Math 200b (Winter 2016) - Homework 4

Professor E. Zelmanov - Teaching Assistant F. Thilmany

Posted 5 February 2016 - Due 12 February 2016 at 16:00

Exercise 1. Determine the Galois groups of the following polynomials over \mathbb{Q} :
(a) $t^{2}-t+1$, (b) $t^{2}-4$, (c) $t^{2}+t+1$, (d) $t^{2}-27$.

Exercise 2. Determine the Galois groups of the following polynomials over the indicated fields: (a) $t^{3}-10$ over $\mathbb{Q}(\sqrt{2})$, (b) $t^{2}-5$ over $\mathbb{Q}(\sqrt{-5})$.

Exercise 3. Let f be an irreducible polynomial of degree 3 over some field F. Prove that the splitting field K of f contains at most one subfield of degree 2 over F.

Exercise 4. (a) Prove that $t^{9}-1$ and $t^{7}-1$ have isomorphic Galois groups over \mathbb{Q}. (b) Prove that the Galois groups of $t^{10}-1$ and $t^{8}-1$ over \mathbb{Q} are not isomorphic.

Exercise 5. Let E be the splitting field of $t^{6}-1$ over \mathbb{Q}. Show that there is no field K with the property $\mathbb{Q} \subsetneq K \subsetneq E$.

Exercise 6. Let p be a prime number and k any strictly positive integer. Prove that $\Phi_{p^{k}}(t)=\Phi_{p}\left(t^{p^{k-1}}\right)$, where Φ_{n} is the nth cyclotomic polynomial. Use this to find $\Phi_{8}(t)$ and $\Phi_{27}(t)$.

