HOMEWORK 6

DUE 13 MAY 2016

Part I.

- **1.** Let R be a ring and $F: M \longrightarrow N$ a homomorphism of R-modules. Prove that the following are equivalent.
 - (a) f is surjective.
 - (b) $f_{\mathfrak{p}}: M_{\mathfrak{p}} \longrightarrow N_{\mathfrak{p}}$ is surjective for each prime ideal \mathfrak{p} of R.
 - (c) $f_{\mathfrak{m}}: M_{\mathfrak{m}} \longrightarrow N_{\mathfrak{m}}$ is surjective for each maximal ideal \mathfrak{m} of R.
- **2.** Let p be a prime number. For $n \ge m$ let $f_{nm} : \mathbb{Z}/p^n \mathbb{Z} \longrightarrow \mathbb{Z}/p^m \mathbb{Z}$ be the canonical projection, i.e. $f_{nm}(a \mod p^n) = a \mod p^m$.
 - (a) Show that $\{\mathbb{Z}/p^n\mathbb{Z}\}$ with homomorphisms f_{nm} forms an inverse system of commutative rings. Let \mathbb{Z}_p denote $\lim \mathbb{Z}/p^n\mathbb{Z}$
 - (b) Find the canonical image of \mathbb{Z} in \mathbb{Z}_p and show that \mathbb{Z}_p is an integral domain.
 - (c) Show that \mathbb{Z}_p is a local ring and an principal ideal domain.

The ring \mathbb{Z}_p is called the ring of *p*-adic integers.

3. Let p be a prime and let R be the set of formal power series in p:

$$R = \left\{ \sum_{n=0}^{\infty} a_n p^n; a_n = 0, 1, \dots, p-1 \right\}.$$

- (a) Show that R is a commutative ring under the addition and multiplication of power series (do show that multiplication makes sense!).
- (b) Show that \mathbb{Z}_p is naturally isomorphic to R.

Bonus Let \mathbb{N} be the set of positive integers ordered by divisibility. Observe that

 $\{\mathbb{Z}/n\mathbb{Z}\}_{n\in\mathbb{N}}$

forms an inverse system of commutative rings with the canonical homomorphisms $\mathbb{Z}/n\mathbb{Z} \longrightarrow \mathbb{Z}/m\mathbb{Z}$ for $m \mid n$. Let $\hat{\mathbb{Z}} = \lim \mathbb{Z}/n\mathbb{Z}$. Show that

$$\hat{\mathbb{Z}} \cong \prod_{p \text{ prime}} \mathbb{Z}_p.$$

Part II. From Atiyah-Macdonald

Chapter 5: 1, 3, 4, 8, 9