Math 104a: Number theory - Problem set 1

François Thilmany

Due Friday 6 July 2018

Problem 1. Prove the following properties of division. Here, a, b, c, d are arbitrary elements of \mathbb{Z}.
(a) $a|0, a| a$ and $\pm 1 \mid a$;
(b) if $a \mid b$ and $b \mid c$, then $a \mid c$;
(c) if $a \mid b$ and $b \mid a$, then $a= \pm b$;
(d) $a \mid b$ and $a \mid c$ if and only if $a \mid(x b+y c)$ for all $x, y \in \mathbb{Z}$;
(e) if $a \mid b$ and $c \mid d$, then $a c \mid b d$;
(f) if $a c \mid b c$ and $c \neq 0$, then $a \mid b$.

Problem 2. Prove that for any $n \in \mathbb{N}, 5^{2 n+1}+2^{2 n+1}$ is divisible by 7 .

Problem 3. Prove the following properties of the greatest common divisor, denoted 'gcd'. Here, a and b are arbitrary elements of \mathbb{Z} and $d \in \mathbb{N}-\{0\}$.
(a) $\operatorname{gcd}(a, 0)=|a|, \operatorname{gcd}(a, a)=|a|$, and $\operatorname{gcd}(a, \pm 1)=1$;
(b) $\operatorname{gcd}(a, x a \pm b)=\operatorname{gcd}(a, b)$, for any $x \in \mathbb{Z}$;
(c) if d divides a and b, then $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=\frac{\operatorname{gcd}(a, b)}{d}$.

Use parts (b) and (c) to quickly compute $\operatorname{gcd}(23000,2310)$.
Problem 4. Let $a, b \in \mathbb{Z}$ be such that $\operatorname{gcd}(a, b)=1$. Determine the value of $\operatorname{gcd}(a+b, a-b)$ as a function of a and b.

The Fibonacci sequence is the sequence ($F_{n} \mid n \in \mathbb{N}$) given inductively by

$$
F_{0}=0, \quad F_{1}=1 \quad \text { and } \quad F_{n+1}=F_{n}+F_{n-1} \quad \text { for } n \geq 1 .
$$

Problem 5. Prove that for any $n \in \mathbb{N}, \operatorname{gcd}\left(F_{n}, F_{n+1}\right)=1$.

Problem 6. Prove that for any $k, n \in \mathbb{N}$ with $k<n$, one has

$$
F_{n}=F_{k+1} F_{n-k}+F_{k} F_{n-(k+1)} .
$$

Deduce that if $m \mid n$, then $F_{m} \mid F_{n}$.

Problem 7. Let $a \in \mathbb{Z}$. What are all the possible remainders of the (Euclidean) division of
(i) a^{2} by 2 ;
(ii) a^{2} by 3 ;
(iii) a^{2} by 5 ;
(iv) a^{2} by 8 ;
(v) $a^{3}-a$ by 3 ;
(vi) a^{3} by 3 ;
(vii) a^{3} by 5 ;
(viii) a^{3} by 7 .

Problem 8. Let a be an odd integer, and assume $a>1$. Prove that a has a unique representation $a=x^{2}-y^{2}$ as a difference of two squares if and only if a is a prime number.

Problem 9. Let $a, b, c \in \mathbb{Z}$. Prove that
(a) if $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, then $a \mid c$;
(b) if $a|c, b| c$ and $\operatorname{gcd}(a, b)=1$, then $a b \mid c$.

Problem 10. Let $\frac{a}{b}, \frac{c}{d}$ be two rational numbers in reduced form (i.e. $a, c \in \mathbb{Z}, b, d \in \mathbb{N}-\{0\}$ and $\operatorname{gcd}(a, b)=\operatorname{gcd}(c, d)=1)$. Show that if $\frac{a}{b}+\frac{c}{d}$ is an integer, then $b=d$.

Problem 11. Let $a \in \mathbb{Z}$ be both a square and a cube, i.e. there are $b, c \in \mathbb{Z}$ such that $a=b^{2}$ and $a=c^{3}$. Prove that a is a sixth power, i.e. there exists $d \in \mathbb{Z}$ such that $a=d^{6}$.

Let $\operatorname{lcm}(a, b)$ denote the least common multiple of two integers a and b, that is, l is a positive multiple of both a and b, and l divides any other common multiple of a and b.

Problem 12. Let $a, b \in \mathbb{Z}$ and write $a= \pm p_{1}^{e_{1}} \ldots p_{r}^{e_{r}}, b= \pm p_{1}^{f_{1}} \ldots p_{r}^{f_{r}}$ their unique factorization as a product of the distinct positive primes p_{1}, \ldots, p_{r} dividing either a or b. Prove that $\operatorname{gcd}(a, b)=p_{1}^{\min \left(e_{1}, f_{1}\right)} \ldots p_{r}^{\min \left(e_{r}, f_{r}\right)}$ and that $\operatorname{lcm}(a, b)=p_{1}^{\max \left(e_{1}, f_{1}\right)} \ldots p_{r}^{\max \left(e_{r}, f_{r}\right)}$. Deduce that $\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a \cdot b$ for any $a, b \in \mathbb{N}$.

Problem 13. Let $a \in \mathbb{N}-\{0\}$ and write $a=p_{1}^{e_{1}} \ldots p_{r}^{e_{r}}$ its unique factorization as a product of the distinct positive primes p_{1}, \ldots, p_{r}. Determine the number of (positive) divisors of a, in term of the p_{i} 's and the e_{i} 's. Deduce that a is a square if and only if it has an odd number of positive divisors.

Problem 14. Show that there are infinitely many prime numbers whose residues are 3 modulo 4. (Hint: adapt Euclid's proof of the infinitude of prime numbers.)

