
Quadratic surface

Quadratic surface in space:

\[z = A x^2 + 2Bxy + Cy^2 \]

or

\[z = \begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \]

\[A, B, C \text{ constants} \]

Rotate through \(\Theta \) in xy-plane:

\[\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \]

Obtain \(z = A' x'^2 + 2B' x'y' + C'y'^2 \)

where

\[\begin{bmatrix} A' & B' \\ B' & C' \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix} \]

Especially

\[A' + C' = A + C \] Trace invariant

\[A'C' - B'^2 = AC - B^2 \] Det invariant

and

\[B' = (C-A) \sin \Theta \cos \Theta + B (\cos^2 \Theta - \sin^2 \Theta) \]

Choose \(\Theta \) so \(\tan 2\Theta = \frac{2B}{C-A} \); then \(B' = 0 \).

Surface has form:

\[z = a_1 x^2 + a_2 y^2, \quad a_1, a_2 \]

- Elliptic paraboloid
- Hyperbolic paraboloid

Cases

- **Elliptic paraboloid**
 \[AC - B^2 = a_1 a_2 > 0 \]
 \[a_1 > 0, a_2 > 0 \] Positive definite

- **Hyperbolic paraboloid**
 \[AC - B^2 = a_1 a_2 < 0 \]
 \[a_1 < 0, a_2 > 0 \] Negative definite
Parabolic Cylinder
\[AC - B^2 = a_1 a_2 = 0 \]
\[\text{ranch} = 1 \]
\[a_1 = 0, \ a_2 > 0 \quad a_1 < 0, \ a_2 = 0 \]

Plane
\[\text{ranch} = 0 \]
\[a_1 = 0, \ a_2 = 0 \]

Osculating Paraboloid

The "best fitting" quadratic surface - as measured from the tangent plane at \(S(u,v) \) (fixed \(u \) and \(v \)) is the osculating paraboloid at \(S(u,v) \).

Taylor expansion at \(S(u,v) \):

\[
S(u+h,v+k) = S(u,v) + S_1 h + S_2 k + \frac{1}{2} \left(S_{11} h^2 + 2 S_{12} h k + S_{22} k^2 \right) + O(3)
\]

where

\[
S_1 = \frac{\partial S}{\partial u}(u,v) \quad S_2 = \frac{\partial S}{\partial v}(u,v), \quad \text{etc.}
\]

Unit Normal

To tangent plane:

\[
M(u,v) = \frac{S_1 \times S_2}{||S_1 \times S_2||}
\]

Distance of surface from tangent plane - at \(S(u,v) \)

\[
\text{DIST} = (S(u+h,v+k) - S(u,v)) \cdot M(u,v)
\]

\[
= \frac{1}{2} \left(S_{11} h^2 + 2 S_{12} h k + S_{22} k^2 \right) + O(3)
\]

Osculating paraboloid

referred to tangent plane:

\[
P = \frac{1}{2} \left(S_{11} h^2 + 2 S_{12} h k + S_{22} k^2 \right)
\]
where $S_{uv} \cdot M = \frac{\partial^2 S}{\partial u \partial v} (u,v) \cdot M(u,v)$, etc.

This gives the "shape" of the surface near $S(u,v)$. Depend on u & v.

Second Fundamental Form

Quadratic form on the tangent space to surface S at $S(u,v)$:

$$II = (u,v) du^2 + 2(\gamma(u,v) dv^2 + \xi(u,v) dv^2$$

where γ at $S(u,v)$:

$$\gamma = S_{uv} \cdot M \quad \eta = S_{uu} \cdot M \quad \xi = S_{vv} \cdot M$$

or

$$II = \sum_{i,j=1}^{2} \gamma_{ij} (u,v) du^i \cdot dv^j$$

where

$$\gamma_{ij}(u,v) = S_{ij}(u,v) = \frac{\partial^2 S}{\partial u^i \partial u^j} \cdot M$$

We have

$$L_{ii} = L, \quad L_{ij} = -L_{ji} \quad \eta_{ii} = \eta, \quad \eta_{ij} = -\eta_{ji}$$

Note $\frac{\partial S}{\partial u} \cdot M = 0$ since $\frac{\partial S}{\partial u} = \xi$ is a tangent vector. Then

$$\frac{\partial^2 S}{\partial u \partial u} \cdot M + \frac{\partial S}{\partial u} \cdot \frac{\partial M}{\partial u} = 0$$

so

$$L_{ij} = -\frac{\partial S}{\partial u} \cdot \frac{\partial M}{\partial u}$$

or

$$L = -\frac{\partial S}{\partial u} \cdot \frac{\partial M}{\partial u}$$

$$\eta = -\frac{\partial S}{\partial v} \cdot \frac{\partial M}{\partial v}$$

$$\xi = -\frac{\partial S}{\partial v} \cdot \frac{\partial M}{\partial v}$$

at $S(u,v)$.

2/7/11

Curvature of curves on a surface

$V = u^2$

$W = x^3$

$S(x,y)\rightarrow S(x^3, u^2)$

α
\[
\dot{X} = S(x(t)) \quad \text{curve on } S
\]

\[
\frac{d}{dt} S(x(t)) = T_x(x) \cdot \frac{dx}{dt}(t) \quad \text{velocity vector}
\]

\[
T_x = \text{unit tangent to } S \circ \alpha
\]

\[
t = \text{arc length along } S \circ \alpha
\]

\[
\frac{d}{dt} S(x(t)) = S_1(x(t)) \dot{x}'(t) + S_2(x(t)) \dot{x}''(t)
\]

Velocity vector in basis \(S_1, S_2 \)

Differentiate again:

\[
N_x \cdot \ddot{x}^2 + T_x \dddot{x}
\]

\[
= S_{11}(\dot{x}')^2 + 2 S_{12} \dot{x}' \dot{x}'' + S_{22}(\dot{x}'')^2
\]

\[
+ S_1 \ddot{x}' + S_2 \dddot{x} \quad \text{at } S(4,4^2)
\]

Dot normal \(N(x, 4,4^2) \) — the unit normal to \(S \) at \(S(4,4^2) \). Observe that \(T_x, S_1, S_2 \) are tangent to \(S \).

\((N, N) \cdot \ddot{x}^2 = (S_{11} \cdot N(x,4,4^2)) \cdot (\dot{x}')^2 + 2(S_{12} \cdot N(x,4,4^2)) \cdot \dot{x}' \dot{x}''
\]

\[
+ (S_{22} \cdot N(x,4,4^2)) \cdot (\dot{x}'')^2
\]

Let

\[
\Theta = \text{angle between } N_x \text{ and } N
\]

\[
= \text{angle between principal normal to } S \circ \alpha \text{ and normal to } S
\]

- at \(S(x(t)) \). Depends on point \((x(t), t) \). Then, using \(L = S_{11} \cdot N, N = S_{12} \cdot N, N = S_{22} \cdot N \) and \(\ddot{x}^2 = E(\dot{x}')^2 + 2F \dot{x}' \dot{x}'' + G(\dot{x}'')^2 \)

we have:

\[
X = \frac{L(\dot{x}')^2 + 2F \dot{x}' \dot{x}'' + G(\dot{x}'')^2}{E(\dot{x}')^2 + 2F \dot{x}' \dot{x}'' + G(\dot{x}'')^2}
\]

Note: The right-hand side depends only on the tangent vector

\[
T_x = S_1 \dot{x}' + S_2 \dot{x}''
\]

To the curve \(S \circ \alpha \) at \(S(x(t)) \).
Consequence: Meusnier's Theorem, 1776. All curves having the same tangent and principal normal at a point of a surface have the same curvature at that point provided that the principal normals are not tangent to the surface.

Remark 1: The last condition means that $\kappa = 0$ if not zero.

2) $K = \kappa$ is the "normal curvature" of the curve - to write later in conjunction with geodesics. It is the component of $\mathbf{S}(\mathbf{W})$ normal to the surface.

Problem 4.1: Find expressions for $L(x,y), L_2(x,y), N(x,y)$ for a surface in the form $z = f(x,y)$.

Problem 4.2: A point $S(u,v)$ on the surface S is called elliptic, parabolic, or hyperbolic according as $LN - N^2 > 0$, $= 0$, or < 0. Show that when the parameters are changed from u,v to u',v', the quantity $LN - N^2$ is multiplied by $\left| \frac{D^2(u,v)}{D(u',v')^2} \right|$. Hence, the nature of elliptic, parabolic, and hyperbolic points do not depend on the parameterization.

Problem 4.3: Show that the tangent

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \cos u \\ \sin u \end{bmatrix} (R + r \cos v) + \begin{bmatrix} 0 \\ 0 \end{bmatrix} (1 - \sin v),$$

$0 < r < R$, contains all three types of points.
Problem 4.4 Find a non-trivial example to illustrate Neumann’s Theorem. The space curve \[x = a(1 + \cos t), \quad y = a \sin t, \quad z = \frac{a}{2} \] lies on the surface \(x^2 + y^2 + z^2 = a^2 \). Here \(x^2 + y^2 = a^2 \) is a cylinder.

Normal sections

Let \(S = S(u, v) \) be a regular surface. Intersect \(S \) with the plane passing through \(S(u, v) \) \((u, v) \text{ fixed}\) and containing the normal \(N(u, v) \).

Claim: The intersection is a regular curve near \(S(u, v) \).

For we may assume that the surface is in parametric form \(x = x(u, v), y = y(u, v), z = z(u, v) \) with the point in question being \(x=0, y=0 \), and the tangent plane the \(xy \)-plane. (By translation and rotation of coordinates.)

Then \(+, \partial f/\partial x, \partial f/\partial y \) vanish at \(x=0, y=0 \). Then \(S \) meets the plane "spanned" by \[
\begin{bmatrix}
\cos \theta \\
\sin \theta \\
0
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}
\]
\text{in } \mathbf{N} =
\begin{bmatrix}
\cos \theta \\
\sin \theta \\
\frac{1}{k} \cos \theta, \sin \theta
\end{bmatrix}.

Then \(\mathbf{N}(u) = \mathbf{N}([\cos \theta, \sin \theta, -t]), \text{ so } \|\mathbf{N}(u)\| \geq 1 \).}

Curvature

Consider the normal sections determined by intersecting the plane containing \(N(u, v) \) and \(S(u, v) \times \mathbf{N}(u, v) \) with the surface \(S \). (\textit{Handly are not } \mathbf{x}, \mathbf{y} \text{ there.})
The normal to the curve, \(N \), is in this plane and is normal to \(S \), so \(N = \pm M \) at \(S(u,v) \). Thus, the curvature \(\kappa \) of this normal section is
\[
\pm \kappa = \frac{Lx^2 + 2Mxy + Ny^2}{E(x^2 + 2Fxy + Gy^2)} = \frac{L(u,v)}{E(u,v)}\Gamma(u,v) \quad \text{etc.}
\]

Note: This depends only on \(L, M, N, E, F, G \) at \(S(u,v) \) and on the direction of the vector \(S(u,v)x + S(v,y)y \) (a constant of two homogeneous forms of same degree.)

- use "+" sign - use "-" sign

Once the choice of unit normal \(N \) is fixed, the expression \(\frac{Lx^2 + 2Mxy + Ny^2}{E(x^2 + 2Fxy + Gy^2)} \) will give the \(\kappa \) or \(-\kappa\) as \(u \) and \(v \) vary.

Define:
\[
\kappa_1(u,v) = \frac{\kappa x}{(x,v) = (0,0)} \quad \frac{Lx^2 + 2Mxy + Ny^2}{E(x^2 + 2Fxy + Gy^2)}
\]
\[
\kappa_2(u,v) = \max \quad \text{ditto}
\]
\[
\kappa_2(u,v) = \max \quad \text{ditto}
\]

where \(L, \ldots, G \) depend on \(u, v \).

\(\kappa_1, \kappa_2 \) principal curvatures of \(S \) at \(S(u,v) \)

\(K = \kappa_1 \kappa_2 \) Gaussian curvature

\(H = \frac{1}{2}(\kappa_1 + \kappa_2) \) mean curvature

\(K(u,v) \) and \(H(u,v) \) depend on \(u \) and \(v \).

Next: A method to compute these.
2/9/01

Digression - the extreme of the ratio of quadratic forms

Setting: \(E, F, G, L, M, N\) fixed scalars

The form \(Ex^2 + 2Fxy + Gy^2\) positive definite.

Let \(+(x,y) = \frac{Lx^2 + 2Mxy + Ny^2}{Ex^2 + 2Fxy + Gy^2}\), \((x,y) \neq (0,0)\)

To find:

\[X_1 = \min \{+(x,y)\}, \quad X_2 = \max \{+(x,y)\}\]

over \((x,y) \neq (0,0)\). Since \(+\) is homogeneous of degree 0, one may assume:

\(Ex^2 + 2Fxy + Gy^2 = 1\) and treat this as extreme value constraint:

\[
\begin{cases}
Lx^2 + 2Mxy + Ny^2 = \min \text{ or } \max \\
Ex^2 + 2Fxy + Gy^2 = 1
\end{cases}
\]

Use Lagrange multiplier:

\[
\frac{\partial}{\partial x} \left(Lx^2 + 2Mxy + Ny^2 \right) = \lambda \frac{\partial}{\partial x} \left(Ex^2 + 2Fxy + Gy^2 \right)
\]

\[
\frac{\partial}{\partial y} \left(Lx^2 + 2Mxy + Ny^2 \right) = \lambda \frac{\partial}{\partial y} \left(Ex^2 + 2Fxy + Gy^2 \right)
\]

to obtain:

\[
\begin{bmatrix}
(L - \lambda E)x + (M - \lambda F)y & 0 \\
(N - \lambda F)x + (M - \lambda G)y & 0
\end{bmatrix}
\]

Facts - easy to prove -

- The roots of the set \(L - \lambda E \quad N - \lambda F\)
 \(N - \lambda F \quad N - \lambda G\)

 are the extrema \(X_1\) and \(X_2\).

- There are real eigenvalues.

If \(\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}\) and \(\begin{bmatrix} x_2 \\ y_2 \end{bmatrix}\) are the eigenvectors for \(X_1\) and \(X_2\), \(i = 1, 2\):

\[
\begin{bmatrix}
L - x_j E & N - x_j F \\
N - x_j F & N - x_j G
\end{bmatrix}
\begin{bmatrix} x_j \\ y_j \end{bmatrix} = 0, \quad j = 1, 2
\]

then:

\[
\begin{bmatrix}
x_j ^2 + 2M x_j y_j + Ny_j^2 = x_j^2 \\
Ex_j^2 + 2Fxy_j + Gy_j^2 = 1
\end{bmatrix}, \quad j = 1, 2
\]

- The last equation is a "normalization"
If \(x_1 \neq x_2 \), then the eigenvalues are orthogonal — with respect to both quadratic forms:

\[
\begin{bmatrix}
x_1^2 \\
x_2^2
\end{bmatrix}
\begin{bmatrix}
E & F \\
F & G
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} = 0.
\]

Likewise, for \(x_1 = x_2 \), then \(f(x,y) \) is a constant and that constant is:

\[
x_1 = x_2 = \frac{L}{E} = \frac{F}{G} = \frac{K}{E}.
\]

Therefore, the equation expands to:

\[
\det \begin{bmatrix}
L-\lambda E & E-N \\
M-\lambda E & N-K
\end{bmatrix} = 0
\]

\[
\lambda^2 - \frac{EN-2FN+GL}{EG-F^2} \lambda + \frac{LM-M^2}{EG-F^2} = 0.
\]

The coefficients are the sum & product of \(\lambda \) of \(x_1 \) and \(x_2 \):

\[
x_1 + x_2 = \frac{EN-2FN+GL}{EG-F^2}, \quad x_1 x_2 = \frac{LM-M^2}{EG-F^2}.
\]

Consequence: For a surface \(X = S(u,v) \), with coefficients \(E(u,v),\ldots, L(u,v) \) of the first and second fundamental forms, we have:

\[
K = \frac{LM-M^2}{EG-F^2}, \quad \frac{1}{H} = \frac{1}{2} \frac{EN-2FN+GL}{EG-F^2}.
\]

Curvature, mean curvature — at \(S(u,v) \). These depend on \(u \) & \(v \).

Remark 1) Both \(K \) and \(H \) appear to depend on both the second fundamental form, hence \(K \) can be computed from \(E,F,G \) (and deriv's) alone. The Gaussian curvature \(K \) is, in fact, intrinsic.

2) A surface is a minimal surface when its mean curvature \(H \) vanishes identically.
Classification of points on a surface

1) \(K > 0 \) elliptic point
 i) \(k_1 = k_2 \) umbilic
 characterized by \(\frac{1}{E} = \frac{1}{F} = \frac{N}{G} \)

2) \(K = 0 \)
 i) not all of \(L, M, N \) - parabolic point
 are zero
 ii) all three of \(L, M, N \) - planar point
 are zero

3) \(K < 0 \) hyperbolic point

These terms reflect the shape of the osculating paraboloid at a point. The osculating paraboloid yields more - as in Euler & Dufin - to follow.

Principal directions. At a point \(S(u,v) \) on a surface \(S \), the eigenvectors associated with \(X_1(u,v) \) and \(X_2(u,v) \) give the principal directions.

Denote the unit vectors by \(E_1(u,v) \) and \(E_2(u,v) \). These vectors are tangent to \(S \) but need not be \(\frac{\partial S}{\partial u} \) and \(\frac{\partial S}{\partial v} \) of anything.

Fix \(u \) and \(v \) and rewrite every vector \(X \) tangent to \(S \) at \(S(u,v) \) as
\[
X = S_1(u,v)X^1 + S_2(u,v)X^2, \quad S_1 = \frac{\partial S}{\partial u}, \quad S_2 = \frac{\partial S}{\partial v}.
\]

Likewise express \(Y \). Then
\[
X \cdot Y = \begin{bmatrix} X^1 \mid E \mid F \mid U^1 \\ X^2 \mid F \mid G \mid U^2 \end{bmatrix}.
\]

Especially,
\[
X \cdot X = E(X^1)^2 + 2FX^1X^2 + G(X^2)^2
\]
\[
\Pi(X) = L(X^1)^2 + 2M X^1X^2 + N(X^2)^2.
\]
The curvature of normal sections appear as \(X \cdot X / \Pi(X) \).

Remark. Principal directions at an umbilic or planar point are indeterminate.
Euler's Theorem setting as above.
Use E_1, E_2 at $S(\xi, \nu)$ as a basis for the tangent plane.

\[S_1 = \frac{\partial S}{\partial \xi}, \quad S_2 = \frac{\partial S}{\partial \nu} \]

Write $X = E_1 \cos \alpha + E_2 \sin \alpha$ for an arbitrary unit vector tangent to S at $S(\xi, \nu)$. Then

\[X \cdot X = 1 \quad \text{unit vector} \]

\[II(X) = II(E_1) \cos^2 \alpha + II(E_2) \sin^2 \alpha \]

- orthogonality with respect to II.

Since $II(E_1) = X_1$ and $II(E_2) = X_2$,
the curvature of the normal section obtained by intersecting S with the plane of M and X is

\[\pm X = X_1 \cos^2 \alpha + X_2 \sin^2 \alpha. \quad \text{Euler's theorem} \]

2/2/01

Dubin's indicatrix. The intersection of the osculating parabola with a plane parallel to the tangent plane to a surface at a point gives information about the surface near that point.
At the point \(S(u, v) \) \((u \neq 0 \text{ fixed})\) on a surface \(S \), the Dupin indicatrix is given by \(\Pi(X) = 1 \), where \(X \) ranges over all vectors tangent to \(S \) at \(S(u, v) \). We have six terms of:

- Basis \(S_1 = \frac{\partial S}{\partial u} \) and \(S_2 = \frac{\partial S}{\partial v} \) at \(S(u, v) \):
 \[X = S_1 X^1 + S_2 X^2 \]
 \[L(X^1)^2 + 2n X^1 X^2 + n(X^2)^2 = 1 \]

- Basis \(E_1 \) and \(E_2 \) of unit vectors in the principal directions at \(S(u, v) \):
 \[X = E_1 (3^1)^2 + E_2 (3^2)^2 \]
 \[k_1 (3^1)^2 + k_2 (3^2)^2 = 1 \] by Euler.

Typical cases are:

- **Elliptic point** \(0 < X_1 < X_2 \)

- **Hyperbolic point** \(X_1 < 0 < X_2 \)

Problem 4.5: Find the equation of the ellipsoid \(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \) and prove that tangent planes at these points are parallel to planes which intersect the ellipsoid in circles.
LINES OF CURVATURE

A curve on a surface is a line of curvature if it is tangent at each point to a principal direction. They may be obtained from any ODE.

Diagnosis—continued.
Setting: \(E, F, G, L, M, N \) fixed scalars—as before. Let \(\begin{bmatrix} x \\ y \end{bmatrix} \) be an eigenvector giving a principal direction, and \(\lambda \) the corresponding eigenvalue.

\[
\begin{bmatrix}
 L - \lambda E & \pi - \lambda F \\
 \pi - \lambda F & N - \lambda G
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix} = 0
\]

Expand and eliminate \(x \) to obtain:

\[
\frac{Lx + My}{Ex + Fy} = \frac{\pi x + Ny}{Fx + Gy}
\]

Expand, cancel terms, and rewrite as a determinant:

\[
\begin{vmatrix}
 Gy^2 - kxy & x^2 \\
 E & F & G \\
 L & M & N
\end{vmatrix} = 0
\]

Consequence. One has a quadratic ODE for the lines of curvature on a parameterized surface \(X = S(x, y, z) \):

\[
\begin{vmatrix}
 \frac{E}{L} & \frac{F}{M} & \frac{G}{N} \\
 \pi x^2 + kxyz & x^2 + kxyz & 0 \\
 E & F & G
\end{vmatrix} = 0, \quad E \neq E(x, y, z), \text{ etc.}
\]

Problem 6.6. a) Find the equation of a line of curvature for a surface in range form \(z = f(x, y) \).

b) For the surface \(z = xy \), its equation for lines of curvature is integrable by elementary functions. Use this to parameterize the surface by lines of curvature:

\[
X = \sinh(x + y), \quad Y = \cosh(x - y), \quad Z = xy.
\]
Remark. Principal directions are orthogonal, so parameterizing a surface by lines of curvature gives a "system of orthogonal coordinates". One must avoid umbilics and planar points.

Remark. The equation
\[\frac{x^2}{a^2-\lambda} + \frac{y^2}{b^2-\lambda} + \frac{z^2}{c^2-\lambda} = 1 \]

with \(a^2 < b^2 < c^2 \) consists of three families: ellipsoids, hyperboloids of one sheet, and hyperboloids of two sheets. Primes of different families intersect in curves which are lines of curvature in each.

This gives a triply orthogonal system of surfaces for coordinates in space. (See Struik, Ch. 2, Para. 2-11 and 2-16.)

Problem 4.7: Show that the parameter curves \(S(u, \text{const}) \) and \(S(\text{const}, u) \) are lines of curvature if, and only if, both \(\Pi \) and \(\Phi \) are identically zero.

Rodrigues' formula

- a characterization of lines of curvature by the change in \(M(u,v) \) being proportional to the change in \(S(u,v) \):

\[\Delta M + \kappa \Delta S = 0 \]

along a line of curvature having principal curvature \(\kappa(u,v) \).
Proof A curve of curvature \(X = S(x(t)) \) is characterized by
\[
\frac{d}{dt} S(x(t)) = S_1(x(t)) \dot{x}^1 + S_2(x(t)) \dot{x}^2
\]
being an eigen vector:
\[
\begin{bmatrix}
L - x \dot{E} & \dot{x}^2 \\
\dot{x}^1 & L - x \dot{F}
\end{bmatrix}
\begin{bmatrix}
\dot{x}^1 \\
\dot{x}^2
\end{bmatrix} = 0
\]
on
\[
\sum_{j=1}^{2} \left(L_{ij} - x j_{ij} \right) \dot{x}^j = 0, \quad i = 1, 2
\]
Use \(L_{ij} = \frac{dS}{du} \cdot \frac{dM}{du} \) and \(j_{ij} = \frac{dS}{du} \cdot \frac{dS}{du} \)
to obtain
\[
\sum_{j=1}^{2} \left(-\frac{dS}{du} \cdot \frac{dM}{du} - x \frac{dS}{du} \cdot \frac{dS}{du} \right) \dot{x}^j = 0
\]
for \(i = 1, 2 \). Now, \(\frac{dM}{du} \) and \(\frac{dS}{du} \) are in the plane of \(S_1 \) and \(S_2 \); \(S_1 \) and \(S_2 \) are a basis, so
\[
\frac{dM}{du} + x \frac{dS}{du} = 0 \quad \text{on the curve. QED}
\]
A characterization of the sphere

On a sphere of radius \(a \),
\[
x_1 = \frac{1}{a} \quad \text{since every normal section is a circle of radius } a.
\]
Every point is an umbilic.

Conversely, A regular surface, every point of which is an umbilic, is part of a sphere.

Note the surface is "closed" - compact, connected, and without boundary - the surface is a sphere.
Proof 1) Every point \(S(u,v) \) on the surface \(S \) is an umbilic, i.e., \(\lambda_1(u,v) = \lambda_2(u,v) \).

We may assume these are \(>0 \) and write \(\lambda_1(u,v) \) for \(\lambda_1 \) and \(\lambda_2 \) for \(\lambda_2 \).

2) Every curve on \(S \) is a line of curvature. Especially the coordinate curves \(u = \) constant and \(v = \) constant.

\[
\begin{align*}
\frac{\partial m}{\partial u} + x \frac{\partial s}{\partial u} &= 0 \\
\frac{\partial m}{\partial v} + x \frac{\partial s}{\partial v} &= 0
\end{align*}
\]

By Rodrigues.

Note that \(\lambda_1(u,v) \) is differentiable.

Differentiate the equations above:

\[
\begin{align*}
\frac{\partial}{\partial v} \frac{\partial m}{\partial u} &= -\frac{\partial}{\partial v} \frac{\partial s}{\partial u} - x \frac{\partial}{\partial v} \frac{\partial s}{\partial u} \\
\frac{\partial}{\partial v} \frac{\partial m}{\partial v} &= -\frac{\partial}{\partial v} \frac{\partial s}{\partial v} - x \frac{\partial}{\partial v} \frac{\partial s}{\partial v}
\end{align*}
\]

Since \(\frac{\partial}{\partial v} \frac{\partial m}{\partial u} = \frac{\partial}{\partial v} \frac{\partial s}{\partial u} \), one has

\[
\frac{\partial}{\partial v} \frac{\partial s}{\partial u} = \frac{\partial}{\partial v} \frac{\partial s}{\partial u}
\]

Since \(\frac{\partial s}{\partial u} \) and \(\frac{\partial s}{\partial v} \) are independent

one have

\[
\frac{\partial x}{\partial u} = 0 \quad \text{and} \quad \frac{\partial x}{\partial v} = 0 \quad \Rightarrow \quad x(u,v) = \text{constant} = x.
\]

3) From equations of Rodrigues:

\[
\begin{align*}
\frac{\partial m}{\partial u} + x \frac{\partial s}{\partial u} &= \frac{\partial}{\partial u} (m+xS) = 0 \\
\frac{\partial m}{\partial v} + x \frac{\partial s}{\partial v} &= \frac{\partial}{\partial v} (m+xS) = 0
\end{align*}
\]

so \(m + xS = \text{constant vector} = A \)

Thus \(\| S - \frac{1}{x} A \| = \frac{1}{x^2} \),
so \(S(u,v) \) lies on a sphere of radius \(\frac{1}{x} \)
and center \(\frac{1}{x} A \).

Problem 47. Show: A regular surface, every point of which is a planar point, is part of a plane. Hence, use \(x_1 = x_2 = 0 \) to obtain \(\frac{\partial m}{\partial u} = 0 \) and \(\frac{\partial m}{\partial v} = 0 \).
Remark: A right circular cylinder is locally isometric with a plane, but the surface has no umbilics, only parabolic points. Lines of curvature and related notions are extrinsic.

Problem $\mathbf{4}$: Show that a curve $S(x(t))$ on a surface for which $\frac{\partial}{\partial t} M(x(t))$ is parallel to $\frac{\partial}{\partial t} S(x(t))$ is a line of curvature (converse of Rodrigues).

That is, show $\frac{\partial}{\partial t} M(x(t)) = \lambda(t) \frac{\partial}{\partial t} S(x(t))$, where $|\lambda(t)| = k_1(x(t))$ or $k_2(x(t))$, and $\frac{\partial}{\partial t} S(x(t))$ is the corresponding principal direction.