Problem 1. Prove the following properties of division. Here, \(a, b, c, d \) are arbitrary elements of \(\mathbb{Z} \).

(a) \(a \mid 0, a \mid a \) and \(\pm 1 \mid a \);
(b) if \(a \mid b \) and \(b \mid c \), then \(a \mid c \);
(c) if \(a \mid b \) and \(b \mid a \), then \(a = \pm b \);
(d) \(a \mid b \) and \(a \mid c \) if and only if \(a \mid (xb + yc) \) for all \(x, y \in \mathbb{Z} \);
(e) if \(a \mid b \) and \(c \mid d \), then \(ac \mid bd \);
(f) if \(ac \mid bc \) and \(c \neq 0 \), then \(a \mid b \).

Problem 2. Prove that for any \(n \in \mathbb{N} \), \(5^{2n+1} + 2^{2n+1} \) is divisible by 7.

Problem 3. Prove the following properties of the greatest common divisor, denoted ‘gcd’. Here, \(a \) and \(b \) are arbitrary elements of \(\mathbb{Z} \) and \(d \in \mathbb{N} - \{0\} \).

(a) \(\gcd(a, 0) = |a|, \gcd(a, a) = |a|, \) and \(\gcd(a, \pm 1) = 1 \);
(b) \(\gcd(a, xa \pm b) = \gcd(a, b) \), for any \(x \in \mathbb{Z} \);
(c) if \(d \) divides \(a \) and \(b \), then \(\gcd(a/d, b/d) = \frac{\gcd(a, b)}{d} \).

Use parts (b) and (c) to quickly compute \(\gcd(23000, 2310) \).

Problem 4. Let \(a, b \in \mathbb{Z} \) be such that \(\gcd(a, b) = 1 \). Determine the value of \(\gcd(a + b, a - b) \) as a function of \(a \) and \(b \).

The Fibonacci sequence is the sequence \((F_n \mid n \in \mathbb{N})\) given inductively by

\[
F_0 = 0, \quad F_1 = 1 \quad \text{and} \quad F_{n+1} = F_n + F_{n-1} \quad \text{for} \ n \geq 1.
\]

Problem 5. Prove that for any \(n \in \mathbb{N} \), \(\gcd(F_n, F_{n+1}) = 1 \).

Problem 6. Prove that for any \(k, n \in \mathbb{N} \) with \(k < n \), one has

\[
F_n = F_{k+1}F_{n-k} + F_kF_{n-(k+1)}.
\]

Deduce that if \(m \mid n \), then \(F_m \mid F_n \).
Problem 7. Let $a \in \mathbb{Z}$. What are all the possible remainders of the (Euclidean) division of
(i) a^2 by 2;
(ii) a^2 by 3;
(iii) a^2 by 5;
(iv) a^2 by 8;
(v) $a^3 - a$ by 3;
(vi) a^3 by 3;
(vii) a^3 by 5;
(viii) a^3 by 7.

Problem 8. Let a be an odd integer, and assume $a > 1$. Prove that a has a unique representation $a = x^2 - y^2$ as a difference of two squares if and only if a is a prime number.

Problem 9. Let $a, b, c \in \mathbb{Z}$. Prove that
(a) if $a | bc$ and $\gcd(a, b) = 1$, then $a | c$;
(b) if $a | c$, $b | c$ and $\gcd(a, b) = 1$, then $ab | c$.

Problem 10. Let $\frac{a}{b}, \frac{c}{d}$ be two rational numbers in reduced form (i.e. $a, c \in \mathbb{Z}$, $b, d \in \mathbb{N} - \{0\}$ and $\gcd(a, b) = \gcd(c, d) = 1$). Show that if $\frac{a}{b} + \frac{c}{d}$ is an integer, then $b = d$.

Problem 11. Let $a \in \mathbb{Z}$ be both a square and a cube, i.e. there are $b, c \in \mathbb{Z}$ such that $a = b^2$ and $a = c^3$. Prove that a is a sixth power, i.e. there exists $d \in \mathbb{Z}$ such that $a = d^6$.

Let $\text{lcm}(a, b)$ denote the least common multiple of two integers a and b, that is, l is a positive multiple of both a and b, and l divides any other common multiple of a and b.

Problem 12. Let $a, b \in \mathbb{Z}$ and write $a = \pm p_1^{e_1} \cdots p_r^{e_r}$, $b = \pm p_1^{f_1} \cdots p_r^{f_r}$ their unique factorization as a product of the distinct positive primes p_1, \ldots, p_r dividing either a or b. Prove that $\gcd(a, b) = p_1^{\min(e_1, f_1)} \cdots p_r^{\min(e_r, f_r)}$ and that $\text{lcm}(a, b) = p_1^{\max(e_1, f_1)} \cdots p_r^{\max(e_r, f_r)}$. Deduce that $\gcd(a, b) \cdot \text{lcm}(a, b) = a \cdot b$ for any $a, b \in \mathbb{N}$.

Problem 13. Let $a \in \mathbb{N} - \{0\}$ and write $a = p_1^{e_1} \cdots p_r^{e_r}$ its unique factorization as a product of the distinct positive primes p_1, \ldots, p_r. Determine the number of (positive) divisors of a, in term of the p_i's and the e_i's. Deduce that a is a square if and only if it has an odd number of positive divisors.

Problem 14. Show that there are infinitely many prime numbers whose residues are 3 modulo 4. (Hint: adapt Euclid’s proof of the infinitude of prime numbers.)