Math 200b (Winter 2016) - Homework 3

Professor E. Zelmanov - Teaching Assistant F. Thilmany

Posted 21 January 2016 - Due 29 January 2016 at 16:00

Exercise 1. Prove that the field $\mathbb{Q}(\alpha)$, where $\alpha^{3}=2$, has no automorphisms except the identity.

Exercise 2. Let $\alpha=1+\sqrt{2}$. Prove that there exists two embeddings of $\mathbb{Q}(\alpha)$ into \mathbb{C}, namely those sending α to $1+\sqrt{2}$ and $1-\sqrt{2}$ respectively.

Exercise 3. Let $\alpha=\sqrt{-5}, \beta=\sqrt{2}$. What is the degree of $\mathbb{Q}(\alpha, \beta)$ over \mathbb{Q} ? Find an element γ such that $\mathbb{Q}(\alpha, \beta)=\mathbb{Q}(\gamma)$.

Exercise 4. Let $f(t)$ be an irreducible polynomial over a field F. Prove that the number of distinct roots of $f(t)$ in the algebraic closure \bar{F} divides $\operatorname{deg} f(t)$.

Exercise 5. Let F be a field of characteristic $p \neq 0$. Prove that the field of rational functions $F(t)$ is not separable over its subfield $F\left(t^{p}\right)$.

Exercise 6. Let $F=\mathbb{Z} / p \mathbb{Z}$ be the field with p elements (p prime) and let $a \in F^{\times}$. Show that $f(t)=t^{p}-t-a$ is irreducible in $F[t]$.
Hint 1: Prove that if α is a root, then $\alpha+1$ is a root as well.
Hint 2: Let $f=g h$ for some $g, h \in F[t]$ with $1 \leq \operatorname{deg} g<\operatorname{deg} f$. Write $g(t)=$ $\gamma_{0}+\gamma_{1} t+\cdots+\gamma_{k-1} t^{k-1}+t^{k}$ and look at γ_{k-1}.

