Math 200b (Winter 2016) - Homework 6

Professor E. Zelmanov - Teaching Assistant F. Thilmany

Posted 19 February 2016 - Due 26 February 2016 at 16:00

Let F be a field and denote by $\left(\frac{a, b}{F}\right)$ the quaternion algebra associated to $a, b \in F^{\times}$. Recall that $\left(\frac{a, b}{F}\right)$ is the (noncommutative) F-algebra generated by two elements i and j satisfying $i^{2}=a, j^{2}=b$ and $i j=-j i$; a basis of $\left(\frac{a, b}{F}\right)$ over F is thus given by $\{1, i, j, i j\}$. In what follows, we identify F with its image $F .1$ in $\left(\frac{a, b}{F}\right)$. If $x=a+b i+c j+d i j \in\left(\frac{a, b}{F}\right)$, we note $\bar{x}=a-b i-c j-d i j$ the conjugate of x.

Exercise 1. Prove that the center of $\left(\frac{a, b}{F}\right)$ is F.
Exercise 2. Show that the trace $\operatorname{tr} x=x+\bar{x}$ and the norm $N(x)=x \bar{x}$ of $x \in\left(\frac{a, b}{F}\right)$ both belong to F. Prove that $x^{2}-\operatorname{tr}(x) x+N(x)=0$ holds for all $x \in\left(\frac{a, b}{F}\right)$.

Exercise 3. Prove that the algebra $\left(\frac{a, b}{F}\right)$ does not contain any non-trivial two-sided ideals.

Exercise 4. Suppose F has an automorphism σ of order n. Let $D=F((t ; \sigma))$ be the division algebra of skew Laurent series. (Recall, D has as underlying additive group the usual Laurent series in t, but with multiplication rule $t a=\sigma(a) t$ for $a \in F$.) Prove that $Z=F^{\sigma}\left(\left(t^{n} ; \sigma\right)\right)$ is the center of D (here F^{σ} denotes the fixed field of σ). Find the dimension of D over Z.

