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ABSTRACT

We construct graphs that contain all bounded-degree trees on n vertices
as induced subgraphs and have only cn edges for some constant ¢
depending only on the maximum degree. In general, we consider the
problem of determining the graphs, so-called universal graphs (or induced-
universal graphs), with as few vertices and edges as possible having the
property that all graphs in a specified family are contained as subgraphs
(or induced subgraphs). We obtain bounds for the size of universal and
induced-universal graphs for many classes of graphs such as trees and
planar graphs. These bounds are obtained by establishing relationships
between the universal graphs and the induced-universal graphs.

1. Introduction

A fundamental problem in extremal graph theory is to find a “minimum” graph
that “contains” all graphs in a specified family of graphs. By “minimum” we
mean, for example, having the minimum possible number of vertices and/or
edges, or in general, minimizing certain weight functions associated with the
graphs. There are several different notions of “containment.” We say a graph H
is contained in G if the vertex set V(H) of H is a subset of V(G) and the edge
set E(H) of H is a subset of E(G). We say a graph H is contained in G as an
induced subgraph if V(H) C V(G) and E(H) consists exactly of all edges {u, v}
in E(G) with u,v € V(H). Of course, there are other types of containment
(such as homomorphic subgraphs) that we will not discuss here. For undefined
terminology, the reader is referred to [1].

Let F denote a family of graphs. A graph G is said to be F-universal if G
contains all graphs in F as subgraphs. A graph G is said to be F-induced-
universal if it contains all graphs in F as induced subgraphs. The problem of
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interest is to find the minimum universal graphs for various classes of graphs.
Many problems in extremal graph theory can be described in the context of uni-
versal graphs. In addition, many optimization problems arising in data repre-
sentations [13], data structures [22], and circuit design [23] can be viewed as
problems of determining certain universal graphs.

Let f,(F) denote the minimum number of vertices in an F -universal graph.
Analogously, let f,(F) denote the minimum number of edges in an F -universal
graph. Clearly, f,(F) is at least as large as the maximum number of vertices of
the graphs in F. Let f(F) denote the minimum number of edges in an F -
universal graph on f,(F) vertices. Also, let g,(F) denote the minimum number
of vertices in an F -induced-universal graph and g,(F) denote the minimum
number of edges in an F-induced-universal graph. It can be easily seen that
fo=ff,=gandf, =g.

In the early 1960s, Rado investigated induced universal graphs for infinite
graphs [21]. Since then many results have been obtained for universal graphs
for various families of graphs such as cycles [5], trees [7-11,14] bounded-
degree trees [3,4,15], caterpillars {12,17], graphs on n edges [2], planar graphs
[2], and bounded-degree planar graphs [3,4]. Moon [19] considered induced
universal graphs for the family of all graphs on n vertices. Recently Kannan,
Noas, and Rudich [16] considered induced-universal graphs for trees on n ver-
tices, planar graphs on n vertices, and n-vertex graphs with arboricity k.

In this paper we establish relations between the universal graphs and the
induced-universal graphs. We then use these relations together with the follow-
ing known results to improve the bounds for the sizes of the induced-universal
graphs for trees and planar graphs:

(i) There is a graph with n vertices and cn log n edges for some constant ¢
that contains the family T, of all trees on n vertices. (This is within a
constant factor of the minimum number of edges in a universal graph
for T,) (see [9]).

(ii) For the family T, , of all trees with n vertices with maximum degree d,
there is a universal graph on n vertices with bounded degree (depending
only on d) (see [3,4]).

(iii) There is a graph with n vertices and cn*? edges for some constant ¢ that
contains the family PI, of all planar graphs on n vertices (see [2]).

(iv) There is a graph with cn vertices and ¢'n log n edges that contains the
family Pl , of all planar graphs on n vertices with maximum degree d
where the constants ¢ and ¢’ depend only on d (see [3,4]).

(v) There is a graph with n? vertices and n’ edges that contains all trees on
n vertices as induced subgraphs and there is a graph with n* vertices and
n’ edges that contains all planar graphs on n vertices as induced sub-
graphs [16]. Both of these results follow from a more general result for
the family A, , of graphs of arboricity k on n vertices (the edge set of
which can be partitioned into k parts, but no fewer, each of which forms
an acyclic graph). In [16] it was shown that there is a graph on n'** ver-
tices and n'** edges that contains all graphs in A, ,.
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In this paper we prove the following:

(a) There is a graph with cn log n vertices and n? edges that contains all
trees on n vertices as induced subgraphs for some constant c.

(b) For the family T, , of all n-vertex trees with maximum degree d, there is
a graph on cn vertices with bounded degree (depending only on d) that
is an induced-universal graph for T, ,.

(c) There is a graph with ¢ (n log n)* vertices and c'n® edges that contains
all planar graphs on n vertices as induced subgraphs for some constants
cand ¢'.

(d) There is a graph with cn” vertices and ¢'n’” edges that contains all
bounded-degree planar graphs on n vertices as induced subgraphs, where
the constants ¢ and ¢’ depend only on the upper bound for the degrees.

(e) There is a graph with c(n log n)* vertices and ¢’n* edges for some con-
stants ¢ and ¢’ that contains all n-vertex graphs of arboricity k as in-
duced subgraphs.

In a paper by G. Chartrand, D. Geller, and S. Hedetniemi [6] it was conjec-
tured that any planar graph can be edge-partitioned into two outerplanar graphs.
If this conjecture is true, then our results (c) and (d) can be further improved by
using the following results on universal graphs for outplanar graphs:

(vi) There is a graph on n vertices and ¢'n log n edges for some constant ¢
that contains the family of all outerplanar graphs on n vertices [4].

(vii) There is a graph on n vertices with bounded degrees that contains the
family OP, , of all outerplanar graphs on n vertices with maximum de-
gree d.

Both (vi) and (vii) are derived from the fact that an outplanar graph has small
separators. That is, one can remove two vertices from an outplanar graph so
that the vertices of the remaining graph can be partitioned into two parts A and B
such that |A| = |B| < 2|A| and there is no edge between A and B.

Using Theorem 1 together with (vi) and (vii), the following results can be
shown:

(f) There is a graph on cn” vertices and ¢’n’ edges for some constants ¢ and
¢’ that contains all outerplanar graphs on n vertices as induced subgraphs.

(g) There is a graph on cn vertices with maximum degree ¢’ that contains as
induced subgraphs all n-vertex outplanar graphs with maximum degree
d, where ¢ and ¢’ depend only on d.

If the conjecture on cutplanar graphs by Chartrand, Geller, and Hedetniemi
holds, (d) can be improved further as follows:

(d') There is a graph on cn” vertices and ¢’n’ edges that contains all bounded-
degree planar graphs on n vertices as induced subgraphs where ¢ and ¢’
depend only on the maximum degree.
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2. RELATIONS BETWEEN UNIVERSAL GRAPHS AND INDUCED
UNIVERSAL GRAPHS

Theorem 1. Let A, denote a family of graphs with arboricity at most k. Let G
be a universal graph for A,. Then

84, = 2 @ + l)k

t

and

gAY = X (d + 1d}!

vi~y;

where d; denotes the degree of the ith vertex in G and “v;, ~ v;” denotes that v,
and v; are adjacent.

Proof. An induced-universal graph H for A, can be constructed from the
universal graph G as follows:

The vertex set of H consists of all (k + 1)-tuples (ug, uy, . . ., u,), where u, is
a vertex of G and ;, i # 0, either is * (a special symbol) or is a neighbor of u,.
Furthermore, all u; # * are distinct. A vertex (ug, u,, . . . , u,) is adjacent to (u,
u', ... uy) if uy = u] or ug = u, for some i # 0. It is easy to check that H
has at most 3, (d; + 1)* vertices. The number of edges in H is no more than
2, (d; + 1)* - df™". To see that H is A,-induced-universal, let F be a graph
in A,. Since G is A,-universal, there is a one-to-one mapping « from V(F) to
V(G) so that a(u) is adjacent to a(v) in G if u is adjacent to v in F. Since F is
of arboricity k, we can partition the edges of F into k parts, each of which
forms an acyclic graph. Let F, . . . , F, denote these acyclic graphs. In each F,,
we orient the edges so that each connected component is an out-tree with a root.
Now each vertex u in F is mapped into the vertex (a(u), a(v,),...,
a(v,)) where v, is the parent of u in F; if u is not a root and a(v;) = * other-
wise. It is straightforward to verify that F is contained in H as an induced sub-
graph. This completes the proof of Theorem 1.

Corollary 1.1. Let A denote a family of acyclic graphs and let G be a uni-
versal graph for A. Then there is an induced-universal graph with
2|E(G)| + |V(G)) vertices and = d? edges where d, denotes the degree of the ith
vertex of G. In other words,

8.(4) = 2[E(G)| + |[V(G),

g.(4) = 2di.

Proof. We remark that the stronger bound g,(4) =< =,d? can be established
by a modification of the argument used to prove Theorem 1 when k = 1.

N
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Corollary 1.2. Let A denote a family of acyclic graphs. Then
8,(4) = 2f(4) + £(4).

In [16] complete subgraphs are used to construct induced-universal graphs
for A, , instead of the more efficient universal graphs that we used here. Using
the techniques in [16] together with the relationship between universal graphs
and induced-universal graphs, we can then prove the following result that some-
times gives better upper bounds than Theorem 1 (and sometimes worse).

Theorem 2. Let G be an induced-universal graph for a family F of graphs.
Suppose every graph in the family H can be edge-partitioned into k parts, each
of which forms a graph in F. Then
&(H) = [V(G)[*
and
gH) = HV(G)*™* - [EG)|.

Proof. We construct an H-induced-universal graph U as follows:

The vertex set of U consists of all k-tuples (u,u,, . ..,u,) where u’s are

(not necessarily different) vertices in G and the vertices (u,, u,, ... ,u,) and
(uy,u3, .. .,u;) are adjacent in U if u; and u; are adjacent in G for some i,
l=i=<k

To see that U is H-induced-universal, we consider a graph H in H. The edges
of H can be edge-partitioned into k parts, which form graphs F,, F,, ... ,F, in
F and the vertex sets of F;’s are the same as V(H). Let A, denote the mapping
from V(F;) to V(G) such that A(u) and A\ (v) are adjacent in G if and only if u
and v are adjacent in F;. We define the embedding A that maps a vertex v in H
to (A (v), A (v), ..., \(v)) in U. Clearly A(u) and A(v) are adjacent in U if and
only if u and v are adjacent in H. Therefore, U is H-induced universal. The
number of vertices of U is just [V(G)|*. The vertices (u, u,, . .., u, ... ,u,) and
(uy,u3, ... u,...,uy) are said to be i-adjacent in U if u, and u/ are adjacent in
G. For each i, the number of i-adjacent edges is no more than |V(G)[* %E(G)|
since for each edge {u;, u;} of G, at most |[V(G)|*"? possible pairs of vertices in
U contain u;,u; as the ith coordinates, respectively. Hence, the total number
of edges in U is no more than k|V(G)[*|E(G)|. This completes the proof of
Theorem 2.

Il. INDUCED-UNIVERSAL GRAPHS FOR VARIOUS FAMILIES
OF GRAPHS

In this section, we will use Theorems 1 and 2 together with known construc-
tions for universal graphs to derive bounds for induced-universal graphs for
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various families of graphs.Throughout this section, ¢, ¢’, and the ¢;’s denote
some generic constants that might not have the same value from one appear-
ance to another.

Theorem 3. Let T, denote the family of all trees on n vertices. Then
cn=g(T,)=cnlogn
and
cn log n < g (T,) = ¢’
Proof. The lower bounds follow from (i) since g, = f, and g, = f..

We will use the following constructions of universal graphs which contain all
trees on n vertices (see [7,9]).

First we consider a graph G® on 2**' — 1 vertices, which are named by
(0,1)-strings of length no more than k. (There is one vertex, denoted by *,
which can be viewed as having length 0). For { = 0, we say a,a,- - -q,- " -a,,;
is a descendent of a,a, - - - a,. The edges of G can be described recursively.
The edges among all vertices of the form Oa, - - - a, are as in G*™"; so are the
edges among all vertices of the form 1a,* - - g;. In addition for every ¢, t = 1,
there are edges from any

t t—1 t—1
100...00 and 1100...0 to O11...11b,---b,

for all choices of b;’s and there are edges from * and 1 to all vertices.

An induced subgraph G of G* is said to be admissible if for any vertex
v =a, a1 in H all descendents of a,- - -a,0 are in G. In [7] it was proved
that all admissible subgraphs G of G are universal for the family of trees with

[V(G)| vertices.

" Since |V(G)| = n and G has cn log n edges, using Corollary 1.1 we get
g,T,) = cnlog n.

Let h(n) denote =,d> where d;, i = 1,...,n, denotes the degree of the ith
vertex in G. We want to show that /(n) < cn’. From the preceding construc-
tion and the fact that a vertex labeled by a string of length i has degree at most
2¥"*2_ we have

h(2k+l) < é22k—i+4 < 22k+5

=0
For any n with 2¢"! < n =< 2%, we have
y

h(n) = W2 < en?
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Since h(n) is an upper bound for g,(T,), we have g, (T,) < cn’.

Theorem 4. Let T, ; denote the family of all trees on n vertices with maxi-
mum degree d. Then

Cln = gv(Tn,d) = Cz"
and

cn < g(T,, ) =cqn.

Proof. Since there is a graph on cn edges with bounded-degrees which con-
tain all trees in T, ,, by Corollary 1.1 we have

gv(Tn,d) =cn
and
ge(Fn,d) = c'n.

The lower bounds are immediate.

Theorem 5. Let F, denote the family of all forests on n vertices. Then
cn < g(F,) = cnlogn
and

c;log n < g(F,) < c,n’.

Proof. 1t is easy to see that a universal graph for T, is also a universal graph
for F, and vice versa. Therefore using Theorem 1, we can establish the desired
inequalities as in the proof of Theorem 5. Similarly, we have the following:

Theorem 6. Let F, , denote the family of all forests on n vertices with maxi-
mum degree d. Then

an = gu(Fn,d) =on
and

csn = g(F, ) = cn.
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Theorem 7. Let Pl, denote the family of all planar graphs on n vertices. Then
for some constants ¢ and ¢’

cn =< g(Pl,) < c'(nlog n)’
and
cnlog n < g,(Pl,) < c'n®.

Proof. The lower bounds follow readily from Theorem 3. We recall that a
planar graph has arboricity at most 3 [20]. Thus it follows from Theorem 2 and
5 that g,(Pl,) < c(n log n)’ and that g,(Pl,) < cn® log*n. To obtain a better
upper bound for g,(Pl,) we proceed as follows:

The universal graph G for P, consists of two copies of the universal graph for
Pl together with a clique of size cVn; every vertex in the clique is adjacent
to all other vertices in G. It is easily checked (see [2]) that G is Pl -universal
since a planar graph has a separator of size ¢Vn [18]. Theorem 1 states g.(Pl) =
2y (d; + 1)’d}, where d, denotes the degree of the ith vertex in G.

Now, we go back to the Pl -universal graph G, which has n vertices and
cn®? edges. The vertices of G can be viewed as being partitioned into clusters,
which can then be grouped into levels. For i = 0,1, ... ,log,n, the ith level
consists of 2’ clusters each of size at most 2cVn/2' in which each vertex has
degree at most cn/2’ in G.

Therefore

gPl) = 3 (d +1)d]

v~y

< CI 2 2[(2n 1/22—i/2) (Il . 2—i)3 2 2j—i(n l/22-j/2) (n . 2—j)2
i j=i
=< ¢'n®.
Theorem 8. Let Pl, , denote the family of all planar graphs on n vertices with
maximum degree d. Then

cn < g(Pl, ) =<c'n’
and
cn < g (Pl, ;) < c'n’.
Proof. The lower bounds are trivial and we will only consider the upper
bounds. We need the following construction of universal graphs H for PI, ,

(see [4]). The vertices of H can be partittioned into clusters, which can then
be paritioned into levels. For i = 0,1, ...,log,n, the ith level consists of 2'
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clusters each of size at most 2cV n/2’ (where c is the constant with the property
that every planar graph on m vertices has a separator of size at most cVm). The
clusters on the ith level can be labelled by a binary string of length i. Every
vertex in a cluster, labeled by w, is adjacent to every vertex in a cluster w' if
w' is of the form xw where x is a string of length 2 log,(dc). Each vertex in a
cluster of the ith level has degree at most n'?2™"dc. Therefore it follows from
Theorem 1 that

And

gu(Pln,d) = E (dj + 1)3

< E 2i(2cn 1/22—1'/2) (n l/22—i/2dc)3

=cn’.

ge(Pln,d) = E (d; + l)s(dj + 1)2

]

< > (d + 1)’ max((d; + 17, (d; + 1))

Lt

SZZ(d,. + 1)°

< 22 2i(20n 1/22—i/2) (n 1129=in2 dc)6

< c"n3'5.

Theorem 9. Let A, , denote the family of n-vertex graphs with arboricity &.

Then

and

gv(Ak,n) = C(n lOg n)k

ge(Ak,n) = ank'

The proof is very similar to the preceding proofs and will be omitted here.

Theorem 10. Let OP, denote the family of all outerplanar graphs on n ver-

tices. Then

cn < g,(OP,) < c'n’
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and
nlogn < g(OP,) < c'n’.

Proof. This follows from the known fact (vi) and Theorem 1 together with
the fact that any outplanar graph has arboricity 2.

Theorem 11. Let OP, , denote the family of all outerplanar graphs on n ver-
tices with maximum degree d. Then we have

cn = g(OP, ;) =c'n
and
cn = g(OP, ;) =c'n.
Proof. This follows from the known fact (vii) and Theorem 1.

If the conjecture of Chartrand, Geller, and Hedetniemi holds, that is, every
planar graph can be edge-partitioned into two outerplanar graphs, we can
then use Theorem 11 together with Theorem 2 to deduce that there exists an
induced-universal graph for bounded degree planar graphs with cn’ vertices and
c'n’ edges.

4. CONCLUDING REMARKS

As we can see most of the results in this paper still have considerable gaps be-
tween the upper and lower bounds for the induced-universal graphs (with the
exception of the induced-universal graphs for bounded-degree trees). For ex-
ample we showed that there are T,-induced-universal graphs with cn log n ver-
tices and such universal graphs must have at least ¢’n vertices. That is,

cn=g/(T,) <cnlogn.

What is the correct order of magnitude for g,(T,)? For universal graphs of T,,
we used the degree requirements to establish lower bounds. However, it seems
that the degree considerations are not enough to generate good lower bounds
for g,(T,) as evidenced by the following example:

Let F denote a family of star forests F;, i.e., F; is a vertex-disjoint union
of |n/i] copies of stars on i vertices. How large must an F-induced universal
graph be? We will construct an F-induced universal graph H having at most
4n vertices.

The vertices of H can be partitioned into two parts A and B, each with at
most 2n vertices. A can be further partitioned into A, A,, .. ., Ajog,n Where
|A;] = [n/2']. The induced subgraph on A; U B is a star forest consisting of



IR T Ay

UNIVERSAL AND INDUCED-UNIVERSAL GRAPHS 453

Ln/2'] copies of stars each with 2" edges. The centers of the stars are in A, and
the leaves are in B.

It is easy to see that the induced subgraph of H on A; U B contains F, with
2' =< k < 2™ as an induced subgraph. Therefore H contains all F, as induced
subgraphs. H is F-induced universal and has at most 4n vertices.

It would be of particular interest to sharpen the bounds for g,(T,) and
8.(PL,).
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