FOURTH HOMEWORK, DUE FEBRUARY 8TH

1. Let M, N and P be R-modules over a ring R. Show that there are natural isomorphisms:

$$
\begin{equation*}
\left.\bigwedge^{d}(M \oplus N) \simeq \bigoplus_{i+j=d}\left(\bigwedge^{i} M \underset{R}{\otimes} \bigwedge^{j} N\right)\right) \tag{i}
\end{equation*}
$$

(ii)

$$
\operatorname{Hom}_{R}(M \underset{R}{\otimes} N, P) \simeq \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right)
$$

2. Let V and W be vector spaces over a field F. Let

$$
V^{*}=\operatorname{Hom}_{F}(V, F),
$$

be the dual vector space. Show that there is a natural isomorphism

$$
\operatorname{Hom}_{F}(V, W) \simeq V^{*} \underset{F}{\otimes} W .
$$

3. Suppose that

$$
M \longrightarrow N \longrightarrow P \longrightarrow 0
$$

is a sequence of R-modules.
Show that

$$
0 \longrightarrow \operatorname{Hom}_{R}(P, Q) \longrightarrow \operatorname{Hom}_{R}(N, Q) \longrightarrow \operatorname{Hom}_{R}(M, Q),
$$

is (left) exact for all R-modules Q if and only if the first sequence is (right) exact.
4. Suppose that

$$
0 \longrightarrow M \longrightarrow N \longrightarrow P
$$

is a sequence of R-modules.
Show that

$$
0 \longrightarrow \operatorname{Hom}_{R}(Q, M) \longrightarrow \operatorname{Hom}_{R}(Q, N) \longrightarrow \operatorname{Hom}_{R}(Q, P),
$$

is left exact for all R-modules Q if and only if the first sequence is left exact.
5. Suppose that

$$
M \longrightarrow N \longrightarrow P \longrightarrow 0
$$

is a right exact sequence of R-modules.
Show that

$$
M \underset{R}{\otimes} Q \longrightarrow N \underset{R}{\otimes} Q \longrightarrow P \underset{R}{\otimes} Q \longrightarrow 0 .
$$

is right exact for all R-modules Q.
6. Give examples to show that one cannot extend (3-5) to short exact sequences. For example, even if

$$
0 \longrightarrow M \longrightarrow N \longrightarrow P \longrightarrow 0
$$

is a short exact sequence of R-modules then
$0 \longrightarrow \operatorname{Hom}_{R}(M, Q) \longrightarrow \operatorname{Hom}_{R}(N, Q) \longrightarrow \operatorname{Hom}_{R}(M, Q) \longrightarrow 0$, is not necessarily a short exact sequence.
Challenge Problem: 7. Give an example of a PID R and a matrix A with entries in R such that one cannot realise the $\operatorname{gcd} d$ of A as an entry of A by elementary row and column operations.

