica-
tion complexity [13] and computational complexity. Basically, a boolean function
can be viewed as an (ordered) hypergraph and a hypergraph can be viewed as
a symmetric boolean function. Therefore, problems in various areas of compu-
tational complexity can perhaps be examined by using the Laplacian to capture
the underlying structural properties.
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