Math 200b (Winter 2016) - Homework 3

Professor E. Zelmanov - Teaching Assistant F. Thilmany

Posted 21 January 2016 - Due 29 January 2016 at 16:00

Exercise 1. Prove that the field $\mathbb{Q}(\alpha)$, where $\alpha^3 = 2$, has no automorphisms except the identity.

Exercise 2. Let $\alpha = 1 + \sqrt{2}$. Prove that there exists two embeddings of $\mathbb{Q}(\alpha)$ into \mathbb{C} , namely those sending α to $1 + \sqrt{2}$ and $1 - \sqrt{2}$ respectively.

Exercise 3. Let $\alpha = \sqrt{-5}$, $\beta = \sqrt{2}$. What is the degree of $\mathbb{Q}(\alpha, \beta)$ over \mathbb{Q} ? Find an element γ such that $\mathbb{Q}(\alpha, \beta) = \mathbb{Q}(\gamma)$.

Exercise 4. Let f(t) be an irreducible polynomial over a field F. Prove that the number of distinct roots of f(t) in the algebraic closure \overline{F} divides deg f(t).

Exercise 5. Let F be a field of characteristic $p \neq 0$. Prove that the field of rational functions F(t) is not separable over its subfield $F(t^p)$.

Exercise 6. Let $F = \mathbb{Z}/p\mathbb{Z}$ be the field with p elements (p prime) and let $a \in F^{\times}$. Show that $f(t) = t^p - t - a$ is irreducible in F[t].

Hint 1: Prove that if α is a root, then $\alpha + 1$ is a root as well.

Hint 2: Let f = gh for some $g, h \in F[t]$ with $1 \leq \deg g < \deg f$. Write $g(t) = \gamma_0 + \gamma_1 t + \cdots + \gamma_{k-1} t^{k-1} + t^k$ and look at γ_{k-1} .