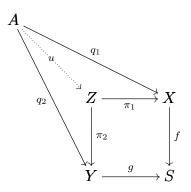
HOMEWORK 1

DUE 8 APRIL 2016

- 1. Let \mathcal{C} be a category, and let U_1 and U_2 be objects in \mathcal{C} . Suppose U_1 and U_2 are both universally attracting. Show that there is a unique isomorphism $i: U_1 \longrightarrow U_2$. (For future reference, the same is true if they're both universally repelling, with the same proof.)
- 2. Remember that by "ring" we mean "ring with 1." Let \mathcal{R} be the category of rings. If R_1 and R_2 are rings, then let $R_1 \times R_2$ be their set-theoretic product, which can also be given the natural structure of a ring.
 - (a) Show that $R_1 \times R_2$ is the product of R_1 and R_2 in \mathcal{R} .
 - (b) Show that $R_1 \times R_2 \simeq R_1 \oplus R_2$ is not the coproduct of R_1 and R_2 in \mathcal{R} .

Note: We'll see later that coproducts do exist in the category \mathcal{R}_{comm} of commutative rings; they're called tensor products.

- **3.** Let \mathcal{C} be a category. Let X, Y, S be objects in \mathcal{C} and $f : X \longrightarrow S, g : Y \longrightarrow S$ be morphisms in \mathcal{C} . A *fiber product* of f and g in \mathcal{C} (or by abuse of terminology, fiber product of X and Y over S) is an object Z in \mathcal{C} together with morphisms $\pi_1 : Z \longrightarrow X$ and $\pi_2 : Z \longrightarrow Y$ such that
 - (i) $g \circ \pi_2 = f \circ \pi_1;$
 - (ii) for any object A in C and any morphisms $q_1 : A \longrightarrow X, q_2 : A \longrightarrow Y$ such that $g \circ q_2 = f \circ q_1$ there exists a unique morphism $u : A \longrightarrow Z$ such that the diagram



is commutative.

Show that, if it exists, the fiber product Z of f and g is unique up to isomorphism. (The fiber product is denoted $X \times_S Y$.)

4. Let B be an abelian group. Let F_B be the functor from the category of abelian groups to itself defined for an abelian group A by

 $F_B(A) = \operatorname{Hom}(B, A) = \{f : B \longrightarrow A; f \text{ is a group homomorphism}\}.$

- (a) Show that F_B is a covariant functor.
- (b) Show that F_B is left exact.
- (c) Find a nontrivial abelian group B such that F_B is exact.
- (d) Is F_B always exact? Prove or find a counterexample.
- 5. Let G be a group. Denote $\mathbb{Z}[G]$ the free abelian group (or free \mathbb{Z} -module) on the set G. That is,

$$\mathbb{Z}[G] = \left\{ \sum_{\sigma \in G} a_{\sigma}\sigma ; a_{\sigma} \in \mathbb{Z} \,\forall \sigma \in G \text{ and all but finitely many } a_{\sigma} \text{'s are equal to zero } \right\}$$

with the natural addition.

(a) Show that $\mathbb{Z}[G]$ becomes a ring with the multiplication

$$\left(\sum_{\sigma\in G} a_{\sigma}\sigma\right)\cdot\left(\sum_{\tau\in G} b_{\tau}\tau\right) = \sum_{\sigma\in G} \left(\sum_{\sigma'\tau=\sigma} a_{\sigma'}b_{\tau}\right)\sigma.$$

(Do show that the multiplication is well-defined.)

- (b) What is the unit in this ring?
- (c) Show that the set R of finitely supported functions $f: G \longrightarrow \mathbb{Z}$ becomes a ring under the usual function addition and multiplication given by convolution. That is, the elements of R are maps of sets $f: G \longrightarrow \mathbb{Z}$ with the property that $f(\sigma) = 0$ for all but finitely many $\sigma \in G$; the addition is given by $(f+g)(\sigma) = f(\sigma) + g(\sigma)$ for all $\sigma \in G$; and the multiplication is given by

$$(f * g)(\sigma) = \sum_{\tau \in G} f(\tau)g(\tau^{-1}\sigma).$$

(d) Show that $\mathbb{Z}[G]$ is naturally isomorphic to R (as rings).