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QUASI-RANDOM SET SYSTEMS

F. R. K. CHUNG AND R. L. GRAHAM

1. INTRODUCTION

There are many properties of mathematical objects that satisfy what is some-
times called a 0-1 law, in the following sense. Under some natural probability
measure on the set of objects, the measure of the subset of objects having the
given property is either 0 or 1. In the latter case we can say that almost all
the objects have the property. Familiar examples of this phenomenon are the
following: almost all real numbers are transcendental (or normal to every base),
almost all integers are compasite, almost all continuous real functions are non-
differentiable, etc. It is often the case that the objects under consideration can
be partitioned into a countable number of finite classes C, , with the probabil-
ity assigned to an object in C, being just 1/|C,|. In this case, we say that a
property P, satisfies a 0-1 law if the fraction of the number of objects in C,
that satisfy P, either tends to O or tends to 1 as n — oo. For example, almost
all graphs on n vertices have maximum cliques and maximum independent
sets of size at most 2logn , almost all Boolean functions with # variables have
circuit complexity (1+0(1))2" and almost all binary codes of length » with at
most 2"* codewords {with R less than the binary symmetric channel capacity
(') have arbitrarily small error probability (a special case of Shannon's coding
theorem; see [S48]). One of the first general results of this type was the theorem
of Fagin [F76] and Glebskii et al. [GKLT69], which asserts that every property
of graphs that can be expressed in first-order logic satisfies a 0-1 law {see [SS88]
for recent striking developments in this topic).

One obvious method for finding explicit objects having some property P,
shared by almost all objects in C, is simply to select one at random. With-
overwhelming probability (tending to I as » — oo), the selected object will
have property P, . Unfortunately, it may be (and often is) extremely difficult
to prove that any particular object does indeed satisfy P, .

It is our purpose in this paper to describe a method that can to a certain
extent circumvent this difficulty. We will show that, for a variety of families, it
is possible to identify a natural hierarchy of equivalence classes of properties,
all of which are shared by almost all objects in the family. Any object satisfying
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some property in one of the equivalence classes must of necessity satisfy all of
the properties in that class, even though various properties in a class may appear
(at first) to be unrelated to each other. Furthermore it is typically easy to verify
at least one of the praperties in a class (depending upon how the particular
object is given), thereby establishing that all the properties in the class hold.
QOur main focus in this paper will be on combinatorial objects known as
hypergraphs, which are the natural generalizations of graphs {cf. [Be89]). Ex-
tensions of these ideas to other structures will be discussed at the end of the

paper.
2. Roorts

Our investigations have their genesis in a number of threads that began to
emerge some 20 years or so ago. These are found in the work of Wilson
[Wi72, Wi74] on the theory of block designs, Frdés-Sés [ES82] on Ramsey-
Turdn problems for graphs and hypergraphs, Rédl [R86] and Graham-Spencer
[GS71] (both on certain universality properties of graphs), and more recently
Thomason [T87(a), T87(b), T89], Haviland [H89], and Haviland-Thomason
[HT89, HT(a)]. Some of the results in this paper have been discussed in a
much weaker {nonquantitative} form in several earlier papers of the authors
([CGW89] with R. M. Wilson, [CG90(a), CG(c)]. Here we are able to give the
stronger quantitative versions for all of these (and many others as well) and set-
tle a number of the basic questions previously left unanswered. This uniform
strengthening has been possible because of the much greater coherence with
which the whole subject can now be viewed. In the final section, we speculate
on future developments. '

3. NoTaTION

In this section we introduce a number of definitions that will be used through-
out the paper. More specialized definitions will be given later as needed (cf.
[Be89]).

For a (finite) set V', and a positive integer k , define:

(::) ={X cV||X|=k}, the family of all k-element subsets of V',

2 {(v;, ..., v )|y, € V}, the k-fold Cartesian product of ¥ with itself.
As usual, |X| denotes the cardinality of the set X .

Definition 3.1. A k-uniform hypergraph H = (V, p) consists of a set of V

of vertices of H, together with a function g, : (z) — {1, —1}, called the

(mudtiplicative) edge function of H. The set E{H) = #;1(_1) is called the
edge set of H, and any X € E(H) is called an edge of H. Its cardinality is
denoted by e(H).

Usually, we just call H a k-graph. We ordinarily assume g, is 1 if two
or more of its arguments are equal. Occasionally we will use the additive edge
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function x, of H to represent edges of H, which is defined by
1 if X € E(H),
{ 0 otherwise.
We remark that “ordinary graphs” (e.g., see [Bo79] or [BM76]} correspond to
the case k= 2.

The complement H = (V, ug) of a k-graph H = (V, u,,) is defined by
setting ug = —p; . Thus, every X € (:) is an edge of exactly one of H and H.
A k-graph G = (W, u;) is called a subgraph of H = (V, up) if there exists
an injective mapping A: W — V such that p,(X) = -1 = g, (A(X)) = ~1.
In terms of the restriction ,uHh(W] of u, to A(W), the previous condition is
just g, < ﬂHb(W}. Similarly, G = (W, u.) is called an induced subgraph of
H=V,u,) if g, = »“H|,1(W}- We denote the number of occurrences of G
as a subgraph, and induced subgraph, of H by #{G C H} and #{G < H},
respectively.

Given X C V', define the restriction H[X] of H to X to be the k-graph
(X, #H[X]) given by setting By = Hyly - For v € V', define the v-projection
H{v) of H to be the (k — l)-graph (V, ,ub,(ﬂ)) given by taking

Xg(X) =

) =Y U o)) for¥ e (1)),

For two k-graphs H = (V, .}, H =, ) define the symmetric dif-
ference HOH' = (V, fiyop) of G and H by setting p,q, = fiyity, . More
generally, the symmetric difference v:’;IH!. of the k-graphs H, = (V, u,) is
defined to be the k-graph (V, u%) with u¥ = [, i, . For u, v € V, define
the sameness (k — 1)-graph H,  to be H{u)VH(v). "Thus, X is an edge of

u,u

H, , if and only if either both X U{u} and X U {v}, or neither X U{u} nor
X U {v}, are edges of H.

The product HGH' of two k-graphs H = (V, Hg) and H = (V', Hep)
is defined to be the k-graph (V x V", Hypp) Where g (X, X') :=
(X (X') for X € (}), X' € (). In general, the product [/, H,
of the k-graphs H, = (V,, ,uH‘) is just the k-graph (T], ¥, ,uD) with

LK X = [T g (X0

i=1
Note that X C V¥ is an edge of ., H, if and only if it is an edge of an odd
number of H;. Similarly, (X,, X,,..., X, )€ I, V, isanedge of [ " H,
if and only if an odd number of X,’s are edges of their respective H’s.

For a function g: (7) — {1, -1}, denote by i the extension j: |
{t, —1} defined by
B p{{v, ..., v.}) ifv, ... v, are distinct elements of V,
alvg, ..., v)= )
l otherwise .
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Finally, we come to the most important definition of the section. Let H =
(V, ity) bea k-graph and assume |V|=n.

Definition. The deviation of a k-graph H , denoted by dev H | is defined by
1
(3.1) devH = Nz > [T axeile), ... vle).

5,00}, u,(1)€F £,€{0, 1}
I1<igk 1<j<k

Using the abbreviations © = (2,(0), v, (1), ..., v, (0}, v, (1)) € V”‘, and £ =

(g,,...,6,)€{0, 1}*, we can shorten the notation for the deviation of H by
writing

(3.1 devH = ﬁzg%(ﬁ(s—)).

It will be useful to consider a more general form of deviation, defined as
follows.

Definition 4.2. For 0 < [/ < k, define the [-deviation of the k-graph H =
(V. tty) (having n vertices), denoted by dev, H , to be
{3.2)

| -
dev, H := ez Z Z H Bry(v (&), - ., u0&), Wy s o W),

v {0), 0, (LIEF u,EF eje{O,L}
| =it sk 1<zt

As before, this can be abbreviated by

I _
(3.2 dev, H 1= — Y NTN o), @),
7 i £
Note that for a k-graph H, dev, H is just dev H .

For the simplest interesting case, namely & = 2, the deviation of a 2-graph
H has the following interpretation. For four (not necessarily distinct) vertices
a,b,c,d of H, we say that the sequence (a, b, c,d) is an even 4-cycle
if an even number of pairs {a, b}, {b, ¢}, {c, d}, {d, a} are edges of H.
Otherwise, we say that {(a, b, ¢, d) is an odd 4-cycle. Let #(E4C C H) and
#(04C C H) denote the numbers of even and odd 4-cycles in H , respectively.
Then

1
dev H = —{#(EAC C H) - #(0AC C H)}.

Similarly, for the general case, the deviation of a k-graph H can be interpreted
as the average difference between the numbers of even and odd “octahedra” in
H, where an octahedron is a certain 2k-vertex k-graph having 2 edges (see
[CG90] for details).

A standard model {e.g., see [Bo85]) for discussing random k-graphs on a set
V assigns u{X)=1 or —1, each with probability 1/2 independently for each
Xe (E) . This process actually induces a probability distribution on the set of



QUASI-RANDOM SET SYSTEMS 155

all possible k-graphs of V. We say that almost all k-graphs have some specified
property P if the probability that a k-graph generated by this process tends to
1 as [V| =n — oo. We will usually denote a typical k-graph so generated by
H{)n), or H,,(n) if k is understood.

The main thrust of many of the results in this paper is that many of the
properties shared by almost all random k-graphs are in fact implied by (and
imply) the condition that the deviation of a k-graph is small. Specifically, the
smaller dev { is, the more H behaves like a random k-graph (e.g., see Theo-
rems 6.1, 8.1, and 9.1). In this sense, dev H is a fundamental invariant of H
as far as characterizing its random aspects. For this reason, k-graph properties
equivalent to the vanishing of dev H are called quasi-random (cf. [CGW§9,
CG90(a)]).

4. BASIC PROPERTIES OF DEVIATION

In this section we summarize some of the fundamental properties of devi-
ation. Unless specified otherwise, H = (V, u,) will denote a k-graph with
V| =n.

Fact 4.0. devH =devH.
Proof. Immediate from definition of deviation.

Fact 4.1.
(4.1) O<devH <1.

Proof. The upper bound is an immediate consequence of the definition. For
the lower bound we have by {3.1)

I _
devH = T Z H P:H(Ul(ﬁ)a seiy ﬂk(ﬁk))
R, eV £ e(0,1}
1<i<k 1< j<k

1 2
- T (T I s v w)

(Jey  wev ¢ (0,1}
1€i<k—1 1€j<k—1

By keeping track of those terms in dev H that have a repeated coordinate
(causing @, to take the value 1), we can obtain the following somewhat
stronger lower bound for dev H ,

Fact 4.2.

(4.2) devH >1—-(1—-1/m".
In particular, this implies that

(4.3) devH > 1/n fork =2,

a fact that will be used to help simplify the forms of various inequalities.
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Fact 4.3.
(4.4) devH-_ — Z dev(H(v)VH(1v')).
., 14
Proof.
dev(H(v)VH(©"))
I _
= k-2 Z H #H(U}VH(U’)(UI(SL)’ coa U g y))
A 1,(0), u{1)EV £,€{0,1}
I<i<k=1  1%j<k—]
I
= -2 Z H B (e)s oo vy (g_y), V)
n 8,(0),5,(EV 2,€(0, 1}
ISi<k—~1 1% j<k—1
X Bpg (v (€), -oe s Uy (8, (), V).
Thus,

Y dev(H(v)vH(v'))
U,U'EV

¥ Z >, [T aqve), ... v)agw ), ..., ¥)

u,v’ u(0),81) £,€{0,1}
1<i<h—~1 1< j<k—1

Z l—[ ﬂH(ﬂl(s 1 ﬂk(sk)) =devH. O

u,(0), v (L} & E{G 1}
1<i<k l<;<k

Essentially the same proof yields the more general result:
Fact44. For 0 <! <k,

I ‘
(4.5) dev,H=— 5 dev,_(H(v)VH(").
u,u'er
Fact 4.5. For k-graphs H=(V, ug), H =(V', py),
(4.6) dev HOH =devHdevH' .
Proof,
dev HOH' = m 5 TT  2ucw(Coi(e), vyte ). ..., (w(ee) s vpte )
avi-1vn (8,00}, 0, ()] (2,67)€CQ, 1}
(o, (1,8, (11)
1€igk
= Vzle’ 3 T gtee), - v le i (v (), ..., vpleg)
[F1= 8,0 1) (,4"e (0,133
070), 13 (1}
l<igk

=devHdevH'. O

The same proof shows the following more general result,



QUASI-RANDOM SET SYSTEMS

Fact 4.6. For 0 <[ <k,

(4.7) dev, HOH' = dev, H dev, H' .
Of course, Fact 4.6 generalizes to any number of factors:
(4.8) dev, [ H,= [] dev,H,.

Fact4.7. For X Cc V,
(4.9) dev HIX] < (IV|/1X)* dev H .

Proof.

devH = % Z 1__[ ,E'H(ﬂl(sl)i ey uk(gk))

R 0,00),0,(1)ew £,€(0,1}
1<i<k 1< j<k

M w0, u,0)eV N veV ee0,1)
L<i<k—1 1<j<k—1
1 ) 2
2o X (X T s v, v)
B u,0),v,()EX N vEV ¢,€(0,1}
1€igk—-1 1€ <k—1
1 -
T Z IT 2x(v(e), ..., vle)
B 0,00, u,(1)eV e,€{0,1}
u,(0),v,(1)€X < j<k
1<i<k—1
[ 2
= T (T T mawn) )
R 0 0), v ()EV  veX ¢ €{0,1}
v, (0), v (1)EX 1<i<k
2<i<h—1
1 2
2 X (T T . vte o)

By 0y, 000X v€X e,€{0, 1}
2<i<k 21<i<k

=% 2 IT ap(e), ..., vle)
B0 (e €€(0,1}
1€igk I<j<k

X1/ )™ dev H[X]

as required. O

2
= T (T I m o))

157

Fact 4.7 has a sort of converse, which asserts that if a family of subsets X ;

|74

of V covers (,,) fairly uniformly then dev H is close to the average of the
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dev H[X,]. More precisely:

Fact 4.8. Suppose X, ,..., X CV s0 that
(i) each Y € (3;) occursin (1 +o(1))t of the X, ;
(ii) |[X,|=(+o(l)}u, 1<r<m.

Then

(4.10) deng(1+0(1))$idevH[Xr]+0(%) , n— .

r=1\

Proof. First, observe that the hypotheses imply

2= "‘"0(1))(;{) / (;;f)

Thus, with nt:= nl/(n— )} we have

devH = % Z l__[ ﬁH(Ul(81)9 ey Uk(sk))

n u:(olivj(l} 8!
I€i<k 1<j<k

<o (n e XL e, o)

d1st1nct
6,{0], v{l) I<J’<k
1<£4(k

1 1))
SICIEE=2 3 DD DD Y M RRIEACY)

1<rem v(O] u(l}eX, ¢,

=0(%)+(1+o(1)) ( ) 3 devHIX)]

l<rem

=1+ 0(1))% idevH[X,] +0 (%) asn— oo, O

r=1

Fact49. For 1 <! <k,

2
(4.11) dev, H > (dev,_, H)".
Proof .
1 _
dev, H = oy Z Z H Belx(e))s oo xeg), wy ..., ug)
R u iy w,  e€{0,1}
1SIg! 1+1<1€k 1<)t
2
1 -
== 2 X (Z I1 #H(x.(m,-‘-,u,w;w‘-‘,wkl)
B wety gl o, v g E(0,1}
(€igi-1 l+1<r<k {zjgi-1
2
1 1 _
Z pez 'nku—;( Z E H #H(xl(gl}"“’xf—l(‘g!—L)!wI!"‘!wk))
w0, 0,01)  w eje{(],l}

1€igl~1 1<k 1< i1
by the Cauchy-Schwarz inequality

=(dev,_ HY. O



QUASI-RANDOM SET SYSTEMS 159

By taking / = &, we obtain the lower bound of {4.1). Note that when /=0,

1 i 2k!

devo H=— 3" ay(w,,...,w,)=1-"|EH).

" wJ.EV R
1<j<k
Fact 4.10. For 0 <[ <k,
(4.12) dev, H = 1 > dev, H(v).
nvEV

Proof.

i _
dev‘,H’=F S0 T aulxe), oo xied, wiyy s wy)

1
:HZ Eri—1 Z Z 1__[ ﬂH(XI(El),...,wk_l,‘LU)

n (0, v w,  e€(0,1}
1<i€l  lel<igk—1 T1<j<t

¥,(0),1,(1) w, g;€{0,1}
1<i<l  [+1<e<k—1 1<j<t

Finally, we note the observation (to be used later)
{4.13) devG=1=>devGvH =devH.

The proof follows at once from the definitions.

5. SOME PROPERTIES OF RANDOM K-GRAPHS

In this section we describe a variety of properties shared by almost all random
k-graphs. These will serve as reference points for comparing the corresponding
quasi-random versions of these properties in later sections. Proofs of the asser-
tions are not difficult, or are available in the literature, and (with exception of
Fact 5.1) are omitted. As usual, H = Hl(ﬂ(n) will denote the random k-graph
on nr vertices as described in §1.

Fact 5.1.

) o @
(5.1) Pr [dev H{jj(n) > %

[P

1 [2k

(1)

Proof. For 6 = (v,(0), v, (1), ..., 1,(0), v, (1)) € V¥, let
v)i= [ agve), ... vde)

2, 5, €{0, 1}
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and let S = ¥, Y(0). Thus, S = n*devH . Letus call 4 € V** proper if
all its components are distinct; otherwise we say it is degenerate. Observe that

the number N of degenerate ¢ satisfies

N=n —n—< (2;()’12;{-1.

Thus,
E[S] = E[ZY@)] = D EY )
= > E[¥(@]+ Y E¥(9)]

7] degcncratc 1l proper
KN 261
< ( 2 ) 1 +0
since for proper 0, all the factors in Y (@) are independent. Writing Cheby-
shev’s inequality as
PrS > 4] < EEIS ]

2k-1

then taking A = an , we obtain (5.1). O

We remark that, with a little more care, it can be shown that for appropriate
constants ¢, and ¢> I,
(5.2) Prdev H{)(n) > ¢ /n] < ¢ V.
Fact 5.2. Let H(t) be an arbitrary fixed k graph on t vertices. Then

(5.3) #{H(t) < H, ()} = (1 +0(1) 7,
2 (%)
Fact 5.3. Let H := Hlﬁ(”) Then almost all H satisfy (as n — oo)
() [ECH) = (3 +0(1) ()
(i) for almost all vertices v €V of H, |E(H(u)) =(§+o(1){);
(iii) forall X c V, [E(HLXD| = 3() + o(n*).

H— oG,

Of course, (iii) = (ii) = {i}). We will see the relevance of these properties to
the /-deviation of a k-graph later.

The deviation of a k-graph is related to a special k-graph called a k-octahe-
dron, & = (V, u,), defined as follows. The vertex set V' consists of 2k
points x,(0), x,(I), | <i < k. The edges of & consist of all k-sets of the
form {x,(¢), ..., x¢,):€,...,¢ =0 or 1} (sothat & has 2% edges). A
partial octahedron is a subgraph of & having as edges a subset of the edges of
& . More specifically, an even partial octahedron (EPQ) has an even number of
such edges, while an odd partial octahedron (OPO) has an odd number. We let
#{EPO < H} and #{OPO < H} denote the numbers of induced EPQO’s and
QPO’s, respectively, in H .
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In these terms, Fact 5.1 asserts that
(5.4) #{EPO < H{:)(n)} - #{OPO < H{9(n)} = 0 ((:)) .

In the case of ordinary graphs H = H(I}(n) = (V, xy), we define the adja-
cency matrix A(H) = (x4(x, ¥)), ,cp - Since A(H) is real and symmetric, it
has real eigenvalues A;, which can be labelled so that |2,| >[4, = -~ 2|4 ].
Fact 5.4 [FK81]. Almost ail random graphs H, ,(n) have A = (1 +o(l1))n/2,
i, = 0.

6. INDUCED SUBGRAPHS
As we have noted, for a fixed k-graph G(t) on ¢ vertices, almost all random
4

k-graphs Hlﬂ(n) contain (1 +o(1))n£/2(k) occurrences of ((f) as an induced
subgraph. In this section we will show that this property actually holds for any
k-graph H(n) with small deviation. More precisely, we prove

Theorem 6.1, Assume G = G(1) is a fixed k-graph on t vertices where k > 2.
Then for any H = H(n) with n > tl, we have

z

= -k
(6.1) ‘#{G(:) < H(n)} - ’(13) < Sn‘(devH(n})2 .
24k
Proof. Denote the vertex setof G by V ={v,,...,9}. For 1 <r <, define
V= {v,....,u} CV, Gr):=G[V], and N, := #{G(r) < H}. We will

show by induction on r and k that

4

No- < sa'tdevin)®

6.2
(62) ")

First note that for » < k, N, = n" and (6.2) holds since

nt 27k
N, - 5 =0< 51 (devH)" .

So let us assume for a fixed value of k& > 2 that (6.2) holds for some value of
r satisfying k — 1 <r < . We want to prove that (6.2) also holds for r + 1.

Denote the vertex set of H by [#]= {1, 2, ..., n}. Let o denote (o, ...,
o,) where the a, are distinct elements of [n], and let & denote

(8e)), ..., e(e,) withe(e) e {-1,1}, 1<i<zi= (kil)’

where e, ..., e, denotes an arbitrary fixed ordering of the (k — I)-subsets of
{a;,...,a,}. Define

fla, &) = Hie[n] | i ¢ aand y,({i}Ue,) =ee), 1<j< (ki 1)}‘ )
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Note that N, , is the sum of exactly N, values f (a,&). Namely, for each
embedding A: G(r) — H, say with l(v;) =, [ < j <, fla, £) counts
the number of ways of choosing i € [#] so that if we extend A to V, , by

setting A(v,, ) = i, and we define e(e,) = pu,({ijUe), 1</ < (), then

,
A becomes an embedding of G{r + 1) into H . Also, there are just Z(k—l)ni

r
quantities f(a, &), since there are »- choices for o and Z(k—l) choices far
£.
The next step is to compute the first and second moments of f. First, we
have

(63) Fi= =Y flae) = (n-r2 &5,
2(}'{—[) nL a8
In particular,
(6.4) 3 fla, &) =n"™,
Next, define
(6.5) S,=5 fla,e).
Claim 1.
(6.6) S,= > #HEU<H] )
X, Ve(m]

H_ , denotes the (k — 1)-graph formed by restricting H, | = H(x)VH(y)
to the vertex set ¥V~ = V\{x, y}, and Kf’") denotes the complete mi-graph
having r vertices and all possible (7'} r-sets as edges.

To see this, interpret S, in (6.5) as counting the number of ways of choosing
a=(og,...,n), e =(ee),...,ele,)), and two other {ordered) vertices x
and y in [#]\e so that

ty({xpue) =ele;) = py({ytue), 1<j< (ki 1) :

Summing over all £ reduces this to requiring just that

(6.7) up(ix}Ue) = uy(viue), 1<j< (ki 1) -

On the other hand, if we think of choosing x and y first, then by (6.7)
{a, ..., a,} mustspan a kaﬁl) in H_ . This proves Claim 1.
Of course,
(k~1) - (k—1)
{6.8) #{K, <H,  }<#K <H_  }.
Claim 2. For k > 2,

2-[*-[]

r
(6.9) S <2 G0 2t ¢ 5n™(dev H)
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Proof. First, assume k = 2. Define
&(x, y) Z ty(x, gy, 2).
26[»]
Thus, je(x, y)| <1 and
1 2
devH = ?Zs(x,y)

X,y

L;, (E|€ X, ) ) by Cauchy-Schwarz,

which implies

(6.10) Y letx, y)i < n'(dev H)'?

X, ¥

Next, define
n
s(x, y) = (1 +elx, y)).
Thus,

S, =Y e, e) =Y s(x, ),
o, 8 X,y
< ZS(x,y)’ = (%)rZ(l +e(x, p)

X,y

@ (55 () )

x. ¥ 21
n r
<(3) {w+ gls(x,y)i}
nr+2 , 12
< > n"idev ) by (6.10)
1r
<2 2 dev )/

- as required by (6.9) for k& = 2, where we have used (4.3) and the fact that

1/r
2“5(2)'

We now observe that the remainder of the proof of Theorem 6.1 for the case
k =2 can be completed as written (following the end of Claim 2).

In general, for some &k > 2, the proof of Claim 2 for k& will require the use
of Theorem 6.1 for k— 1. So we can assume for & > 2 that Theorem 6.1 holds
for k£ -1, and we will complete the proof of (6.9) for this value of k.

:s|:x
-l
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By (6.1) for k — 1, we have

S, < ST#KE <H, )
x!y

<2 -G! ')n2 rﬂ( chv )

by rcpcaled application of Cauchy-Schwarz

2—(*—1?

k-1

=2 (L) n’nt + Sn”'z(dev H)
by Fact 4.0 and Fact 4.3. This completes the proof of Claim 6.2. O

We now compute the variance of f.

Varf =3 (fla, &)= )} = Zfz(a, &)= 1"

SN Ay P A0 I
22(k~1) z(k—l)
k- PRy N4
it + 50 (dev HY: - (”__’;)_”
2(k L] 2(,(_1)
£ —{k—1
- M + 5™ (dev H? -0
26l
Alsa, since
Nr+l = Z f(as 8)
N, choices
aof (e, €]
then
2
W =N =] 3 (fle,e)- 1)
N terms
<N, E (fla, &) - 7)* by Cauchy-Schwarz
N, terms
<N, Z (, &) — f)" =N, Var f
all (o, &)
k- _ r
< Nr{ﬁnrﬂ(devH)z e M}
26l
Thus,
2 e oty L2
{6.11) |Nr+l -NJ| < erf2{5nr+2(dev H)2 *- N %} |
2 k=1
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Now, by induction on ¥

L -
n | < 5n(devH)
2k

(6.12) N, -

Since f=(n- r)/2(kil) by (6.3) we obtain

= 142 r+2 -t=t1  p(2p — r‘)n£ 1/2
O 1 Rl B i
2\ k Ale—y

S(n— Fyn’ (dev H)Y
+ ¥
2(1‘:—[)

k

< Snrﬂ(dcv H)z_ .

where the final inequality follows by straightforward computation using the
assumptions 1 <k —1 <r < /n and the (trivial) estimate N, < n .

This therefore completes the induction step and (6.1) follows. Thus, Theorem
6.1 is proved. 0O

We should paint out that the basi¢ structure of this proof has its roots in the
seminal paper of Wilson [Wi72].
Theorem 6.1 has a quite unexpected consequence. What it asserts in essence
is that the smaller dev H is, the closer #{G{(t) < H} is (for any fixed &(¢))
!

to what is expected, namely 27\ n*. However, devH only depends on
#{EPO < H} and #{OPO < H}, which in turn, depend on the quantities
#{G(2k) < H}, as G(2k) ranges over all 2k-vertex k-graphs. Thus, if each of
the 2k-vertex k-graphs occur as induced subgraphs of H about the “correct”
number of times, then in fact so do all the ¢-vertex k-graphs, as well! Of course,
for a fixed H, the larger ¢ becomes, the larger the variation of the actual count
from the expected value becomes. (Theorem 6.1 gives a quantitative statement
of this phenomenon.) As will be seen in §7, the value 2k is in fact sharp for
k-graphs. That is, for each k there is a family of k-graphs H(n), n — oo, s0
that:
(i) For all G(2k - 1),

2kt
#{G(2%k — 1) < H(n)} = (1 + o(1)) = ;
200
(ii) for some G(2k) and some & > 0,
2%
#Gk) < Hm < (1—)2=—, 1> ngle).
2(%)

In fact, for k # 27, we construct in §7 examples of k-graphs H(n) that satisfy
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(i) and
(ii') for some G(2k),
#{G(2k) < H(n)} = 0.

Such k-graphs H(n) clearly deviate from behaving like random k-graphs in
a very striking way. It follows from (6.1) that if

(6.13) % < (1 - 5-2(fi)(devH)2_k) (5)_1

then any G(¢) is an induced subgraph of H = H{(n).

Suppose dev H < 1 (the very special k-graphs having deviation 1 are char-
acterized in §11). By (4.8) with / =k and H, = H, | <i{ < m, we have for
H =T H,

devH™" = (dev H)", \H™) = |H™ = n™.
It then follows from (6.13) that for m large enough, e.g., m > (lnzt)k, we

have #{G(t) < HD”’} > 0. However, we can draw the same conclusion for a
smaller value of » by the following direct construction.

Proposition 6.2. If devH < | then #{G(t) < H-™} > 0 provided that
m> ()2

Proof . By hypothesis, H must contain an OPO, i.e., 2k vertices x; < y,,
1<i<k,sothat

H Bp(Zis .oy 2y X ) = =1,
ze{x, »}
L<i<k—1
I fnteo szl = 1
ze{x ¥}
I<i<k—1

Let m, = ({10277 andlet W = {w, < w, < --- < w,} denote the vertex

set of G(1). Also, let W' denote W\{w,}. The plan will be to map each

w € W to an myg-tuple w as follows. Let (U, U,,..., U H)) be some
i=1

fixed ordering of (ku_jl] . For U;, we reserve the 267! coordinate positions

(G- +i[0<i<2* "} Write U, = {u, < <u,_}. Let w(j,1),

0<ix 2kt , be the values @ is assigned in these coordinates. Then w(j, i)
is defined as follows.

(i) w>u,_,. Then
o x, if U, U{w} is an edge of G{),
w(j, i) = { or] .
v, if U;u{w} is not an edge of G(¢).
(i) w<uy,_,, w ¢ U. Then
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(iii) w=u, € U;. Then

5. 1) { x, if the rth digit of the binary expansion of i is I,
wiy, 1)y = . .. . . ..
/ ¥, if the rth digit of the binary expansion of i is 0.

With this assignment for each U € (,:fl) , we have defined a mapping A: W —
{X, .90 X0 yk}'"ﬂ. It is now simply a matter of checking to see that 1
induces a copy of G{¢) in H™™ | and the claim is proved. O

A small example may help to clarify this construction.

Example. k=3, t=5, my=24, W={1,2,3,4, 5}, and G(5) has edges
{1,2,3},{1,2,5},{1,3,4},{2,4, 5}.

12 13 14
7 0O 1 2 3 4 5 6 7 8 9 10 11
1 Yo i xpx Yoyox X ¥ oy XX
2 Vo Xa Vo Xy V3 V9 V3 ¥y ¥y Vg Vi V4
3 Xy Xy Xg Xy Yy Xy Py Xy ¥y V3 V3 )
4 Vs Ve V3 ¥y X3 X3 X3 X3 Yy, X5 My X
5 Xy Xy Xy X3 V3 Vs V3 Vs Vi V3 Vi )

23 24 34
0 [2 131415 16 17 18 19 20 21 22 23
I Vi Vi V3 ¥y V3 Y3 Vi Vi V3 Vi Vi Wy
2 Yo ¥y x X oy ¥ox X ¥y Vg ¥y Vs
3 Vo Xy ¥y X3 Va V3 ¥y Vi V) ¥ X X
4 Ys Ys Va Vg ¥y X 0 X Yy Xy YV Xy
3 Y VY3 Ya Vs Xy X3 X3 X5 V3 V3 Vi oMy

7. k-GRAPHS WITH THE CORRECT DENSITY OF SMALL SUBGRAPHS

We saw in the preceding section that if a k-graph H(n) contains all possible
2k-vertex k-graphs G(2k) as induced subgraphs asymptotically equally often,.
then in fact this must also hold for all z-vertex k-graphs G{(¢), for any fixed
t, as well. In this section we show that the value 2k is critical for such a
conclusion to hold. Specifically, we will prove

Theorem 7.1. Fix 2 < k <1 < 2k — 1. Then there exists a family of k-graphs
H(n) such that

(i) forany G(I), #{G) < Hn)} =(1+ o(I))ni/2(fi) ;
(i) for some G(1 +1), #{G( +1) < Hm)} # (1 + o1 2%,

Proof. We will first deal with the case ! = 2k — 1. The general case will then
follow in the same way. Fix some vertex set V" ofsize #n. For 1 < j<k—1,let
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Hfff)z be a random j-graph (V' y j.), where in this section we use the additive
edge function y,. Define H; to be the k-graph (I, x;) given by:

vV ;
for X e (k) . X0= ZX %;(Y) (mod2).
ve(;)
That is, X is an edge of H , if and only if X contains an odd number of edges

Y of HY

{1 Form the symmetric difference k-graph

* * k— *
H =H(n)=v,_ H =, 1).
We claim that H™(n) satisfies the desired conclusions, except when &k = 2', in
which case an additional step is required.

So we first assume k # 2°. Consider an arbitrary fixed set W = {w ...,
w,, } of 2k — 1 vertices in V. Form the matrix M with rows indexed by
X € (%) and columns indexed by Y, = (‘f), [<j<k-—1.Thus M has size
(1) by 27! _ 1. The (X, Y)-entry M(X,Y,;) of M is defined to be 1
if YJ < X and 0, otherwise. We can view each column C(Yj) as a function
mapping (%) to {0, I} by defining

CYMX)=M(X,Y), Xe (”:) .

Furthermore it is easy to see that

so0 that

> X Cxp=x"

[<igk=1 y £ (W)
IAAY

The key fact we now apply is a result of Wilson [Wi90] that asserts that {for
k #2'Y M has full rank mod 2, which in this case is (”‘k_') . Actually, Wilson’s
result implies that if we adjoin the all [’s column 1 to M, forming A" then
M™ has mod 2 rank equal to (zkk_l]. However, for k # 2' some i with
l<i<k-1 has (’f) odd. Summing all the columns C(Y)), ¥, € ('f) , yields
I so that in fact rank, M = rank, M* = (*7}). As W ranges over all (2k—1)-
element subsets of ¥, since the edges of the various corresponding Hfﬁ are

chosen independently (and uniformly), then an easy argument shows that each
2Ue—1
of the possible (ﬂ‘k") {0, 1)-vectors occurs {1 + o(l))nzk_iﬂ( <) times as

n — oo, But this just means that for almost all choices of the Hl(;’,}I each of the

k-1
possible k-graphs G(2k —1) on 2k —1 vertices occurs (1 +o(1))n2k?1/2( )
times as an induced subgraph of H’(#), as claimed.
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. In the case k =2 for some ¢, we form the k-graph H' by taking the two
disjoint k-graphs H” and its complement H", and placing a random k-graph
between them. Thatis, if H =(V,x"), H =V, #"), VnV' =&, then
HY =H*2n)=(WVuV', y*) with

¥ (Xy forXcCcv,
= 7 (X) forXcv’,
0 or 1 with probability 1/2 otherwise,

for X € (“4"). An easy argument shows that

#GRk- 1) < H'2n)} =1+ o(1))(2n)”‘"2‘(2kk"1)

for almost all choices defining H" .

To see that there are 2k-vertex k-graphs G(2k) satisfying-(ii} (for { =
2k — 1), it is enough to show that devH" and devH' are bounded away
from O (independent of r). Indeed we show in §11 that devH = 1 and,
consequently, for almost all choices of H™, devH" > (I + of l))21‘2".

Now, we treat the case of general /. Of course, for / = k the conclusion is
immediate so we may assume [ > k. We apply the same constructions as in the
preceding case [ = 2k — 1, but now with rows of M indexed by sets X € {}),
and columns indexed by sets ¥, € V;, 1 < j < ! —k (where |V|=1). As
before, Wilson's result applies to the augmented matrix M”* (with the all 1's
column adjoined), with the conclusion that M™ has mod 2 rank equal to (;;) .
Thus, it follows that when k # 2° then M itself has mod 2 rank equal to (})
and the analogous construction of H~ gives us the desired k-graph, while for
k =2" the “doubling” construction of H* (using H* and H*) works here as
well. It follows as before that devH” = I, and dev H" almost always exceeds
(1+0(1))2' =" This completes the proof. D

8. DISCREPANCY

In this section we relate deviation to another measure of randomness for k-
graphs called discrepancy. This is a natural generalization of the well-studied
concept of the discrepancy of a graph [ES72, ES74] and was suggested (for
k = 3) by Frankl and Rédl [FR89] as a possible quasi-random property. We
will show here that deviation and discrepancy are indeed intimately related, and
in fact, one can be small only if the other one is.

To begin with, we need to define discrepancy. Let H be an arbitrary k-graph
on an n-vertex set V' and with edge set E(H). Fora (k — t)-graph G on V
with edge set E(G), we define

E(H, G):= {X € E(H) | (k’f 1) C E(G)} ,
elH, G):=k{E(H, G).

(8.1)
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Thus, e{H, G) counts the number of ordered subsets in E(H, &). Finally, we
define the discrepancy of H, denoted by disc H , by

(3.2) disc H := L max |e(H , G) - e(H, G)|,
n* G

where the max is taken over all (k — 1)-graphs G on V.
For k = 1, we take by convention

(8.3) discH = ~le(H) - e(F),

where, as usual, ¢(K) denotes the number of edges of XK.
For k = 2, it follows from (8.2) that

(8.4) | discH = % max le(H{W1) — e(H[W])|.

Thus, the discrepancy of a 2-graph just measures the maximum imbalance be-
tween edges and non-edges over all its induced subgraphs.
It is easily proved that almost all random k-graphs H, ;2(”) satisfy

(8.5) disch(n) =0(1), n— oo,
and we have seen by Fact 5.1 that almost all H, ;Q(n) satisfy
{8.6) dev H, ,(n) = o(l), n—oo.

What was actually quite unexpected was that for arbitrary k-graphs H, (8.5)
and (8.6) are eguivalent.
The following result states this in a more quantitative form.

Theorem 8.1. For any k-graph H=(V, ju):
S

¥

(i) discH < (dev H
—k
(i) devH < 4“(discH)" .

Proof. First observe that for k = 1 the desired conclusions are immediate since
in this case

|
devH = —5 3 pp(xX)py(y)
n X,

- (4 ;nﬁ(x))l  (disc ).

Hence we assume &k > 2,
We first prove (i). Let G be an arbitrary (k — 1)-graph on V' with edge set
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E(G). By definition,
2k _
ndevH= Y [T aalu(e). ..., wle))

u,(0), 1,01} £,€{0,1}
1€igk 1< j<k

2
Z (E H-‘EH(U’ Us(€y) s oy “k(ek)))

2,0}, 1,1} \ vEV ¢,
i#l

i#1

2

= (ZO]: o (ZHP:H(U Uy 82) uk(ek)))
i';é “ j;él

where Em denotes a sum over all choices of u,(0}, u,(1), i # 1, such that
{u,{e,), ..., u,{e.)} is an edge of G for all choices of g; € {0, 1},2< j<k,

= Z(l] H.ﬂﬁ(ul(é‘l), coes Wy {2y))

(O, 4 (1) &

Wy - 2
Z (Z H#H(ul(al)n U, uj(gj)a ey uk(akn)
) £

u,(0),u,(l U

i#2 J‘#JI
2
(n
= Z (E ].—[J“H(M (¢,) - “k(ek)))
u (0}, u,(l}
i# 1#2

where 2(2} denotes a sum over all choices of u (0}, u,(1), i # 2, such that all
{u(e)), uy(eg), ..., uy(e)} € E(G) forall e, € {0, 1}

- Zu,zJ HﬂH(ul(al)’ et (8))

4,0),u(l) ¢

where Z“ 2 denotes a sum over all choices of u,(0), u;(1) such that all {u,(e,),
uy(ey), .., uy (8} and all {u,(g,), uy(z,), ..., u,(¢,)} are edges of G for all
e, €{0,1}
i

> SO g ey), -y 10e,)

(0, u(l) 4

(1?2? 1
>3 H#H(u €))s -5 14,(8,)
w (0, u,(l)

where the final sum is over all chmccs of u,(0), u,(1) such that every (k —1)-
subset of all {u,(g), ..., u, (&)}, g € {0, 1}, are edges of G. We now
repeatedly apply the Cauchy-Schwarz inequality.
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Z(I,Z,---ak]HEH(uI(EL), see uk(sk))

w,(0), u,(1) L
2
(1,2, k) 7y
= Z (E ]_—_[JHH(UI’ up(ey), .o s uk(sk)))
w (0}, 4 (1} ~ ¥ £
i#1 i#l

1 2,k 2
> =1 ( Z(l ) Hﬁﬁ(vl 1 uz(eg)a LIERC | uk(gk)))

= - j
2,(0), ,(1) i>l

il
1 (1,2,.. k) ~ 242
= k-1 ( Z (Z H#H(Ul 1 Uy s Ug(Ey), ))
U . £
w(0)ufly i
i»l
1 1 (1,2, k) ~ 4
T 2 N T T ) ( Z H#H(ﬂla Uy, Uy(£4), ))
R K U, g}.
(0}, u;(1) ey
i»2
> 1 1 1
- nik—l nZ(Qk—J} n2!_1(2k—1—1)
2[
(1,2,....4k
X(Z HﬁH(Ul’""U:!urﬂ(ezﬂ)!“'))
Y Y, &
# 0], 4 {1} it
[3=T4

1Y

k
1 (1.2,...k) 2
m(z ﬂH(UI,---,Uk))

Wy,

L el G -, &)

21:
=— )
yk (=2

since all {k —~ 1)-subsets of each choice of {v,, ..., v,} areedgesof G.
Thus
e k_ ]
le(H, G)—e(H, G)| < (" D . n* devin)'”?
k 1/2*
<n (devH)'" .
Since (¢ was arbitrary then this implies

¥
disc H < (dev H)'?

as required.
We next prove (ii) by induction on k. We first remark that for k = 2, (ii)
follows directly from results in [CGW, Fact 9], so we will assume k > 3.
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Assume that for every {(k — 1)-graph G on V', we have
le(H, G) - e(H, G)| < 26",
We will show
dev H < 4% 172" .

For each u € V, define

k 172%
Su):={veV|devH,  2(4 -2)¢"" },
S={ueV|Su) > 2n},
where H, is the sameness (k — l)-graph of H with respect to # and v
defined previously (i.e., f, (X) = —pg({u}UX)p,({v}UX) for X € (,7 ).
If |S| < 2en then

devH = — EdevH by Facts 4.0 and 4.3

k

5—2{181-n+(4 — et nty < 4k
n
as required. Thus, we may assume [S| > 2en. Fix u € §. For each v € S(u),
the induction hypothesis implies there exists a (k — 2)-graph G{u,v) on V
satisfying
le(H, ,, G, v))—e(H, ,, Glu,v))| > 68 n""

where &° = 4¢. Thus, there is a subset S'(w) of S(u) with 1S°(1)| = en so
that either:

(@) e(H, ,, Glu,v) = te((,V l)) G(u, v))+3862n5" forall v e §(u);or
(b) e(H, ,, Gu,v)) < te((,X ). G, v)) - 382! forall v e 8'(u).
We will just treat case (a); the argumcnt for case (b) is very similar and is

omitted. We begin by defining the foliowing (k — 1)-graphs on V.

sy = ey n (21,

£y = EE@ 0 (V2 1),

E(G')={YU{v}|Y € E(G(n,v)), veSwW}UEH),
E(G")={Y U {v}|Y € E(G(u,v)), veS(um}UEH,).

Consider the sum

u, b

2
<

a(u):= Y e(H,,,Gu,v)).
veS (u)
For each X' € E(H, G') there are three possibilities:
() |X'NS'(u)| > 2. There are at most &°#* such X’ .
(i) |X'nS'(u)| = 1. In this case, X' = Y U {v} for some v € §'(1), and
so, Y€ E(H Glu, v)).

W,
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({ii) X' N S'(w)| = 0. In this case, X' € E(H, H.).
A similar analysis applies to those X" € E(H, G"'). Combining these obser-
vations, we obtain

ou)= Y e(H, ., Gu,v)

vES (1)
=(k-1! S |{{Y|Y € EH, ,, Gu,v)}
vEeS' (u)
=(k-1! Y. {Yu{v}|Y € E(H, ,, Gu, v))}
vES (1)
(8.7) < (k- 1)! {XE(Z)HXHS’(H)[:l, X =Y Uu{v},

YeEH,,, Gu, U))}' +&n

=tk- DX [IXnS'@W|=1, X=YuU{v}, XcEH,
Ye(H, ,,Gu, v}
+k-DX [1X' aS' W =1,X =Y u{v},
X' € EM), Y € E(H, ,, Gu, )} +&n"
<e(H,G)—e(H, H)+e(f, G~ e(H, H') + 0"

Now, if we apply the induction hypothesis to the (k — 1)-graphs H,, H. , G,
and G”, we have

tu,u?

le(H, H)) —e(H, H.)| < 26°r",
le(H , H') - e(H, H)| < 26*n*,
e(H, G)— e(H, G)| < 262",
H)

le(H , G )—e(H G")| < 26°n".
Consequently, from (8.7)

an () 9) =2 (k). %)
e ((0.) () ) s

On the other hand, by (i) we see
o(u) > & 3 e((kljl), G(u,u)) + 38707 IS

wES (1)

3 ((0).9)-#(():7)
+ %e ((Z) , G”) - %e ((:) , H;’) — 52°n* + 36%en*.

ra|

A%
IS
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However, (8.8) and (8.9) imply & < 10g/3, which contradicts the assumption
that 8% = 4¢.
This completes the induction step and Theorem 8.1 is proved. O

We point out here that it is possible to define, for any / < k, the /-discrepancy
disc, H of a k-graph H on a vertex set V of size n by

dise, H := Lk max |e(H, G) - e(H, G)[,
n &

where (¢ ranges over all (/ — l)-graphson V, E(H,G)={X ¢ E(H”(‘rfl) C
E(G)}, e(H, G) = kl|E(H, G)|, etc. For this more general concept, the ana-
logue to Theorem 8.1 holds.

Theorem 8.2. For 2<i{ <k,
(i) disc, H < (dev, H)?
(ii) dev,H < 4'(disc, H)? .

The proof of Theorem 8.2 is similar to that of Theorem 8.1 and is given in
Chung [C90], which in fact includes a much fuller discussion of [-deviation and
{-discrepancy, and the applications of these ideas to communication complexity
(cf. [BNS89]).

9. GRAPHS

Certainly the most commonly occurring k-graphs are just (ordinary) graphs.
While many of the known results relating the deviation of a graph & to other
structural invariants follow immediately from the preceding results by special-
izing k to be 2, there are other useful properties of graphs that are not easily
generalized to larger values of k. In this section, we discuss some of these.

To begin with, for each graph G = (V, u,;) on vertices, we can define (as
before) an n x n symmetric matrix A = A(G) = {a(x, )y yev » called the
adjacency matrix of &, as follows:

a(x,y)={

Since A(G) is real symmetric, its eigenvalues 1, = 1,(G), 1 < i< n, are real,
We label them so that

1 if {x, y}is an edge of G,
0 otherwise.

Al Z (A 2 2 |2,

It is well known (e.g., see [CDS80, CDGT88]) that many structural properties of
G are controlled by the behavior of the eigenvalues of A(G). Random graphs
G ,4(n) arc known [FK81] a.a. to have

o= +o()r/2, i=0m"", n- .

In [CGWR89], it is shown that the conjunction of the following three prop-
erties is equivalent to a family of graphs ¢ = G(n) being quasi-random, i.e.,
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equivalent to having devG = o(1), #n — x:

(a) G has (1 +o(1)}n?/4 edges;
(b) 4,(G)=(1+o(1})n/2;
(€) 4,(G)=o(n).

The following theorem is a more quantitative form of this result, which allows
it to be applied to individual graphs, rather than just having it apply asymptot-
ically to a family of graphs.

Theorem 9.1. For any graph G = G(n) =V, u;);

Q) 1T, , #e(x, )| < n’(dev)'/*;
(i) 14,(G) - 2| < 2dev )",
(ifi) [2,(G)| < n{devG)'/*S,

Proof. Let ¢ denote the number of edges of &, let & := n2/2 — e, and let
A = A(G) denote the adjacency matrix of &.

First observe that (i) follows immediately from Fact 4.9 {applying it twice),
since

1 4e
(9.1) devOG=FZ#G(x,y)=1-?.

X. ¥

The proof of (ii} is slightly more complex. To begin with we have {by Rayleigh-
Ritz)

{v, Av)
{v, v} b

where 1 denotes the vector of all 1’s. Therefore,

(9.2) 4, =sup

2e

-2 < =,
(9.3) 2 < >

(-
| =

Define the matrix M = (m(x, y)), ,cp =/ — 24, where J denotes the n x n
matrix of all 1’s; thus, m(x, y) = u.(x, y). Also, set

dix):=[{y eViggix,y)=~1}|, d(x):=n-d(x),
s(x,y) =z e V|pglx, z) = ue(v, 2)}l,  3(x,p):=n—s(x,y).

Since

dNe—2| =

<) ldx) - dex)l,

x

Zm(x,y){ < | S0 - dx))
X,y x
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then
n* dev G = Z(s(x, y) - 5(x, v’
2
> %(lex ») f(x,y)[)
2
> 5 ( Ststx, ) = s, )
(9:4) o )
> %(Z(d —d(x)) )
1 B 1,2
2 5 (5 (S -dear) )
16 b
> "F(e "e) .

Since M =.J — 24 and the 4, are real, then
1647 < 16 Te(4*) = Tr(J - M)*

where Tr denotes the trace function. By the additivity of Tr, we can upper
bound Te(J — M )4 by bounding the various terms we obtain by expanding
(J—M )4. To do this, we note the following inequalities:

4

Tr(JY) = n®,
TH M) = Tr(J MJ) = Tr(JMJ ) = Te(M ) < n'(deve)?
Te(M2TY) = T MY = Te(J MT) < n Z s(x,p)- 5(x, ) <n'(dev @'
x,y

Te(MJIMJT) = Te(JMIM) < (Z(d(x) a’(x)) nidev )2,

Te(MI* M) <n Y (d(x) - d(x))" < n'(devG)',

Tr(J M) < 3 (d(x) - d(x))(s(x, ¥) - 5(x, ¥))

< ({n S dta) - a?(z))2 (Z(s(x, » -5, 97 ) "

<(n (devG)” n*(devG))'? < n*dev ),
Tr(MJM )=Tr(M JM) £ Z (x) —d(x))(s{x, y) - 5{x, )

X, ¥

< n'(dev Gy,
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Te(M* J) < n'(dev G)*'*,
Tr(M J=mn “devG.
Therefore,
Tr(J — M) < n' + 4n*(dev ) + 6n (dev G)'?
+ 4n'*(deve)**
= n4(1 + (dev G

rntdeve
1/4. 4
) ,

which implies
4

A’jg( ) (1 + (devG)'7Hy*,

o

Le.,
(9.5) A< (g)(l+(dev6)”4).
Thus, by (9.3), (9.4), and {9.5) we have
_El B 174
(9.6) [,11 2‘ < 7(dev )
as required for (ii).
Finally, to prove (iii) we have
A5 < Te(a') -
1 4 4

< 75 Te( - My - 4]

1 4 1;44 1434
g1 (1 + (dev G) ((1 (devG)'’*))

[Fa

IA

(%)4 -8(dev @) *(1 + (dev 3)'7)

< n*(deve)'’?,

ie.
IA,] < n(dev G)'/*¢.
This completes the proof of Theorem 9.1. 0O

In turns out that the O-product described in §3 can be used to form arbitrarily
large quasi-random graphs that are essentially optimal from the point of view
of having 2, small. Here is an outline of the relevant facts. Let G = G(n) bea
graph with devG < 1 (i.e., & is not a complete bipartite graph). Let A{() be
the adjacency matrix of G, and tet M = M{(G) = J — 24(C), where J is the
nxn matrix of all 1’s. Thus, M is symmetric with 1’s on the diagonal. Let @, ,
I €1 < m, denote the eigenvalues of M, ordered so that |w | > |@,| > --- >

lo,|. Then G™ :=[J_, G has M(G™"):= M" = ®’_, M (the ordinary tensor
product). Since devG < 1 then dev(G™) = (devG) = o(1) as ¢ — oco. Thus,
M"Y has as an eigenvector 1+¢& where T is the all 1's vector of length N = n’,
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and each component of & is o(1). This implies that the largest eigenvalue of
A= A(GD‘) is (L+o0(1))N/2 while lg” , the second largest eigenvalue of A"
(in absolute vatue) is at most (4 +o(1))|e,[* = ( + o(1)) N1V 18" Now, it
is well known (see [FK81}) that if a graph I on N vertices has all but o(¥N)
vertices with degrees (1 +o(1))N/2, N — oo, then 4,(H), its second largest
eigenvalue, must satisfy A,{(H) > ¢N '2 for some ¢ > 0. Could our product
graphs G™" meet this bound? They could, but only if log|w,|/logn = 1/2,
ie, |w | =+/n, for the starting matrix A/ . However, since

n
trace(MTM) =n'= Emf,
i=l
then the only way |w,| can equal /z is for all @, = =+/n (as observed by L.
Lovasz [L89]). This implies that if we set U/ to be the (unitary) matrix formed
by the eigenvectors ¢, then

WrMHYMU) = U MTMU = nI,

ie., M "M = al , which just means that A is a Hadamard matrix. Since
Tr(M)=n=3%, o, and each w, = £/n, then » must be a perfect square.
The smallest nontrivial example of this is given by the matrix

11 l 1
1 1 -1 -1
1 -1 I -=I
I -1 -1 1

M, =

with corresponding 4-vertex graph
G, o

Of course, there are other ways to generate symmetric Hadamard matrices {with
diagonal 1) besides taking tensor products {sce [Wa88]). However, it is interest-
ing that the simple [-product can produce graphs with such good 4, behavior.

Of course in principle all of the asymptotic results in [CGW89] and [CG90(a)]
have explicit versions (i.e., not involving o(1)). We give Theorem 9.1 as an ex-
ample of just how such a translation can be made in this case. The reverse
direction, bounding dev¢ in terms of the maxima of the three quantities
le - n1/4|, [4, —n/2] and [4,|, we leave as an interesting exercise for the
reader. We mention one more such translation since it involves one of the
most innocuous sounding conditions for quasi-randomness. Here, C, denotes
a 4-cycle, i.e., the graph with vertices {a, b, ¢, d} and edges {a, b}, {b, ¢},
{¢,d},and {d, a}.
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Theorem 9.2. Let {G(n)} be a family of graphs where G(n) has n vertices and
e(G(n)) edges. Then
dev G(n) = o(1)
if and only if
e(G{n)) > (1 +o(l))n2/4 and #{C,CG(n)} <1 +o(l))n2/16, - o,

An explicit form of this result (which can be proved along the lines given in
the proof of Theorem 9.1) is

Theorem 9.3, Let G be any graph with n vertices and e¢(G) edges. Then,
(1) e(G) > (n*14)(1 - (dev G)'7*);
(ii) #{C, c G} < (n*/16)(1 + (dev G)"'*)* . also,
(il) e(G) > (L ~a)n’ and #{C, ¢ G} < (4 + a)’n* implies devG <
8a(33 ~ 26a).

It would be interesting to know what the sharpest results of this form are. (A
recent paper of Spencer and Tetali [ST(a)] also deals with quantitative aspects
of quasi-randomness for graphs.)

A curious singularity occurs for graphs in connection with Facts 4.7 and 4.8.
It follows from these results that for any 0 < a < 1, devG(n) = ol) if and
only if for all X ¢ V with |X| = (1 +o(1))an, G[X] has (1 + o(1))a’n’/4
edges. In particular, this implies that (X, X), defined to be the number of
edges in G that hit both X and X, satisfies
(9.7) e(X, X)=(1+o(1)a(l —a)nz/l.

A natural question is whether the converse holds, that is, if (9.7) holds for
alt X ¢ V with |X| = (1 + o(1))an then devG(n) = o(l) (ie, {G{n)) is
quasi-random).

Any such hopes, however, are shattered by the following obstruction. Let &
be a graph with vertex set AUB, with 4 and B disjoint and |4| = |B| = n/2.
The edge set of H will consist of the pairs {}) together with a random bipartite
graph between A and B (ie., each edge {a, b} is chosen independently with
probability 1/2). Then it is not hard to see that for abmost all H, every set
X € AUB of size n/2 spans n2/8+0(n) edges. However, a simple calculation
shows that dev H = 1 + o(1).

What is surprising, however, is that 1/2 is the only value of a for which the
converse fails to held. We outline a proof of this fact.

Theorem 9.4, Ler 0 < o < 1/2 and suppose G = G{n) = (V, 1) satisfies (9.7)
Jorall X cV with | X|=(l+o{l))an. Then devG = o(1), n — ooc.

Proof. To begin with, we define for integers r and ¢ with 3 < r < ¢/2 the
matrix M = M, , = (M(I,e)), where I ranges over all (1), the set of r-

element subsets of [f]:={1,2,..., 1}, e ranges over (1), and

MU, ) {1 iflenfi=1,
k] e = .
0 otherwise.
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We can think of forming a complete graph K, on [¢], and, for each complete
bipartite graph K(I, ) {on vertex sets I and T := [f}\]) and each edge e, let-
ting M(I, e) indicate which e are edges of K(I,I). A related, but somewhat
more complicated, matrix M™ = (M"(e, I)) is given by

—(r = )(r(t = 20) + 2(r — 1) iflent| =0,
Mie, )=1¢ (r-D(t—r—=1){t=2r) if lenI| =1,
== )= P =)=t —r—1)) if[en]| =2,

where, asin M, /€ (1) and e e (1f). In particular, M is () x (}) and M

is () x (7. ’

The two matrices M and M~ are related by

. £ 2
(9.8) MM =2t 2r) 2()!(! _)r il

where [ (4) is the identity matrix of size (;) . Equation (9.8) follows by direct
2
computation using the definitions of M and M". Thus, M" is a (scalar

multiple of a) left inverse of M , and it follows in particular that A has full

rank, i.e., rank equal to (}). We remark that for ¢ = 2r, the matrix M, =

M, ,, only has rank (2’2_ ') . This turns out to be the underlying reason for the

special behavior of the value o= 1/2,
Now, consider the property Q(“}(e) for e >0, a < 1/2, defined by:

0“Ney: If X ¢ V with |X — an| < en then |e(X,X) —
fa{l - a)n’| < gn? for n> ny(E) .

(9.9)

We want to apply Q[“}(a) to (¢ = G{n) in the following way. Let ¢ be large
(but fixed) and assume for ease of exposition that » = tm for some integer m.
Partition the vertex set V' of G into disjoint sets C,, C,, ..., C,, each of size
m , and define

[ ..
Pi;-:=;E€(CNCj)= I1<i<j<t,

where ¢(C;, C;) denotes the number of edges of G between C; and C,. We
can associate with this construction a weighted complete graph K, on [f], with
the edge e = {{, j} of K, receiving the weight p(e) = Py

We now fix r with 3 <r < ¢/2 sothat 8 :=r/t is close to o (we will be
more precise later). We first apply Q('G ](s) to (. This then implies that for
each I < (9), if we form X = |J,, C; then the number e(X, X) = c({) of
crossing edges, which is just

=3 e(C, Cl=m" 3 5,

i€l i€l
j€l jel

satisfies

(9.10) mMp=2¢,
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where p = [p(e)]ee ([51) and Z = [.c'(lr)]“E ([f]) are column vectors. By Q(m(s),
¥

we know
(9.11) ey = (SB(1— B) +e(I)n’,

where [e(7)] <&, T e (1),
New, we invert (9.10) by left-multiplying by M™ to get
(t—2)!
(r—2Mt—-r—
However, direct computation shows that

. 20t —2r)(r — 23! .
(9.13) M= =2 =r =2

(9.12) m M Mp = 2t — 2r)

2)!,9=Jl»!".§.

where 1 denotes a column vector of all 1’s. Thus, we obtain from (9.11), (9.12),
and (9.13)

(9.14) lp(e) = $B(1 — f)n’| < en’

for each e € ([5]) and # > ny(e). This means that all the “edge densities” p,,
between the various clusters C; and C; in G are very close to what is expected.

Of course, to apply Q(“) rather than Q(m , we choose a sufficiently close rational
approximation 8 = r/t t0 «. It then finally follows that any #/2 points of
& span %a(l — a)n2 + o(ni) edges, which in turn implies quasi-randomness,
ie., dev(G = o(l). This argument works for o # 1/2 and fails for o = 1/2
precisely because the matrix M, , has full rank (3) for 2<r<t-2, r#1t/2,
but only has rank (‘') when r=1/2 (which corresponds to a =1/2). 0O

A fuller discussion {and a completely different proof) of this result is given
in [CG{a)]. We do not know at present what the corresponding results are for
k > 2. The first case would be: Suppose G = G(n) = (V, 4} is a 3-graph so
that for any partition V = AUB U C with |4] = |B| = |C| = #/3, the number
e(A, B, C) of edges of G of the form {a,b,c} and a€ 4, be B, ceC
satisfies

e(A, B, C) = (1 +o(1))n'/54.

Does this imply dev(G) = o(1) as n — o0?

We conclude this section by pointing out that as soon as a family of graphs
G{n) fails to satisfy one of the quasi-random properties, then in fact all quasi-
random properties must fail for G(n). Relatively little is known quantitatively
about this phenomenon. In [CG90(b)], the following is proved.

Theorem 9.5. Let H{t) be an arbitrary fixed graph on t vertices, and suppose
that #{H(t) < G(n}} = O for a family of graphs G(n), n — . Then there

2
exists S C V(G(n)) with |S| = |n/2] such that |e(G[SD)—n’/16] > 27 F 11,2
Jor n > ng(t).
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It is not whether a substantially sharper bound applies {e.g., of the form

"“nz) and just how the “truth™ depends on the structure of the excluded

graph H{t).

10. TOURNAMENTS

In this section we show how some of the preceding ideas can be applied to
the most commonly occurring directed graphs, namely, tournaments (e.g., see
[M68]). We will not include all of the details {(which can be found in [CG{(c)] but
rather discuss the basic results and show how they connect to ordinary graphs.

A tournament T = (N, p;) consists of a set N = N(T), called the nodes
of T, together with an (antisymmetric) function u,: NS {L, —1}. Thus,
for x #y in N, ur(x,y) = —p (y, x). By convention, u,(x,x) =1 for
all x € N. The pairs (x, y) € ,u;l(—l) = A(T) are called the arcs of T,
As usual, T(n) will denote a tournament on # nodes. Define nd (v) fora
node v of T tobe {u € Ny (u, v)=~1}; similarly, define nd™(v):={u €
Nl|pp(v, u) = —1}. The indegree d” (v} and outdegree d*(v) of v are defined
by

d (v):=|nd ()], d7(v):=|nd"(v).
Forve N, XC N, welet
d (v, X):=|nd (v)0 X|, d*(w, X):=|nd"(v) O X]|.

Also, for X, X' ¢ N, define

"X, X)=3d@w, X)), d'X X)=)d@wX).
ueX vEX
An ordering of T = T(n) is a l-to-1 mapping z: N — [v] = {l, 2, ..., n}.

An arc (u, v) is said to be z-increasing if n(u) < n{v); otherwise we say that
(1, v) is m-decreasing. The undirected graph T: on N is formed by creating
for each z-increasing arc (¢, v) of T under the ordering 7z an (undirected)
edge {u, v} of T, .

For two nodes u, v € N, the sameness set S{u, v) is defined by

S(u, v) = {2 € Nlgg(u, 2) = (v, 2)},

and we let s{u, v) = [S{u, ¢)].

If T'= (N, A") is a given tournament {or more generally, a directed graph),
we let #{T' < T} denote the number of labelled occurrences of 7' as an
induced subtournament (or sub-digraph) of 7. In other words,

#{T < T):=|{l: N = N|TAN =T}

where = denotes the obvious tournament isomorphism. Finally, we define
a structure analogous to EPO’ in the case of graphs. We call a sequence
(vy, ¥, Uy, U,) an even 4-cycle (E4C) if

#T(UO’ Ul)ﬂr(ﬂl 1 U:).“T(ﬂz s Ug)ﬂr(”}: Uo) =1.
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We let #{E4C C T} denote the number of (labelled) E4C’s in T .
As in the case of graphs, we can define the deviation of T = T{n) by

1
(10.1)  devTi=— 3 pg(vy, 0)pp(v, v9)ur(vy, U3)ip(vy, V).

LTI T P
We next state a collection of properties of a family of tournaments that are
shared by almost all random tournaments 7, P (#n), n — oo. The essential
content of our next theorem asserts the equivalence of all of these properties.
We only state them in their (weaker) asymptotic forms although we will in-
dicate how they can be converted to “absolute” forms (i.e., with no occurrences
of o(1)).

Theorem 10.1. For any family of tournaments T = T(n), the following state-
nients are equivalent as n — oo

(i) dev T = 0(1};

(ii) For any fixed x, each tournament T'(s) on s nodes satisfies

#{T(5)<T=(1+ o(l))n‘z‘@ -
(iii) Each tournament T'(4) on 4 nodes satisfies
#{T'(4) < T} = (1 +o(1))n"/64:

(iv) #{E4C C T} = (1 + o(1))n*/2;
V) Ty pen IsC, v) — n/2] = o(n’);
Vi) Ty wenl Hw € Nluglu, w) = 1= pp(v, w)}| - n/4| = o(n’);
(viil) For all X ¢ N, T' = T[X] satisfies
Y dpv) — dp ()] = o(n?);
yEXN

In this case we say that T is almost balanced;
(viii) Every subtournament T' of T on |n/2| nodes is almost balanced,
(ix) For every partition of N = X UY with |X| = [n/2], |Y]| = [n/2], we
have
St (w, ¥)=d (v, V)| = o(n');
ueX
(x) Forall X,YC N,
S ldtw, Yy —d (v, Y)| = o(n’);
vEX

(xi) For every ordering m of T,
[{u, v € Nl(u, v) is m-increasing}| = (1 + o(l))nl/z;

(xii) For every ordering m of T, dev T, = o(l);
(xiii) For some ordering = of T, dev T: =o(l).
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The last two properties relate quasi-randomness of tournaments to quasi-
randomness of graphs. However, there are several differences that should be
noted.

On one hand, whereas devG = 1 whenever G is a complete bipartite graph,
dev T is always bounded strictly below 1. The exact value of p := sup,devT is
not known, although it can be shown that 1 < p < 1. (In §11, we characterize
all k-graphs H with devH =1.)

Further, it should be pointed out that the analogue to Theorem 9.4 does not
hold for tournaments. To explain what we mean by this, consider the following
set of properties for a family of tournaments 7(n) with node set N:

{a) For the “cyclic” tournament C, with node set {1, 2, 3} and arcs (1, 2),
(2,3), 3. 1),

#{Cy < T} 2 (1 +0(1))n’/8;

(b} T(n) is almost balanced, i.e.,
- 2
Z |d’;'t(n](u) - dT(n](U)[ =o(n’);
YEN
{¢} For every partition of N=XUY,

d'X,Y)-d (X, Y)=o(n);
(d) For every partition of N =X UY with |X| = [n/2}, |¥|=[nr/2],
dY(X,Y)—d (X, Y)=o(n}).

In [CG(c)] it is shown that these four properties are equivalent. They are
also strictly weaker than having dev T = o{1) as the following example shows.

Example. Let 7° = 7"(1) have node set X UY U Z with |[X| =[Y]|=|Z| =
r/3. Each of the subtournaments T°[X], T"[Y], T"[Z] will be random. The
remaining arcs of 7" are all the pairs X x ¥, ¥ x Z,Z x X. It is easily
checked that (almost always) 7~ satisfies (a) (and therefore (b), (¢), and (d))
but not any of the conditions in Theorem 10.1, since dev 7" — 2/9 as n — .
In particular, if we arbitrarily fix o« € (0, 1) then for any X C N with [X| =
(I+o0(1))an , we see by (¢) thatin T there are (l+o(1))a(l—a)n2/2 arcs from
X to Y. Thus, if we choose an ordering © of 7™ so thatall (x,y), x € X,
y € ¥ are m-increasing, then in the graph T; , there are (1+0(1})a(l —a)n2/2
edges between X and Y.

As remarked earlier, all the tournament properties we have described can be
formulated in absolute, as opposed to asymptotic, terms. For example, it can
be shown (see [CG(c)} that:

V') Tyoven s, v) — n/2] < n’(dev 1),

(vii') For all X ¢ N, T' = T[X] satisfies

Soldf () — dp (V)] < n'(dev 1)V,

ek
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(xi') For any ordering 7 of T,
| [{(#, v) is m-increasing}( — [{(«, v) is = -decreasing}|| < 5\/§n2(dev T)”g;

xii') For every ordering # of T, if G = T, the increasing arc graph of 7
Fid
under m, then

10—?5(dev T)“ < dev G < 404/ 300V 5(dev T) Y16

Of course, these bounds are rather crude and are only intended to illustrate
the principle. It would be interesting to obtain sharp bounds for these various
expressions (particularly (xii')).

Properties (xii} and (xiii), linking graphs and tournaments, give us a potent
new way for constructing large classes of graphs with small deviation from a
single one with this property. Namely, suppose we start with a graph G =
(V, u;) where we assume V =[n]={1,2,..., n}. Wecan associate to G a
tournament T =T, = (V, u,) by taking

wr(i, j) = sign(y — Hug({{, j}), L# .
Thus, if id: [#] — [#] denotes the identity map then G is just Tl; Now, let
7 be an arbitrary ordering of T, and let G := T; . Applying (xii'), we obtain

(10.2) dev G, < 2000(dev G)'/** .

Thus, if devG = o(1) then devG, = o(1) as n — oo. Of course, to go from
G to G, directly (avoiding intermediate tournaments), we simply permute the
(ordered) vertex set with 7, and interchange edges with nonedges for all pairs
inverted by z. To the best of our knowledge, this transformation on graphs has
not been treated before in the literature, so its properties are yet to be explored.

The preceding analysis can be carried out for ordered k-graph analogues
of tournaments T = (¥, u"). Here, u*: VX — {1, -1} so that for any
permutation n: V —

WAy, %) = (CD T ),

where VX denotes {(x;, %) € ve. X, are distinct}. We hope to return to
this in a future paper.

11. k-GRAPHS WITH DEVIATION |

In this section we characterize those k-graphs H = HE = (V, 1y) that
have dev H = 1. These are important since it is precisely the k-graphs G with
dev G < | for which G™ becomes quasi-random as ¢ — oo.

To begin our discussion we need to introduce the coboundary operators st ,
i >0, mapping k-graphs H = (V, ,) to (k+i)-graphs J(’)(H) =(V, %"J(H))’
defined by taking, for X € ( v ),

ke+i
re(y)
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Thus, X is an edge of §“(H) if and only if ¥ contains an odd number of
edges of H as subsets. In particular, § (0)(H ) is just H itself. (A more general
version of this definition occurs in Hu [H49]). We next establish several basic
properties of 6%, For integers a, b > 0, let us say that @ and & are disjoint
base 2, if the base 2 expansions of ¢ and b have no common 1’s. That is,
if a=3, a2, b= Yo b2, a,, b, €{0,1}, then a and b are disjoint
base 2 if and only if ab, =0 for all i.
Also, we let H (k) =(V, u,) denote the trivial k-graph on V, i.e, with

174
a(X)=1 forall X € (k)

Fact 11.1. For a, b > 0,

SOy if a and b are disjoint base 2,
H, otherwise .

(11.2) 89 = {
Proof. For X € (k+a+b)

ﬂJ[n](a(bJ(H])(X) = H )U'J{b](H (Y)

Ye (k+b)
= I Il wa@=1 I m@
re(iis) ze(i) ze (i) fiToe
ath Hyernn(Z) if (#4F) is odd,
200 2 { 5ty a
Z\:EI-E[X) #alZ) if (%*?) is even.
k

However, (“:b) is odd if and only if a and b are disjoint base 2 (e.g., see
[GKP8&%]) and the proof is complete. 0O

As an immediate consequence we have 8¢ .54 = 0, the trivial map (sending
7% 10 HYY far every i >0,

Fact 11.2. For k-graphs H and H' on V,
(11.3) s HvH) = Y (mHvsY(H.
Proof. For X € (,},)),

Hstogro gy (X) = H b (Y) = H Heg(¥)ptyy (Y)

ve(¥) ve(y)
]_—[ P:H(Y) H :{‘LH’(Y) = ﬂafll(H)(X)ﬂa(ll(H’)(X) .
ve(}) re(y)

Thus, . _ .
sYavHy = 6" mws (1. o
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We will use the convention that for any set V', there are just two distinct

O-graphs HY = (V,u). Oneis Hg}) for which ¢ = 1; the other is the

“complement” ﬁ(g} for which g=-1.
The main result of this section is the following.

Theorem 11.1. For a k-graph H® = (V, u),

(11.4) devH™ =1
if and only if
(1L.5) HY =% sO %)

Jor some choice of (k ~ i)-graphs H(k“” =V,u_), 1<i<k.
Proof. <: Assume G = G™ and fix i > . By Definition (3:1),

(11.6) deva(G) = n%znnd(;](o}(ﬂ(e)).
ﬂ g

We must show that each of the summands is 1. We use the notation & € ()
for x € V™" to indicate that 7 is a subsequence of % of length m . Then

Hﬂ‘af”(o)(ﬂ ay=1 [l a:@

" o ("D)

[ a@® =1

e ()

since for each @ ¢ (ﬂff)) , there are | unselected coordinates, each of which has
2 (ordered) choices. The proof of (11.4) now follows by repeated application
of (4.14).

=: Suppose H* = H®n) = (V, 4) bas edge set E = E(H¥) and
satisfies dev H* = 1. We proceed by induction on k and then on n. For
k =1 the assertion is immediate since in this case we must have either E=F
or E = @. The first case is just HY = a(”(ﬁf;”); the second is just H! =
5“}(H§])) . Assume for some k > 1 that the assertion holds for all values less
than k. Now, if n = k the only possibility is that H* has no edges, i.e.,
4= 1. In this case, H* = V(H*"V) where H*™" isa (k—1)-graph on ¥
having no edges. So, assume the implication holds for all values less than some
n > k. We will show that it also holds for #.

Select an arbitrary fixed vertex x € ¥ and form G =H (k]vﬁm(h’(k}(x)) ,
where H “‘}(x) is the neighborhood graph of H %) at x. It is easy to check
that x is isolated in G* , 1.e., no edge of G*® contains x . Furthermore, by
(4.14)

devG® = dev(H® w6V H® () = 1
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since dev H® =1 (by hypothesis) and dev J(”(H(k)(x)) =1 by the first part
of Theorem 11.1.

Now, define V™ = V\{x} and G~ := GX[V~"]. Thus, X ¢ (4) is an
edge of G if and only if X is an edge of G~ . Consequently, devG~ = 1.
However, G is a k-graph on n — | vertices so by induction we have

6™ =g 50"
for some choice of (k — i)-graphs ‘G(k_” on V™, 1<i<k. To complete the
proof, define (k — i)-graphs H* " and (k — i — 1}-graphs Gﬁf_‘_” on V by
taking

E(H"") = E(G"7Y,
EGHF = xu{xyx e 6%
for 1 <i < k. The last (straightforward} computation to check is that
H(k) _ vffZI((5(1')(H(k—!'))va(i-l)(Gik—!'—U))
which then by Fact 11.2 yields the desired representation. 0O

We have normally assumed for k-graphs H = (V, u) that g = 1 if two
arguments are equal. In the case of graphs, this is just the assumption that
H has no loops. With this requirement we can assume that the final factor in
(11.5) is trivial, ie., 6®(HY)). This k-graph is just HS® (having no edges)
and consequently does not affect the product. Thus, for graphs G we have:

dev G =1 & G is a complete bipartite graph Kr, .

Note that if either r or s is 0, then G just consists of isolated points.
We remark that this section contains the seeds from which various cohomo-
logical aspects of k-graphs can be developed. We have begun this in [CG(b)].

12. SOME EXPLICIT CONSTRUCTIONS

In this section we give a few of the simplest constructions for k-graphs hav-
ing small deviation or /-deviation. By the earlier results, these k-graphs conse-
quently behave like random k-graphs in many respects, and can often be used
in place of random k-graphs. Unlike random k-graphs, however, their precise
structure is determined, and can be employed in other ways. A typical example
of this phenomenon is the case of so-called “expander” graphs in communi-
cation networks. Random graphs have excellent expanding properties but are
difficult to use when precise algorithms for routing (for example) are required.
To begin with, suppose H,, | < i < m, is a family of k-graphs. By (4.8) we
have for H* :=[_|" H,,

iy
devH™ =[] devH,.

i=1
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Thus, if each dev H, is bounded away from 1, then dev H =o0(l) as m - 0.
In particular, if we take all H, equal to a fixed k-graph H with devH =c < 1
then
dev H™" = ™ ,

from which many quantitative quasi-random properties easily follow.

A more arithmetic family of k-graphs with small deviation is given by the fol-
lowing construction. Let p denote a fixed (arbitrary) prime. Form the “Paley”
k-graph ng] =(V,, 1,) as follows:

=GF (p) the finite field with p elements.

For X e ( °, 1y (X) = ¢ cx x(mad p)) where ¢: GF(p) —
{1, -1} denotes the nonprincipal quadratic character on GF{p).

Thus, {v,,..., v,} is an edge of P(k}(p) iff v, +---+wv, is a quadratic
nonresidue in GF(p).
Fact 12.1.
(12.1) devP¥ =00p7"),  p- .
Proof. We will use the following well-known estimate of Burgess [B62] (also see
Weil [Wed8]). For distinct a, ..., a, € GF(p},
(12.2) Y dlx+a)-dlx+a) <(s— 1)V,

XeGF(p)

Note that (12.1) holds for nondistinct «; as well, provided the product is not
identically one. Then

2k tk) _
P deVPp = Z H #p(xl(sl): :xk(gk))
X, (0}, x,(1) £€{0,1}
i< 1<isk

= Z H Px (e)) + -+ x,. (&)

x,(0}, x,(1} £,€{0, 1}
1<;4k l‘(J‘{k

2
> (zn ¢(x+x2(82)+“‘+xk(3k)))

x @, x(1) " x
2<f<k 2<j<k
k— 1
< E (2 E p by (12.2)
X000, x,(1) x{O] X, (1)
1<i<hk 1<i<hk

where Y_ denotes the sum over all choices of the x,(¢,) for which some value
v € GF(p) occurs as a sum x,{¢,) +--- + x,(g,) in an odd number of ways
(and 3" represents the complementary set). Consequently,

p¥devP¥ = 0™ "), p - oo

This implies (12.1) and Fact 12.1 is proved. 0O
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We point out that essentially the same arguments (from [C90]; see also
[GS71]) show that for 1 <! <k, the k-graph G, =d“~I(P{") satisfies
-(7)
dev, G, = o(l), dev, G, >(l+o0(1))2 M/, p— 0.
It would be interesting to know if in fact we could have
dev,Gy=0(), dev,, G=1+0(l), n-w

for a suitable family of k-graphs G} on x vertices.
We will describe one more class of quasi-random families of k-graphs, the
so-called “even intersection™ k-graphs [ [k)(n). The vertex set of I{k](n) is

2[”], the collection of all subsets of {1,2,..., 1}, A k-set {X,..., X, },
X, € 2" is an edge of 1*(n) if and only if
K

N

=1

=0 (mod2).

Let u denote the {multiplicative) edge function for [ ”‘)(n).

Fact 12.2.
devl(k)(n)zo(l), n— .
Proof. Define N :=2". Since

K 1 _
dev I¢ J(n)zW 3 I axie)..... X ()
X,(0),X,(1) 5,€{0,1}
I<igk 1<k

2
-ow ¥ (XTI A e Kete)
X, )

0). X, (1) * X
2<igk 2<i<k

then it suffices to show that the number of X C [r] for which the sum

ST XN Xy(e) NN X (e,
Eyyenafy
iseven is (1+0(1}}N/2 for almost all choices of X,(0), X, (1) C[n], 2<i<k.
We will show that this is in fact the case whenever all the X (0) and X (1)
are distinct. First note that the parity of S is unchanged if we make the re-
placements:

]

S

X,(0) — X,(0) := X (O\X (1),
X(1) = X;(1) := X(I\X,(0)

since each element x € X (0) N X (1) affects an even number of terms of §.
By construction, X;(0) and X (1) are disjoint.
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Thus, we have reduced our problem to counting the number of X < [n] for
which the sum
§= N [XnXy(e) NN X(e,)]

By yer 8y

is even. Let
(12.3) ${&y, ... 8y) 1= 5(8) 1= [X;(ez)ﬁ---ﬂX;c(sk)L

Since all 2*~* expressions on the right-hand side of (12.3) are disjoint, then
the number of X such that .S is even is just

! S(E) H—s§
a24) ()
gy £
where the sum Y is taken over all i(Z) such that 2 HE) =0 (mod2),
and 2 :=(&y,...,8,), § = ) . s(). The interpretation of (12.4) is simply
that S* counts the number of ways of choosing X which has i(2) elements
X,(&,) 0 -0 X, (g,). Of course, S is not affected if X is changed by any

subset of [#]\ U, , X;(¢,); this accounts for the factor 27" in (12.4).
However, observe that

_yid (&) A= _
(12.5) %( 1) 1;[(:(5))2 0

since this is just the result of expanding the expression
H(x _ 1)5(5}
£

and substituting x = 1. Thus, the expression in (12.5) summed over (&) with
2. i(€) even is just one-half of the total sum

SIG)r -2

2 i
ie., 2"7', which is N/2, as required. Since almost all choices of the X,(¢))
result in distinct sets then Fact 12.2 is proved. O

We remark that the same techniques can be applied to a variety of other
families of subsets formed by modular restrictions on intersections, e.g., such
as the k-graph having vertex set (¥") and edges {X,..., X,}, X, € (1),
with [X,;N---NX,|=0 (mod2).

13. CONCLUDING REMARKS

In a series of papers, Thomason [T87(a), T87(b), T89] and Haviland-
Thomson [H89, HT89, HT(a)] have investigated a concept called “{p, a)-
jumbledness,” which is related to our work on quasi-randomness. Restricting
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the discussion to the case p = t/2 {which is our primary focus), a k-graph H
with vertex set ¥, is said to be ( % , a)-jumbled provided

eceiren - ()

for all X ¢ V. Here, o is ordinarily some function of # = |V|. It turns
out that for k = 2, the condition that o = o{n) is precisely a quasi-rtandom
property of graphs (and so, is equivalent to devH = o(l), # — o). However,
for k > 2, this property is considerably weaker than being quasi-random. More
precisely, it is equivalent to dev, H = o(1) (see §8 and [C90]), whereas quasi-
randomness of a k-graph is equivalent to dev, H = o(1). We remark that
almost all random 2-graphs G, ,2 Onavertex set V have been shown by Spencer

(13.1) < alX|

[S89] to have the following property: For H =48"(G,,,), the 1-coboundary of
Gu: (see §11), we have

< 200|x]*

ecttxn - (')

for all X ¢ V. However, devH = 1, and, in particular H contains no
induced 4-vertex subgraph with an odd number of edges. Thus, while (p, a)-
jumbledness is an effective concept for studying random behavior in graphs,
it appears to be too weak to carry out the analogous investigations for general
k-graphs.

In the same spirit as (13.1), it is not hard to prove the following bound for
any k-graph H on an n-vertex set V: Forany X C V with x := |X|, we
have

4k

(13.2) Ix© — 2kle(H X)) < ((%)H devH) <~
No doubt, the exponent 27% here can be improved, as can many of the other
constants in our various estimates. We have no idea what the truth should be.

It would be most interesting to know other quasi-random properties of k-
graphs. In the case of graphs, Simonovits and Sés [SS91) have very recently
proved the following result. We first need several definitions. Let < be a graph
with vertex set V. Fordisjointsets X, Y C V  let d(X, ¥) :=e(X, ¥)/| X||¥|
where e(X, ¥) denotes the number of edges with endpoints in both X and
Y. A pair (X, Y) is called e-regular if for every X' ¢ X, ¥' ¢ ¥ satisfying
[X'| > ¢|X|, |¥'| > £|Y]|, we have

d(X', YY—d(X, V)| <e.
A fundamental result of Szemerédi [Sz78] is his

Regularity Lemma. For every e > 0 and m, there exists ke, m) such that for
every G(n), the vertex set V(n) of G{(n) can be partitioned into k + 1 sets
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Up, Ups oo Uy for some k with m <k < k(g, m) sothat |Uy| < en, all |U|
are equal for i >0, and for all except &(X) pairs (i, j), (U,, U) is e-regular.

[t asserts that in a certain sense, any graph can be approximated by a random
k-partite graph. In [SS91] it is shown that the following property is a quasi-
random property.

(Fg): For every ¢ > 0 and m, there exist two integers k{e, m) and
nq(e, m) such that for n > n,, G(n) has a “Szemerédi” partition for the
parameters ¢ and m into & almost equal classes U, ..., U, with m < k <
k(e, m) sothat (U, U)) is eregular, and |d(U,, U;) - 1| < & holds for all
except ¢(X) pairs (i, j), 1<i,j<k.

In fact, when a family {G(n)} is quasi-random then it is true [SS91] that Sze-
merédi partitions always exist having no exceptional pairs. The corresponding
result for k-graphs is given in [C91].

As mentioned at the beginning, most of the preceding analysis can be carried
out assuming that the random k-graph properties we are trying to classify arise
from random k-graphs in which k-sets are selected with a fixed probability
p € (0, 1), rather than probability 1/2. The corresponding statements and
arguments are essentially the same although notationally slightly more cumber-
some. However, if we allow p = p(n) to depend on #, the size of the k-graph,
then the situation becomes much more complex, especially as p(n) becomes
small, e.g., p(n) = O(nm) . We certainly do not yet have a full understanding
of quasi-randomness in this range.

Another direction that merits attention is what we called “forcing families™
(for graphs) in [CGW89]. Let us call a family # of k-graphs forcing if when-
ever #{F < G(n)} = (1 +0(1))n"2"° forall F = F(v,e) € F (ie, F has v
vertices and e edges) then {G(n)} is quasi-trandom. For example, in the case
of graphs, it is shown in [CGW89] that the following families are forcing (where
K, denotes the complete graph on m vertices, C,, denotes the cycle on m
vertices and K, , denotes the complete bipartite graph on r and s vertices):

@) (K. C};

(i) {K,, C,,}, any fixed ¢,

(i) {G,,, Cy}, r#5;

(iv) {K,, K, ,}, t>2

(V) Ky Ky )5, 122, s#¢.

Can forcing families of graphs be characterized? What is the situation for k-
graphs?

More generally, one can attempt the same type of classification of random
behavior for a wide variety of objects, for example, ordered k-graphs, integer
sequences, matrices, partially ordered sets, permutations, groups, and vector
spaces, to name a few, as well as for functions defined on these and other
structures. Preliminary work on some of these topics has recently been initiated
(e.8., see [CG(a), CG0(b), CG{c), SS(a), ST(a)]) but clearly a vast expanse of
fertile ground still awaits exploration.
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