Tolerating Faults in Synchronization Networks

Sandeep N. Bhatt* Fan R. K. Chung
F. Thomson Leightont Arnold L. Rosenberg®

Abstract. A synchronization network (SN) consists of processing ele-
ments (PEs) at the leaves of a complete binary tree, with routing switches
at interior nodes. We study the problem of rendering an SN tolerant to
PE failures, by adding queues to its edges. We obtain the following re-
sults. In the worst-case, an N-PE SN whose edges have queues of capacity
O(loglog N) can tolerate the failure of a positive fraction of its PEs, no
matter how the failed PEs are distributed; furthermore, this capacity re-
quirement cannot be lowered by more than a small constant factor. In the
ezpected-case, with probability exceeding 1 — N™*1) an N-PE SN whose
edges have queues of capacity O(log loglog N) can tolerate the failure of a
positive fraction of its PEs; we do not know if this capacity requirement
can be lowered. We also present an algorithm which, given an SN with
queues of capacity C, salvages a maximum number of fault-free PEs; the
running time is a low-degree polynomial in N even when C is as large as
log(N/log N).

1 Introduction

A synchronization network (SN) consists of processing elements (PEs) that com-
municate through a complete binary tree interconnection network. The leaves
of the tree hold the PEs of the SN (whence N is typically a power of 2); the
nonleaf nodes route messages and perform simple combining, broadcast, and
accumulation. An SN can be a useful auziliary network when adjoined to a pro-
cessor network having a richer topology (say, a mesh or hypercube). A variety
of computations [4] yield to the simple, fast combining within trees; these are
exploited in [3] and [10], where SNs are adjoined to data-processing machines
for speedy searching, selection, and combining; most recently, in [5] and [6], SNs
have been adjoined to MIMD hypercubes.

*Dept. Computer Science, Yale University, New Haven, CT 06520 USA.

tBell Communications Research, 435 South St., Morristown, NJ 07960 USA.

{Dept. of Mathematics and Lab. for Computer Science, MIT, Cambridge, MA 02139 USA.
$Dept. of Computer Science, University of Massachusetts, Amherst, MA 01003 USA.

This study is motivated by the vulnerability of aggressive VLSI designs to fab-
rication defects which almost certainly disable some fraction of the PEs. (Wires
and communication nodes, being considerably smaller than PEs, are commen-
surately less vulnerable to both defects and faults [11].) This has led researchers
to seek strategies for retaining a large proportion of the computational power of
a processor network even after it has been crippled by PE failures; studies have
focused on the hypercube [7], the de Bruijn graph and the butterfly [2], the mesh
[12], [9], and the tree [1]. This paper considers the problem of rendering an SN
tolerant to PE failures. Although this problem is nominally subsumed by the
study of fault tolerance in trees [1], the special structure and mode of use of SNs
opens avenues to fault tolerance that are significantly — in fact, exponentially —
more efficient than analogous techniques for general tree machines. We achieve
the desired tolerance to faults by adding small-capacity queues to the edges of
the SN. The quality of our solution is gauged in terms of the capacities of the
queues.

Our study considers three possible demands on the design of a fault-tolerant
N-PE SN N, delimited by the following scenarios. In the worst-case scenario
(Section 2), we insist that the fault-tolerant version of A’ be able to survive the
failure of a positive fraction « of its PEs, no matter how the failures are dis-
tributed. We show that if the edges of A are equipped with queues of capacity!
log® N + ¢(a), where ¢(a) is a constant depending only on the fraction e, then
N can tolerate the failure of any aN of its PEs (Theorem 2.1). Moreover, we
show that, this queue-capacity is necessary, to within a small constant factor;
i.e., there is a set of « N PEs whose failure render an N-PE SN inoperative unless
the edge-queues have capacity Q(log(® N) (Theorem 2.2).

In the ezpected-case scenario (Section 3), we insist that a set of up to aN
PE failures be tolerated with very high probability, where the probability is de-
termined by considering the relative frequencies of various failure patterns —
assuming processors fail independently with fixed probability. We show that,
with probability exceeding 1 — N=%1), the SN, equipped with queues of capac-
ity O(Iog(3) N), can tolerate the failure of a positive fraction a < .7 of its PEs
(Theorem 3.1). It remains an inviting challenge to determine whether or not a
smaller queue-capacity suffices.

In the salvaging scenario (Section 4), we are given a version of the SN already
equipped with queues of some given capacity C. Our task is to determine how to
configure N for a given pattern of failed PEs, in a way that salvages a maximum
number of fault-free PEs. The salvage algorithm we present works in an amount
of time that grows with the queue-capacity C, but is a low-degree polynomial in
N even when C is as large as log(N/log N) (Theorem 4.1).

Our results derive from a new notion of graph embedding which is presented
in Subsection 1.1. Our lower bounds are among the first based solely on the
congestion of embeddings.

1 All logarithms are to the base 2. The iterated logarithm log(*) is defined by:
log VN = log N; loglk+N = log logt*) N.

Before turning to the formal development, it is worth asking whether or not
the added queues degrade computation on the SN enough to negate the benefits
of the SN. We believe that the answer is generally no; we justify this belief
in terms of one specific application. In [5], [6], SNs are used as a mechanism
for synchronizing a MIMD array of microprocessors. It is claimed there that
an appropriately designed SN will accumulate and distribute the messages that
lead to synchronization in time roughly commensurate with a single instruction
cycle of the underlying processor network. In contrast, synchronization using
network interconnections takes time proportional to the diameter of the network,
with possibly nontrivial delay at each PE. Hence, even if our queues slow the
operation of an SN down from a single instruction cycle-time to roughly log{® N
such cycle-times, the network with the adjoined SN will still synchronize much
faster than will the underlying network by itself. Moreover, one could probably
design a way to bypass the queues unless they are needed.

1.1 The Formal Setting

Terminology. We label each node of the height-n complete binary tree T,, with
a distinct binary word of length at most n, so that each node z is adjacent to its
successors £0 and z1. For each £ € {0,1,...,n}, the 2¢ words/nodes of length
£ form level n — £ of T,,. The unique node at level n is the root of 7,,, and
the 2" nodes at level 0 are the leaves of T,,. We say that node z is a (proper)
ancestor of node y, or, equivalently, that node y is a (proper) descendant of
node z, iff the string = is a (proper) prefix of the string y. For each node z of
Ty, the subtree of T, rooted at z is the induced subgraph of 7, on the nodes
{zy : 0 < |yl <n—|z|}. Finally, a forest is a nonempty set of complete binary
trees.

Red-Green Graph Embeddings. Let us be given a complete binary tree
M, (the host tree) whose 2" leaves have each been colored either red or green.
Say that the fraction 0 < G < 1 leaves have been colored green. The tree
T, represents the ideal SN we want to implement. Its green leaves represent
functional PEs, and its red leaves represent faulty PEs. Let us further be given
a complete binary tree Gy (the guest tree), where k < log G2". T} represents
the actual SN we want to “salvage” from the fault-laden SN 7 ,.

A red-green embedding (RG-embedding, for short) {(a,r) of G; in H,, has two
components: (i) an assignment a of the nodes of Gy to nodes of H,, that maps
each leaf of Gi to a unique green leaf of H,, and such that each ancestor z of
a node y in G; is mapped to an ancestor a(z) of node a(y) in H,2, and (ii)
a routing function r that assigns to each edge (z,y) of G a path in M, that
connects nodes a(z) and a(y).

2We term this latter property of RG-embeddings progressiveness.As in the ideal SN, mes-
sages follow an up-then-down path in a “progressively” salvaged SN.

By extension, an RG-embedding of a forest of trees in H, is a set of RG-
embeddings of the trees in the forest, whose leaf assignments are node disjoint.
This node disjointness guarantees that if any subset of the trees in the forest are
grown and combined into a single tree, an RG-embedding of that single tree can
use the leaf assignments of the forest.

Costs of an Embedding. An RG-embedding (a,r) of G} in H,, has two costs.
The first is the harvest of the embedding, which equals the ratio 281 /G of
the number of leaves of G; to the number of green leaves of H,,. The second
is congestion, which equals the maximum, over all edges (z,y) of H,, of the
number of routing paths that cross edge (z, y)3.

Within this formal setting, the specific problems we study are stated below.

CONGESTION-HARVEST TRADEOFF PROBLEMS. Determine, as
a function of the size parameter n of H,,, the fraction 0 < G < 1 of green
leaves, and the desired harvest fraction® 0 < H < 1/2, the smallest congestion
C = C(n,G, H) for which there is a congestion-C RG-embedding of Gllog HG2m]
i H,:

(a) for the worst-case pattern of red and green leaves in Hns

(b) in the expected case, i.e., with probability > 1 — 2-%") | when leaves of H,,
are colored red and green independently with probability p.

HARVEST-MAXIMIZATION PROBLEM. Given an integer C <n, find
the largest k for which there is an RG-embedding of Gy in H, with cangestion
<C.

2 Optimizing Worst-Case Congestion

This section derives upper and lower bounds on the minimum congestion Cpin
that we must suffer in order to harvest a fraction H of the green leaves in the
worst case. As we will see, the bounds are tight to within constant factors.

2.1 An Upper Bound

We formulate and analyze a “greedy” RG-embedding algorithm, in order to
obtain an upper bound on the quantity Cp;,. The algorithm proceeds level-by-
level, bottom-up from level 0 to level n in H,,. As each node z is encountered, the
algorithm assigns node z a label A(z) which is the length-(n+1) binary represen-
tation of a nonnegative integer. For such a label A(z) = An(Z)An-1(2) - - Ao(2),
where

3The dilation measure [8] is not relevant here because of the assumed speed of the ideal SN
relative to the speed of each individual PE [5].

*We cannot aim at harvests exceeding 1/2, because the number of harvested leaves must
be a power of 2, but G could be such that the largest power of 2 not exceeding G2™ may be
close to G271,

o I(A(2)) = 3iLg Mi(2)2, i.e., the integer value of the binary string A(z);
* S(A(z)) = {i] Mi(z) # 0}, i.e., the set of nonzero bit-positions in label A(z);

e W(A(z)) = |S(A(z))], i.e., the weight, or, number of nonzero bit-positions
in label A(z).

The intended interpretation of the labels is that if node z of H,, receives label
A(z), then there is an RG-embedding of the forest {Tx : k € S(A(z))} in
the subtree of H,, rooted at z. This interpretation and the progressiveness of
RG-embeddings imply that A¢(z) = 0 for all k > level(z).

The Labelling/Embedding Procedure. Let C be the maximum congestion
allowed in any RG-embedding. We exploit the fact that all labels have length
n + 1 by specifying each label A(z) implicitly, via the integer I(A(z)).

Algorithm Worst-Case:

Step 0. {Label nodes on level 0 of H,,}
Assign each leaf z a label I(A(z)) = { 1 ifz is green

0 ifzisred
Step £ > 0. {Label nodes on level £ of H,,}

Substep £.a {Assign the string label}
Assign each level-£ node z a label I(A(z)) = I(A(z0)) + I(A(x1))

Substep £.b {Combine small embedded trees}
if there was a chain of carries from bit-positions k—i, k—i+1,...k—1
of A(z0) and A(z1) into bit-position k of A(z)
then embed the roots of copies of T¢_;41,..., T in node z, and
route edges from those roots to the roots of two copies each of Teiy..., T2
that are embedded in proper descendants of z

Substep f.c {Honor the congestion bound C}
for k = 0 to [log I(A(z)) — C]
if W(A(z)) > C then Mg (z) « 0

Theorem 2.1 Let the 2" leaves of H,, be colored red and green, in any way, with
G2 green leaves for some 0 < G < 1. For any rational 0 < H < 1/2, Algorithm
Worst-Case finds an RG-embedding ongngmz..J in T, with congestion C <
logn —log((1 — H)G) + 1.

Proof. It is clear that, for each node z of H,, Algorithm Worst-Case RG-
embeds G| ¢ I(\(z))] 1n the subtree of H, rooted at node z; hence, overall, the
Algorithm RG-embeds the tree Gllog I(A(r))] in Hp, where r is the root of H,,.

We need only verify that the salvaged tree is big enough when C is as big as the
bound in the statement of the Theorem.

Note first that Algorithm Worst-Case never requires us to abandon any
green leaves as we work up from level 0 through level C — 1 of H,,, because
the high-order bit of I(A(z)) can be no greater than the level of z in H,. To
see what happens above this level, focus on a specific node z at level ¢ >C
of M. The congestion bound may require us, in Substep £.c of the Algorithm,
to abandon one bit in each position k < £~ C of A(z). This is equivalent to
abandoning one green-leafed copy of each tree G; with k < £ — C; however, at
most one tree of each size is abandoned, because any two trees of the same size
would have been coalesced (by embedding a new root) at this step, if not earlier.
It follows that, when the Algorithm processes node z, it abandons no more than
Ef;g 2f < 2t-C+1 green leaves; hence, at the entire level ¢, strictly fewer than
26=CH1gn=t = 2n=C+! previously unabandoned green leaves are abandoned.
Thus, the entire salvage procedure abandons fewer than (n + 1 — C)27-C+1
green leaves due to congestion. Since there are G2 green leaves in all, we see
that more than (G — (n+1— C)2!~¢)2" green leaves are not abandoned due to
congestion. Now, at the end of the Algorithm, we may have to abandon almost
half of these unabandoned green leaves — because the green leaves we finally use
in the RG-embedding must be a power of 2 in number. The Algorithm will have
succeeded in salvaging the desired fraction of green leaves as long as the number
of salvaged green leaves, which is no fewer than 2le8(G—(n+1-C)2'=)2"] ¢ 54
least as large 2U°8 #G2"] the number of green leaves we want to salvage.

Simple estimates show that, if we allow our RG-embedding to have congestion
C =logn — log((1 — H)G) + 1, then we shall have accomplished this task. O

2.2 A Lower Bound

Theorem 2.2 Let G and H be rationals with 0 < G < 1 and 0 < H < 1/2.
For each n, there exists a coloring of the leaves of H, with the colors red and
green, with the fraction G2™ leaves colored green, such that every RG-embedding
of some G, in My, where 2™ > HG2", has congestion C > (const)logn.

Proof. Let us be given an algorithm, call it Algorithm A that solves our
Congestion-Harvest Tradeoff Problem in the worst-case scenario, while incurring
minimal congestion. By Section 2.1, we know that the congestion incurred by
Algorithm A for any coloring of the leaves of H,,, in particular for the advertised
malicious coloring, is C < (const)logn.

The coloring of H,, that we claim defies efficient salvage is described as follows
(L is a parameter we fix later, and n is a multiple of L): for each level £ =
0,L,2L,...,n, proceed left to right along the level-£ nodes of 7, coloring red
all of the leaves in the subtree rooted at every 2L-th node encountered. All other
leaves are colored red.

This coloring can be viewed as turning H,, into a complete (2" — 1)-ary tree,
all of whose leaves are colored green, providing that we look only at levels whose
level-numbers are divisible by L. Therefore, our RG-embedding problem now
assumes some of the flavor of the problem of efficiently embedding a complete
binary tree into a complete (2 — 1)-ary tree that is only slightly larger (by
roughly the factor 1/H). The results in [8] about a similar problem lead us to
expect the large congestion that we now show must occur.

Our coloring of H,, has left the tree with (2F — 1)?/L green leaves. The
worst-case scenario of our Congestion-Harvest Tradeoff Problem assumes that
the number of green leaves in H,, is a positive fraction G > 0 of the total number
of leaves, namely, 2". Elementary estimates show that this assumption implies
that L > logn — log® n — ¢(G) for some constant ¢(G) > 0 depending only on
G. In analyzing our putative Algorithm A, we may, therefore, assume that we
are dealing with RG-embeddings whose congestions satisfy C < 1L (or else, we
have nothing to prove).?

For each £ € {0,1,...,n/L}, let M(£) denote the number of leaves in the
largest green-leafed tree that can be RG-embedded at a level-£L node of H,,
according to Algorithm A. Even if there were no bound on congestion, the

similarity of the colored version of H, and a complete (2% — 1)-ary tree would
guarantee that M(£+ 1) < (2L — 1)M(¢) for 0 < £ < n/L.

In order to appreciate the effect of the bound C on congestion, note that,
if the embedding of Algorithm A has congestion < C, then each number M(¢)
must be representable as the sum of no more than C powers of 2; in other words,
the binary representation of M(£) can have weight no greater than C.5 It follows
in particular that M (1) < 2F —2L-C_ Starting from this upper bound on M (1),
we derive a sequence of upper bounds on the other numbers M (£). It is clerically
convenient to number the bit-positions in the shortest binary representation of
M (£) from left to right, i.e., high order to low order. Moreover, we need only
restrict attention to bit-positions 1,2,..., L, as will become clear in the course
of the argument.

Focus on a specific £ € {0,1,...,n/L — 1} and on its associated M(£). Note
the effect of proceeding from M(€) to M(€£+ 1), M(£+2), and so on. When we
multiply M (€) by 2L — 1 (thereby going up L levels in #,,), the multiplication
affects only the rightmost 1 in bit-positions 1,2,...,L; say this rightmost 1
appears in bit-position k. The effect of the multiplication, in the presence of our
bound C on the congestion of the RG-embedding, is as follows. Our assumption
that the rightmost 1 appears in bit-position k means that the high-order L bit-
positions end with a string 100 -0, of length min(C — k+1,L — k) + 1. The
multiplication has the effect of replacing this string with the like-length string

50ur assumption that C < L simplifies the clerical details of the upcoming argument.

8This is true because we focus on progressive RG- embeddmgs If we allowed arbitrary RG-
embeddings, then M(£) would be the algebraic sum — i.e., the sum/difference — of at most C
powers of 2. The added generality of arbitrary RG-embeddings would influence only constant
factors in our bounds.

011.--1. Note that the resulting bit-string satisfies two conditions: (a) it has
weight no greater than C, and (b) its rightmost 1 appears in bit-position < L.

If we continue the process of multiplying by 2% —1 and “pruning” to maintain
the bound on congestion, we find that, every so often — we shall estimate
how often — a 1 that originated in a bit-positions k£ € {1,2,...,C} in the
binary representation of M (1), together with every 1 that is “spawned” by it
in subsequent multiplications and “prunings,” ceases to exist. When such an
annihilation occurs, we have lost at least the fraction 2-**! of the green leaves
we could conceivably have been salvaging at that point.

The basis for our lower bound on C resides in our ability to bound how
many multiplications and “prunings” have to take place before a 1 that began
in bit-position k is annihilated. Since each such annihilation loses us a signif-
icant fraction of the green leaves, we wish to maximize the stretches of time
between annihilations — by having M(1) assume its maximum possible value,
namely, M(1) = 2F — 2L-C and by “pruning” as few leaves as possible after
each multiplication. A corollary of this strategy is that we always strive to have
the bit-string in positions 1,2,..., L of our expression for the values M(£) have
maximum possible weight, namely C.

Let us focus on a 1 that originated in bit-position £ < C in M(1). Once this
1 begins to “move” in the multiply-then-“prune” game — which occurs when it
becomes the rightmost 1 in the surviving representation — and until this 1 is
annihilated, the configuration of bit-positions 1,2,..., L has the form 11-..10z,
where (a) bit-positions 1,2,...,k — 1 contain the string 11.--1, (b) bit-position
k contains a 0, and (c) bit-positions k + 1,k +2,..., L — 1 contain a bit-string
z of weight at most C — k + 1.

Since the numerical value of the bit-string 2 in bit-positions & + 1,k +
2,...,L — 1 decreases monotonically during the multiply-then-“prune” game,
it follows that, once it statts to move, the 1 that began m bit-position k is an-
nihilated after no more than EC BT (L- ") < 2(,) steps. Therefore, the
total time it takes to annihilate the 1 that orlgmateg in bit-position k, from
the very start of the multiply-then-“prune” game — which is the time requlred
to annihilate every 1 that originated in bit-positions k,k + 1,...C, is bounded
above by

<2 (ohihy) <2 (Bt <o (i)

Now, if we play the multiply-then-“prune” game long enough that we anni-
hilate a 1 in some bit-position k < h =4¢r —|log(1 — H)], then we shall have lost
more than the fraction 1 — H of the green leaves; hence, we shall have failed in
our assigned task of salvaging at least the fraction H of these leaves. Therefore,
the depth n of the SN H,, had better be small enough to preclude our playing

the game for this many steps. In other words, we must have

n e(L —h+1)*!
7 S (const) (m) :

This inequality implies C > (const)L = Q(logn). O

3 Optimizing Expected Congestion

This section derives bounds on the congestion one must incur in order to survive
“random” faults. We adopt the model that predominates in the literature by
assuming that the PEs of our SNs fail independently, with probability 1/2.7 It
remains an inviting challenge to determine whether or not the upper bound can
be lowered.

3.1 An Algorithm with Good Expected Behavior

We show that a modified version of Algorithm Worst-Case of Section 2 incurs
congestion that is only triply logarithmic in the size of the salvaged SN, with
extremely high probability, providing that we lower our demands a bit. Specifi-
cally, we reduce our demand that we salvage the fraction H of the surviving PEs
of our SN to the demand that we salvage only the fraction 0.3H of these PEs.

Theorem 3.1 Let the leaves of H, be colored red and green, independently,
with probability 1/2. For any rational 0 < H < 1/2, with probability > 1 —
2-%") 4 modification of Algorithm Worst-Case will find an RG-embedding
having congestion C < log(2) n—10g0.3(1 — H)+ 1 of some G, in H,, where
m > n — [log10n] + |{log 2.5n].

The major insight leading to the desired modification of Algorithm Worst-
Case resides in the following combinatorial fact.

Lemma 3.1 Let each leaf of H, be colored red or green, independently, with
probability 1/2. Fiz any partition of the leaves of M, into blocks of size 10n.
Then, with probability > 1 — 2-%"™), each block contains at least 2.5n green
leaves.

Proof. Focus first on a single block of 10n leaves.

Pr(< 2.5n green leaves) = Pr(> 7.5n red leaves)
10n

E (number of ways to choose k red leaves)
E=7.5n+1

— 2—10n

7Changing the probability 1/2 to any fixed p merely changes the constants in our results.

10

This last sum is easily transformed to
2.5n-1 2.5n
10m \ 100 10n —10n 10e -10n "
> (k)2 <2 gp)2 <2(53) 2 <2(3)
k=0
for some € < 1. It follows that
1

n202"

e\ 2"/10n
Pr(> 2.5n green leaves) > (1 -2 (5)) > exp(—ci1€®/n) > 1 —

for some constants ¢y,¢p > 0. O

Proof of Theorem 3.1. Lemma 3.1 tells us that when we look at the labels as-
signed by our greedy algorithm to nodes at or above level [log 10n] of a randomly
colored instance of H,,, then, with very high probability, we find every node hav-
ing a label A(z) for which I(A(z)) > 2.5n. Let m = n — [log 10n] + |log 2.5n]. If
we now abandon all but exactly 2l'82:58] of the salvaged green leaves at each of
these nodes, we can “assemble” a salvaged copy of the 2™-leaf SN G,, without
incurring any further congestion. O

4 Optimizing Worst-Case Harvest

Algorithm Worst-Case of Section 2.1 is guaranteed to be efficient, both in
running time — it operates in time O(2"), which is linear in the size of H,
— and in harvest — it salvages the fraction H of the green leaf-PEs. But, it
is easy to find examples where a nongreedy strategy allows one to salvage a
much larger fraction of the green leaves. In particular, when the green leaves
are spread out sparsely, any greedy approach abandons many more green leaves
than it has to. One finds an analogous deficiency in a “lazy” salvage strategy
— one that coalesces small-order trees as late as possible, rather than as early
as possible; lazy strategies abandon too many green leaves when the leaves are
packed densely, in clumps. It might be of practical interest, therefore, to find a
computationally efficient algorithm that salvages optimally many green leaves,

while honoring a prespecified limit, C, on congestion. This section presents such
an algorithm.

4.1 The Algorithm

Overview. Our salvage algorithm proceeds up H,, from level 0 to level n,
labeling each node z at level £ with a set A(z) of length-(¢ + 1) integer vectors.
Each vector in A(z) will indicate one possible salvage decision available to z; in
particular, for each vector (o, vy, ..., v):

¢ there is an RG-embedding in the subtree of T, rooted at z of a green-leafed
forest F containing i} disjoint copies of T, for 0 < k < £;

11

° Ei:o v < C, so that the bound on congestion is always honored.

When we get to the root of H, (where £ = n), we select the largest level k for
which some vector in the set that labels the root has v > 0. Our harvest, then,
is a green-leafed copy of Gi.

The Labelling/Embedding Procedure. We associate each level-£ node z of
H, with a trie (i.e., a digital search tree) of height £ + 1. This trie will store
the label-set A(z) in the obvious way. We now present the details of Algorithm
Optimal-Harvest.

Algorithm Optimal-Harvest:

Step 0. {Label nodes on level 0 of H,,}

Assign each leaf z a label A(z) = { &ég% gi :: f:len

Step £ > 0. {Label nodes on level £ of 7}

Substep £.a {Assemble the vectors }
Assign each level-£ node z a label as follows.
for each pair of length-£ vectors £ € A(z0) and n € A(z1), place the
length-(£ + 1) vector ¢ in A(z), where

¢ = 0 fk=1¢
Tl G+ ifk#L
Substep £.b {Combine small embedded trees}
for each vector ¢ of A(z), for all 0 < k < £, if component ; of ¢ is
the sum of a nonzero & (for some § € A(z0)) and a nonzero n; (for

some 1 € A(z1)), then add to A(z) a vector ¢’ that agrees with ¢
except in positions k, k + 1; specifically:

C,'+1+1 ifi=k+1
=4 ¢G~2 ifi=k
Gi otherwise

and embed the root of a copy of Gx41 in z, routing edges from that
root to the roots of two copies of G; that are embedded in proper
descendants of z

Substep £.c {Honor the congestion bound C}
for each vector £ € A(z)
if 35 _o €k > C then replace £ in A(z) by all possible vectors ¢’ such
that &, < & for all 0 < k < £, and such that Zi:a & <C.

In the full version of the paper we establish the following theorem. The proof
is omitted here for lack of space.

12

Theorem 4.1 Let the leaves of Hy, be colored red and green, in any way, and
let 1 < C < n. Algorithm Optimal-Harvest finds, in time O(n3¢+22"), an
RG-embedding of some G, in H,, having congestion < C and having optimal
harvest among embeddings with congestion C.

Note that for C = L { -2~ — 2}, the time is quadratic in the size of H,,.
3 \logn

ACKNOWLEDGMENTS: The authors thank Don Coppersmith for helpful sug-
gestions. The research of S. N. Bhatt was supported in part by NSF Grant CCR-
88-07426, by NSF/DARPA Grant CCR-89-08285, and by Air Force Grant AFOSR-
89-0382; the research of F. T. Leighton was supported in part by Air Force Contract
OSR-86-0076, DARPA Contract N00014-80-C-0622, Army Contract DAAL-03-86-K-
0171, and NSF Presidential Young Investigator Award with matching funds from ATT
and IBM; the research of A. L. Rosenberg was supported in part by NSF Grants CCR-
88-12567 and CCR-90-13184. A portion of this research was done while S. N. Bhatt,
F. T. Leighton, and A. L. Rosenberg were visiting Bell Communications Research.

References

f1] A. Agrawal (1990): Fault-tolerant computing on trees. Typescript, Brown Univ.

[2] F.S. Annexstein (1989): Fault tolerance in hypercube-derivative networks. 1st
ACM Symp. on Parallel Algorithms and Architectures, 179-188.

[3] J.L. Bentley and H.T. Kung (1979): A tree machine for searching problems. Intl.
Conf. on Parallel Processing, 257-266.

[4] S. Browning {1980): The Tree Machine: A Highly Concurrent Computing Envi-
ronment. Ph.D. Thesis, CalTech.

(5] R.D. Chamberlain (1990): Multiprocessor synchronization network: design de-
scription. Tech. Rpt. WUCCRC-90-12, Washington Univ.

[6] R.D. Chamberlain (1991): Matrix multiplication on a hypercube architecture
augmented with a synchronization network. Typescript, Washington Univ.

{7] J. Hastad, F.T. Leighton, M. Newman (1989): Fast computation using faulty
hypercubes. 21st ACM Symp. on Theory of Computing, 251-263.

[8] J.-W. Hong, K. Mehlhorn, A.L. Rosenberg (1983): Cost tradeoffs in graph em-
beddings. J. ACM 80, 709-728.

[9] C. Kaklamanis, A.R. Karlin, F.T. Leighton, V. Milenkovic, P. Raghavan, S. Rao,
C. Thomborson, A. Tsantilas (1990): Asymptotically tight bounds for computing
with faulty arrays of processors. 31st IEEE Symp. on Foundations of Computer
Science, 285-296.

{10] C.E. Leiserson (1979): Systolic priority queues. 1979 CalTech Conf. on VLSI.
[11] C. Mead and L. Conway (1980): Introduction to VLSI Systems. Addison-Wesley.

[12] P. Raghavan (1989): Robust algorithms for packet routing in a mesh. 1st ACM
Symp. on Parallel Algorithms and Architectures, 344-350.

	page1.pdf
	page2.pdf
	page3.pdf
	page4.pdf
	page5.pdf
	page6.pdf
	page7.pdf
	page8.pdf
	page9.pdf
	page10.pdf
	page11.pdf
	page12.pdf

