Math 200b (Winter 2016) - Homework 6

Professor E. Zelmanov - Teaching Assistant F. Thilmany

Posted 19 February 2016 - Due 26 February 2016 at 16:00

Let F be a field and denote by $\left(\frac{a,b}{F}\right)$ the quaternion algebra associated to $a, b \in F^{\times}$. Recall that $\left(\frac{a,b}{F}\right)$ is the (noncommutative) F-algebra generated by two elements i and j satisfying $i^2 = a, j^2 = b$ and ij = -ji; a basis of $\left(\frac{a,b}{F}\right)$ over F is thus given by $\{1, i, j, ij\}$. In what follows, we identify F with its image F.1 in $\left(\frac{a,b}{F}\right)$. If $x = a + bi + cj + dij \in \left(\frac{a,b}{F}\right)$, we note $\overline{x} = a - bi - cj - dij$ the conjugate of x.

Exercise 1. Prove that the center of $\left(\frac{a,b}{F}\right)$ is F.

Exercise 2. Show that the trace $\operatorname{tr} x = x + \overline{x}$ and the norm $N(x) = x\overline{x}$ of $x \in \left(\frac{a,b}{F}\right)$ both belong to F. Prove that $x^2 - \operatorname{tr}(x)x + N(x) = 0$ holds for all $x \in \left(\frac{a,b}{F}\right)$.

Exercise 3. Prove that the algebra $\left(\frac{a,b}{F}\right)$ does not contain any non-trivial two-sided ideals.

Exercise 4. Suppose F has an automorphism σ of order n. Let $D = F((t; \sigma))$ be the division algebra of skew Laurent series. (Recall, D has as underlying additive group the usual Laurent series in t, but with multiplication rule $ta = \sigma(a)t$ for $a \in F$.) Prove that $Z = F^{\sigma}((t^n; \sigma))$ is the center of D (here F^{σ} denotes the fixed field of σ). Find the dimension of D over Z.