Math 200b (Winter 2016) - Homework 1

Professor E. Zelmanov - Teaching Assistant F. Thilmany
Posted 9 January 2016 - Due 19 January 2016 at 13:00

The exercises can be found in Dummit and Foote: p. 519, \#\#1, 3, 5 and pp. 529531, \#\# 1, 3, 5, 10, 14, 16, 20.

Exercise 1. Show that $p(x)=x^{3}+9 x+6$ is irreducible in $\mathbb{Q}[x]$. Let θ be a root of $p(x)$. Find the inverse of $1+\theta$ in $\mathbb{Q}(\theta)$.

Exercise 2. Show that $x^{3}+x+1$ is irreducible over \mathbb{F}_{2} and let θ be a root. Compute the powers of θ in $\mathbb{F}_{2}(\theta)$.

Exercise 3. Suppose α is a rational root of a monic polynomial in $\mathbb{Z}[x]$. Prove that α is an integer.

Exercise 4. Let \mathbb{F} be a finite field of characteristic p. Prove that $|\mathbb{F}|=p^{n}$ for some positive integer n.

Exercise 5. Determine the minimal polynomial over \mathbb{Q} for the element $1+i$.
Exercise 6. Let $F=\mathbb{Q}(i)$. Prove that $x^{3}-2$ and $x^{3}-3$ are irreducible over F.
Exercise 7. Determine the degree of the extension $\mathbb{Q}(\sqrt{3+2 \sqrt{2}})$ over \mathbb{Q}.
Exercise 8. Prove that if $[F(\alpha): F]$ is odd then $F(\alpha)=F\left(\alpha^{2}\right)$.
Exercise 9. Let K / F be an algebraic extension and let R be a ring contained in K and containing F. Show that R is a subfield of K containing F.

Exercise 10. Suppose that F / K is a finite algebraic extension and $\alpha \in F$. Show that if A is the matrix of the linear transformation "multiplication by α " $(F \rightarrow F: x \mapsto \alpha x)$ over K, then α is a root of the characteristic polynomial for A. This gives an effective procedure for determining an equation of degree n satisfied by an element α in an extension F of degree n. Use this procedure to obtain the monic polynomial of degree 3 satisfied by $\sqrt[3]{2}$ and by $1+\sqrt[3]{2}+\sqrt[3]{4}$ (say over \mathbb{Q}).

