Two cycles (oriented circles) touch if they are tangent as circles and if they have the same tangent direction at their point of tangency.

Theorem (Pythagoras - Laguerre) Let A, B, C, D be four cycles such that each touches the next (cyclically) and the four points of tangency are collinear. If C is any cycle touching R and S, then the square of the tangential distance from A to B is the sum of the squares of the tangential distances from B to C and from C to A.

There is a Euclidean proof of this particular theorem, but it is not completely trivial. We obtained it by applying a Laguerre transformation to the classical Pythagorean theorem.

(Received August 3, 1992)
Points of tangency collinear

\[a + b = c \]

R and S of same radius & opposite orientations

\[a^2 + b^2 = c^2 \]
Figure 8. Octahedron in M^3. All edges but those in plane $ABCD$ are light-like.

Figure 9. Octahedron from Π^2_E. Cycles A,M,B have a common center of similitude as do cycles C,M,D and R,M,S.
Figure 10. Perspective view of the proof
Figure 14. Steiner power in the Minkowski plane

Figure 15. Laguerre transformation of Steiner power in the Minkowski plane