HOMEWORK 6

DUE 13 MAY 2016

Part I.

1. Let R be a ring and $F: M \longrightarrow N$ a homomorphism of R-modules. Prove that the following are equivalent.
(a) f is surjective.
(b) $f_{\mathfrak{p}}: M_{\mathfrak{p}} \longrightarrow N_{\mathfrak{p}}$ is surjective for each prime ideal \mathfrak{p} of R.
(c) $f_{\mathfrak{m}}: M_{\mathfrak{m}} \longrightarrow N_{\mathfrak{m}}$ is surjective for each maximal ideal \mathfrak{m} of R.
2. Let p be a prime number. For $n \geq m$ let $f_{n m}: \mathbb{Z} / p^{n} \mathbb{Z} \longrightarrow \mathbb{Z} / p^{m} \mathbb{Z}$ be the canonical projection, i.e. $f_{n m}\left(a \bmod p^{n}\right)=a \bmod p^{m}$.
(a) Show that $\left\{\mathbb{Z} / p^{n} \mathbb{Z}\right\}$ with homomorphisms $f_{n m}$ forms an inverse system of commutative rings. Let \mathbb{Z}_{p} denote $\underset{\leftarrow}{\lim } \mathbb{Z} / p^{n} \mathbb{Z}$
(b) Find the canonical image of \mathbb{Z} in \mathbb{Z}_{p} and show that \mathbb{Z}_{p} is an integral domain.
(c) Show that \mathbb{Z}_{p} is a local ring and an principal ideal domain.

The ring \mathbb{Z}_{p} is called the ring of p-adic integers.
3. Let p be a prime and let R be the set of formal power series in p :

$$
R=\left\{\sum_{n=0}^{\infty} a_{n} p^{n} ; a_{n}=0,1, \ldots, p-1\right\}
$$

(a) Show that R is a commutative ring under the addition and multiplication of power series (do show that multiplication makes sense!).
(b) Show that \mathbb{Z}_{p} is naturally isomorphic to R.

Bonus Let \mathbb{N} be the set of positive integers ordered by divisibility. Observe that

$$
\{\mathbb{Z} / n \mathbb{Z}\}_{n \in \mathbb{N}}
$$

forms an inverse system of commutative rings with the canonical homomorphisms $\mathbb{Z} / n \mathbb{Z} \longrightarrow \mathbb{Z} / m \mathbb{Z}$ for $m \mid n$. Let $\hat{\mathbb{Z}}=\lim _{\longleftarrow} \mathbb{Z} / n \mathbb{Z}$. Show that

$$
\hat{\mathbb{Z}} \cong \prod_{p \text { prime }} \mathbb{Z}_{p}
$$

Part II. From Atiyah-Macdonald
Chapter 5: 1, 3, 4, 8, 9

