HOMEWORK, DUE FRIDAY MARCH 17TH

1. Let $K=\mathbb{F}_{p}$ and $L=\overline{\mathbb{F}}_{p}$. Describe the lattice of inclusions of all intermediary fields.
2. Suppose we want to describe the field extension $L=\mathbb{F}_{27} / \mathbb{F}_{3}=K$. One way to do this, the best way in fact, is simply to say that this is a splitting field for $x^{27}-x$. However if we use this method, we don't see how to explicitly add and multiply elements of L.
(a) Let L / K be a splitting field for any irreducible cubic $f(x) \in \mathbb{F}_{3}[x]$. Show that $L \simeq \mathbb{F}_{27}$.
(b) Let α be a root of $f(x)$. Show that $L=K(\alpha)$.
(c) Now write down an explicit such polynomial $f(x)$.
(d) Describe the additive and multiplicative structure of L / K in terms of α and $f(x)$.
(e) Show how to compute inverses in L.
3. Let $L=K(x)$, where x is an indeterminate. Let $\alpha=f(x) / g(x)$ and let $M=K(\alpha)$. Recall that L / M is algebraic and the degree of x over M is the maximum degree of $f(x)$ and $g(x)$.
(a) Show that every automorphism of L / K is of the form

$$
x \longrightarrow \frac{a x+b}{c x+d}
$$

where $a d-b c \neq 0$.
(b) Show that the group of automorphisms of L / K is equal to $\operatorname{PGL}(2, K)$, the group of invertible 2×2 matrices, with entries in K, modulo the subgroup of matrices of the form

$$
\left(\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right) .
$$

4. Suppose that the monic polynomial $f(x) \in K[x]$ splits as

$$
x^{n}-a_{n-1} x^{n-1}+\cdots+a_{0}=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right) \ldots\left(x-\alpha_{n}\right) .
$$

Expanding this product we get polynomials in $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$, known as the elementary symmetric polynomials.
(a) Write down all the elementary symmetric polynomials in the case $n \leq 4$.
(b) Show that any polynomial in $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ which is symmetric under the action of S_{n}, is a rational function in the symmetric polynomials (challenge problem: show that they are in fact polynomials in
the symmetric polynomials, which are integer polynomials in the case the original polynomial is integral).
(c) Work this out in the case $n=3$ for the polynomial

$$
\alpha^{2}+\beta^{2}+\gamma^{2} .
$$

(d) If

$$
f(x)=x^{3}+a x^{2}+b x+c=(x-\alpha)(x-\beta)(x-\gamma),
$$

express

$$
\alpha^{2}+\beta^{2}+\gamma^{2},
$$

in terms of a, b and c.
5. (a) Let

$$
f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in K[x]
$$

be a general monic polynomial of degree n. Show that if the characteristic is coprime to n, then there is an automorphism of $K[x]$, such that the image of $f(x)$ has vanishing term in x^{n-1}.
In the case of a cubic,

$$
f(x)=x^{3}+a x^{2}+b x+c,
$$

find the transformed cubic

$$
g(x)=x^{3}+p x+q .
$$

(b) Find the discriminant of $g(x)$.
6. Find $\Phi_{6}(x), \Phi_{10}(x), \Phi_{30}(x)$.
7. Compute the Galois groups of $x^{7}-1, x^{20}-1$ and $x^{60}-1$ over \mathbb{Q}.
8. Give an example of a polynomial which is solvable by radicals, but whose splitting field is not an extension by radicals.
9. Suppose that the characteristic of K is p and that $f(x)=x^{p}-x-a \in$ $K[x]$, with splitting field L / K. Show that if α is a root of $f(x)$, then the roots of $f(x)$ are

$$
\beta, \quad \beta+1, \quad \beta+2, \quad \ldots, \quad y \beta+p-1 .
$$

Show that either $f(x)$ splits in K or that L / K has a cyclic Galois group of order p.
Challenge Problems: 10. Let L / K be a Galois extension with Galois group G. If $\alpha \in L$ the trace of α is

$$
f(x)=\sum_{\sigma \in G} \sigma(\alpha) .
$$

Show that the trace is a K-linear map

$$
f: L \longrightarrow K
$$

Show that the map f is non-zero.
11. Suppose that L / K is a Galois extension of degree p with Galois group G, generated by σ over a field of characteristic p. Let β be an element of L with trace one, and let

$$
\alpha=(p-1) \beta+(p-2) \sigma(\beta)+\cdots+2 \sigma^{p-3}(\beta)+\sigma^{p-2}(\beta) .
$$

Show that $\sigma(\alpha)-\alpha=1$ and that $a=\alpha^{p}-\alpha$ is an element of K. Show that $f(x)=x^{p}-x-a$ is irreducible over K, that L / K is a splitting field for $f(x)$ and that $L=K(\alpha)$.
12. (Hilbert's Theorem 90). Let L / K be a Galois extension of degree n with cyclic Galois group G generated by σ. The Norm of an element $\alpha \in L$ is the product

$$
N(\alpha)=\prod_{\phi \in G} \phi(\alpha) .
$$

(i) Suppose that $\alpha=\beta / \sigma(\beta)$. Show that $N(\alpha)=1$.
(ii) Conversely suppose that $N(\alpha)=1$. Show that there is a β such that

$$
\alpha=\frac{\beta}{\sigma(\beta)} .
$$

