
Math 200a (Fall 2016) - Homework 6

Professor D. Rogalski

Posted November 5–Due Mon. November 14 at 3pm

1 Reading

Read Chapter 7.

2 Exercises to submit on Mon. November 14

Exercise 1. Let G be a group (do not assume that G is finite).
(a). Show that if G is nilpotent, then all subgroups and quotient groups of G are also nilpotent.

(Hint: it is probably easiest to use the lower central series).
(b). Show that if G/Z(G) is nilpotent, then G is nilpotent.

Exercise 2. (a). Prove that a finite group G is nilpotent if and only if whenever a, b ∈ G are
elements with relatively prime orders, then a and b commute.

(b). Prove that the dihedral group D2n is nilpotent if and only if n is a power of 2. (one way
is to use part (a)).

Exercise 3. Let G be a finite group. The Frattini subgroup of a group G, denoted Φ(G), is the
intersection of all of the maximal subgroups of G.

(a). Prove that Φ(G) is a characteristic subgroup of G.
(b). Prove that Φ(G) is a nilpotent group. (Hint: use Frattini’s argument).
(c). Now let G = P be a p-group for some prime p. Recall that an elementary abelian p-group

is a finite direct product of copies of Zp. Show that P/Φ(P ) is an elementary abelian p-group,
and that Φ(P ) is the unique smallest normal subgroup with this property, i.e. if N is any normal
subgroup of P such that P/N is elementary abelian, then Φ(P ) ⊆ N .

Exercise 4. An element x of a ring R is called nilpotent if xn = 0 for some n ≥ 1.
(a). Prove that if R is a commutative ring with nilpotent elements x, y, then x+y is nilpotent.

(Hint: the binomial formula is valid in any commutative ring). Use this to show that the set I of
nilpotent elements in R is an ideal of R. (I is called the nilradical of R).

(b). Again if R is a commutative ring, prove that if u is any unit in R, and x is nilpotent,
then u + x is again a unit in R. (Hint : first do the case u = −1.)

(c). Give an example of a noncommutative ring R and nilpotent elements x, y ∈ R such that
x + y is not nilpotent.
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Exercise 5. Let R be a commutative ring. The ring R[[x]] of formal power series in one variable
is the ring whose elements are formal sums

∑∞
n=0 anx

n = a0 + a1x + a2x
2 + . . . for some an ∈ R.

(Note that any choice of coefficients an ∈ R defines a power series, and two power series are equal
by definition if and only if they have the same coefficients. “Convergence" of the power series
is meaningless in this general context.) Addition and multiplication of power series are defined
analogously as for polynomials. (See Section 7.2 exercise 3). You should convince yourself that
R[[x]] satisfies the axioms of a ring.

(a). Prove that
∑∞

n=0 anx
n is a unit in the ring R[[x]] if and only if a0 is a unit in R.

(b). Prove that if R is a domain, then R[[x]] is a domain.
(c). Suppose that R is a field. Show that the set of power series in R[[x]] whose constant term

is 0 is a maximal ideal I of R[[x]]. Prove that I is the unique maximal ideal of R. (remark: a ring
with a unique maximal ideal is called local.)

Exercise 6. Recall that the center of a ring R is

Z(R) = {r ∈ R|rs = sr for all s ∈ R}.

It is a subring of R.
Now let R be any commutative ring, and G any finite group. Consider the group ring RG.
(a). Suppose that K = {k1, . . . , km} is a conjugacy class in the group G. Prove that the

element K = k1 + k2 + · · ·+ km ∈ RG is an element of Z(RG).
(b). Let K1, . . . ,Kr be the distinct conjugacy classes inG and for each i letKi be the sum of the

elements in Ki, as in part (a). Prove that Z(RG) = {a1K1 + · · ·+ arKr|ai ∈ R for all 1 ≤ i ≤ r}.
In other words, the center consists of all R-linear combinations of the Ki.

Exercise 7. Let R be a ring, and consider the matrix ring Mn(R) for some n ≥ 1.
(a). Given a (two-sided) ideal I of R, show that Mn(I) is an ideal of Mn(R). (Here, Mn(I)

means the set of matrices (aij) such that aij ∈ I for all i, j.) Show that there is an isomorphism
of rings Mn(R)/Mn(I) ∼= Mn(R/I).

(b). Show that every ideal of Mn(R) is of the form Mn(I) for some ideal I of R. Conclude
that if R is a division ring, then Mn(R) is a simple ring, that is, that {0} and Mn(R) are the only
ideals of Mn(R).
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