SIXTH HOMEWORK, DUE FEBRUARY 22ND

1. What is $[\overline{\mathbb{Q}} : \mathbb{Q}]$?

Let L/K be a field extension. Let G be the set of automorphisms of L that fix K.

2. Show that G is naturally a group. G is called the **Galois group** of L/K and is denoted $\operatorname{Gal}(L/K)$.

3. Let M be an intermediary subfield. Let H be the set of all automorphisms of L over K that fix M. Show that H is a subgroup of G.

4. Let H be a subgroup of G. Let M be the subset of all elements of L fixed by H. Then M is an intermediary field, denoted L^H , called the fixed field of H.

5. Show that both assignments are inclusion reversing, that is, if $H \subset K$ are two subgroups, then $L^K \subset L^H$ and if $M \subset N$ are two intermediary fields, then $\operatorname{Gal}(L/N) \subset \operatorname{Gal}(L/M)$.

6. Given a subgroup H of G, let $K = \operatorname{Gal}(L/L^{H})$. Show that $H \subset K$. 7. Given an intermediary field M, let $N = L^{\operatorname{Gal}(L/M)}$. Show that $M \subset N$.

8. Let $L = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$. Find all the intermediary fields and subgoups of the Galois group. Compare.

9. Construct subfields of \mathbb{C}/\mathbb{Q} which are splitting fields for $t^3 - 1$, $t^4 + 5t^2 + 6$, $t^6 - 8$ and find the degrees of the extensions.

10. Let f(x) be a polynomial of degree *n* over a field *K*, with splitting field L/K. Show that the degree of the extension L/K divides *n*!.