Math 200b (Winter 2016) - Homework 5

Professor E. Zelmanov - Teaching Assistant F. Thilmany

Posted 12 February 2016 - Due 19 February 2016 at 16:00

Exercise 1. Let K be a finite extension of \mathbb{Q}. Prove that there are only finitely many roots of 1 in K.

Exercise 2. Is the equation $x^{5}+x-1=0$ over \mathbb{Q} solvable by radicals?
Exercise 3. Prove that $\mathbb{Q}(\sqrt[3]{2})$ is not a subfield of any cyclotomic extension of \mathbb{Q}.
Exercise 4. Let G be a finite abelian group. Prove that there exists a Galois extension of \mathbb{Q} whose Galois group is G.
Hint: Show that G is a quotient of $(\mathbb{Z} / m \mathbb{Z})^{n}$ for some appropriate integers m, n.
Exercise 5. For each $n \geq 1$, find a field extension K / F such that $\operatorname{Gal}(K / F) \cong S_{n}$.

