HOMEWORK 2

DUE 21 APRIL 2017

Review Problems 1 and 3-6 in HW4 of 200B
(http://www.math.ucsd.edu/~jmckerna/Teaching/16-17/Winter/200B/problems.html).

1. Let R be a ring and M, N be R-modules. The functors $\operatorname{Hom}_{R}(M,-): R-\bmod \longrightarrow R$ - mod and $\operatorname{Hom}_{R}(-, N): R$ - mod $\longrightarrow R$ - mod are left exact (for a given definition of exactness of contravariant functors). Does this still hold if we think of the two functors as $R-\bmod \longrightarrow \mathbb{Z}-\bmod ?$
2. Write down explicitly the isomorphism $\operatorname{Hom}_{R}\left(M \otimes_{R} N, P\right) \longrightarrow \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right)$ and show that it is functorial, i.e. for each pair of R-module homomorphisms $f: M^{\prime} \longrightarrow M$ and $g: P \longrightarrow P^{\prime}$, and for any R-module N the diagram

is commutative. Here g_{*} denotes the pushforward of g.
3. Let $R=\mathbb{Z}[\sqrt{-6}]=\{a+b \sqrt{-6} ; a, b, \in \mathbb{Z}\}$. Let $\mathfrak{a}=(2, \sqrt{-6})$ be the ideal of R generated by 2 and $\sqrt{-6}$.
(a) Show that \mathfrak{a} is not a free R-module.
(b) Show that \mathfrak{a} is a projective R-module.
4. Let G be a group. A (left) G-module is an abelian group M on which there is a G action which satisfies for all $m, m^{\prime} \in M$ and $\sigma, \tau \in G$,

$$
\begin{aligned}
1_{G} m & =m \\
\sigma(\tau m) & =(\sigma \tau) m \\
\sigma\left(m+m^{\prime}\right) & =\sigma m+\sigma m^{\prime}
\end{aligned}
$$

That is, there is a group homomorphism $G \longrightarrow \operatorname{Aut}_{\mathbb{Z}}(M): \sigma \mapsto \sigma(\cdot)$. A morphism of G-modules $f: M \longrightarrow N$ is a group homomorphism which also satisfies $f(\sigma m)=\sigma f(m)$, for $m \in M$ and $\sigma \in G$. For a G-module M, the subgroup of G-invariant elements of M is

$$
M^{G}:=\{m \in M ; \sigma m=m, \forall \sigma \in G\}
$$

Consider the functor $F(M)=M^{G}$ from the category of G-modules to the category of abelian groups.
(a) Show that the category of left G-modules is the same as the category of left modules over the ring $\mathbb{Z}[G]$. (Nothing fancy is warranted here; just describe the correspondence between the two categories.)
(b) Show that F is a left exact functor.
(c) Let t be a variable and let $G=\left\{t^{n} ; n \in \mathbb{Z}\right\}$ be the infinite cyclic group generated by t. Let $N=\mathbb{Z}[G]=\mathbb{Z}\left[t, t^{-1}\right]$, and let M be the sub- G-module of N,

$$
M=\left\{n \in N ; n=n^{\prime}(t-1) \text { for some } n^{\prime} \in N\right\}=\mathbb{Z}\left[t, t^{-1}\right](t-1)
$$

Show that N and M are G-modules under left-multiplication. Show that as abelian groups $N / M \cong \mathbb{Z}$ and that the action of G on \mathbb{Z}, induced by this isomorphism, is trivial (i.e., $\sigma a=a$ for all $\sigma \in G, a \in \mathbb{Z}$).
(d) Use the exact sequence of G-modules

$$
0 \longrightarrow M \longrightarrow N \longrightarrow \mathbb{Z} \longrightarrow 0
$$

to show that F is not exact.
5. For $i \geq 0$, calculate $\operatorname{Ext}_{\mathbb{Z}}^{i}(\mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z})$ and $\operatorname{Ext}_{\mathbb{Z}}^{i}(\mathbb{Z} / 2 \mathbb{Z}, \mathbb{Q})$.
6. Let B be an R-module. Show that the following are equivalent.
(i) B is projective.
(ii) For all R-modules C and $i \geq 1, \operatorname{Ext}_{R}^{i}(B, C)=0$.
(iii) For all R-modules $C, \operatorname{Ext}_{R}^{1}(B, C)=0$.
7. (will not be graded) Finish the proof of the snake lemma. Use the notation from lecture.

