SECOND HOMEWORK, DUE JANUARY 25TH

1. (i) Show that if R is Noetherian then so is R[x].

(ii) Prove that if R is Noetherian then so is $R[[x_1, x_2, ..., x_n]]$, where the last term is defined appropriately.

2. Let M be a Noetherian R-module. If $\phi: M \longrightarrow M$ is a surjective R-linear map, prove that ϕ is an automorphism. (*Hint, consider the submodules,* Ker (ϕ^n)).

3. Let k be a field and let $S \subset k[x_1, x_2, \ldots, x_n]$ be a set of polynomials in the variables x_1, x_2, \ldots, x_n with coefficients in k. The **zero set** of $S, V(S) \subset k^n$ is just the set of all $(a_1, a_2, \ldots, a_n) \in k^n$ such that $f(a_1, a_2, \ldots, a_n) = 0$ for all $f(x_1, x_2, \ldots, x_n) \in S$.

Show that we may find a finite subset $S_0 \subset S$ such that $V(S) = V(S_0)$. (*Hint: Observe that* V(S) = V(I) where I is the ideal generated by S.)