Math 104a: Number theory – Problem set 1

François Thilmany

Due Friday 6 July 2018

Problem 1. Prove the following properties of division. Here, *a*, *b*, *c*, *d* are arbitrary elements of \mathbb{Z} .

- (a) $a \mid 0, a \mid a \text{ and } \pm 1 \mid a;$
- (b) if *a* | *b* and *b* | *c*, then *a* | *c*;

(c) if $a \mid b$ and $b \mid a$, then $a = \pm b$;

- (d) $a \mid b$ and $a \mid c$ if and only if $a \mid (xb + yc)$ for all $x, y \in \mathbb{Z}$;
- (e) if *a* | *b* and *c* | *d*, then *ac* | *bd*;
- (f) if $ac \mid bc$ and $c \neq 0$, then $a \mid b$.

Problem 2. Prove that for any $n \in \mathbb{N}$, $5^{2n+1} + 2^{2n+1}$ is divisible by 7.

Problem 3. Prove the following properties of the greatest common divisor, denoted 'gcd'. Here, *a* and *b* are arbitrary elements of \mathbb{Z} and $d \in \mathbb{N} - \{0\}$.

- (a) $gcd(a, 0) = |a|, gcd(a, a) = |a|, and gcd(a, \pm 1) = 1;$
- (b) $gcd(a, xa \pm b) = gcd(a, b)$, for any $x \in \mathbb{Z}$;
- (c) if d divides a and b, then $gcd(\frac{a}{d}, \frac{b}{d}) = \frac{gcd(a,b)}{d}$.

Use parts (b) and (c) to quickly compute gcd(23000, 2310).

Problem 4. Let $a, b \in \mathbb{Z}$ be such that gcd(a, b) = 1. Determine the value of gcd(a + b, a - b) as a function of a and b.

The Fibonacci sequence is the sequence $(F_n \mid n \in \mathbb{N})$ given inductively by

$$F_0 = 0$$
, $F_1 = 1$ and $F_{n+1} = F_n + F_{n-1}$ for $n \ge 1$.

Problem 5. Prove that for any $n \in \mathbb{N}$, $gcd(F_n, F_{n+1}) = 1$.

Problem 6. Prove that for any $k, n \in \mathbb{N}$ with k < n, one has

$$F_n = F_{k+1}F_{n-k} + F_kF_{n-(k+1)}$$

Deduce that if $m \mid n$, then $F_m \mid F_n$.

Problem 7. Let $a \in \mathbb{Z}$. What are all the possible remainders of the (Euclidean) division of

(i) a^2 by 2; (ii) a^2 by 3; (iii) a^2 by 5; (iv) a^2 by 8; (v) $a^3 - a$ by 3; (vi) a^3 by 3; (vii) a^3 by 5; (viii) a^3 by 7.

Problem 8. Let *a* be an odd integer, and assume a > 1. Prove that *a* has a unique representation $a = x^2 - y^2$ as a difference of two squares if and only if *a* is a prime number.

Problem 9. Let $a, b, c \in \mathbb{Z}$. Prove that

(a) if $a \mid bc$ and gcd(a, b) = 1, then $a \mid c$;

(b) if $a \mid c, b \mid c$ and gcd(a, b) = 1, then $ab \mid c$.

Problem 10. Let $\frac{a}{b}, \frac{c}{d}$ be two rational numbers in reduced form (i.e. $a, c \in \mathbb{Z}, b, d \in \mathbb{N} - \{0\}$ and gcd(a, b) = gcd(c, d) = 1). Show that if $\frac{a}{b} + \frac{c}{d}$ is an integer, then b = d.

Problem 11. Let $a \in \mathbb{Z}$ be both a square and a cube, i.e. there are $b, c \in \mathbb{Z}$ such that $a = b^2$ and $a = c^3$. Prove that *a* is a sixth power, i.e. there exists $d \in \mathbb{Z}$ such that $a = d^6$.

Let lcm(a, b) denote the least common multiple of two integers *a* and *b*, that is, *l* is a positive multiple of both *a* and *b*, and *l* divides any other common multiple of *a* and *b*.

Problem 12. Let $a, b \in \mathbb{Z}$ and write $a = \pm p_1^{e_1} \dots p_r^{e_r}$, $b = \pm p_1^{f_1} \dots p_r^{f_r}$ their unique factorization as a product of the distinct positive primes p_1, \dots, p_r dividing either a or b. Prove that $gcd(a, b) = p_1^{\min(e_1, f_1)} \dots p_r^{\min(e_r, f_r)}$ and that $lcm(a, b) = p_1^{\max(e_1, f_1)} \dots p_r^{\max(e_r, f_r)}$. Deduce that $gcd(a, b) \cdot lcm(a, b) = a \cdot b$ for any $a, b \in \mathbb{N}$.

Problem 13. Let $a \in \mathbb{N} - \{0\}$ and write $a = p_1^{e_1} \dots p_r^{e_r}$ its unique factorization as a product of the distinct positive primes p_1, \dots, p_r . Determine the number of (positive) divisors of a, in term of the p_i 's and the e_i 's. Deduce that a is a square if and only if it has an odd number of positive divisors.

Problem 14. Show that there are infinitely many prime numbers whose residues are 3 modulo 4. (Hint: adapt Euclid's proof of the infinitude of prime numbers.)