
Math 104a: Number theory – Problem set 2

François Thilmany

due Friday 13 July 2018

Problem 1. Solve (i.e. find all integral solutions to) the following linear diophantine equa-
tions:

(a) 4x + 5y = 0
(b) 4x + 5y = −2
(c) 49x − 35y = 14
(d) 15x + 27y = 35

Problem 2. Alice owes Bob $107, but only has banknotes worth $5 and $7 (Alice and Bob
live in Fiji). How should Alice proceed in the following situations? (Provide all solutions and
justify them properly.)

(a) Alice would like to pay back Bob (the exact amount) with as few bills as possible.
(b) Out of spite, Alice would like to return the exact amount to Bob using as many bills as

possible.
(c) Bob actually has change: he has $5 notes and is willing to give Alice change back if

she overpays. Together, they would like to minimize the total number of bills that get
exchanged.

Problem 3. How many ways are there to make $100 from 1000 coins, using only quarters
($0.25), dimes ($0.10) or nickels ($0.05)?

For the problems below, you will need some definitions that we will cover on Monday 9th.
At the end of this document, I included these definitions and some examples. I encourage
you to read ahead and start working on the problems.

Problem 4. Let G be a group and g ∈ G. For any n ∈ Z, denote by gn the n-fold product
g · g · · · · · g if n> 0. Otherwise, if n< 0, denote by gn the |n|-fold product g−1 · g−1 · · · · · g−1.
If n= 0, we set g0 = e, the neutral element of G.

Show that the set {. . . , g−2, g−1, g0, g1, g2, . . . } of all the "powers" of g is a group with the
same multiplication as G. It is called the subgroup generated by g.

Problem 5. Let G be a set endowed with a binary operation · : G × G → G such that G
satisfies all the axiom of a group except perhaps for the existence of inverses:
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(A) · is associative, i.e. (g · h) · k = g · (h · k) for all g, h, k ∈ G
(N) There is an element e ∈ G such that g · e = g = e · g for all g ∈ G.

Fix an element g ∈ G, and let lg denote the map "left multiplication by g", defined by

lg : G→ G : h 7→ lg(h) = gh.

Prove that the existence of an inverse for g is equivalent to the fact that lg is bijective. Deduce
that if G is a group, then lg is always bijective.

Hint: If g has an inverse g−1, show that lg and lg−1 are inverses (as maps G→ G), so that
lg is a bijection. For the converse, first use that lg is surjective to find a right inverse h for g,
then use injectivity to show that h is also a left inverse.

Problem 6. (a) Let ξ= 1+
p

5
2 and let Z[ξ] denote the subset {a+ bξ | a, b ∈ Z} of R. Show

that Z[ξ], endowed with the usual addition and product of real numbers, is an integral
domain.
Hint: Show that ξ2 = ξ+1, and use it to check that multiplication Z[ξ]×Z[ξ]→ Z[ξ]
is well defined. Think about which axioms you need to check, and which ones are
automatically true because they hold in R.

(b) Let χ =
p

5
2 and let Z[χ] denote the subset {a + bχ | a, b ∈ Z} of R. Show that Z[χ],

if endowed with the usual multiplication and addition of real numbers, is not a ring.
Hint: You may use that

p
5 /∈Q.

Problem 7. Let D be an integral domain and let a, b ∈ D. If d and d ′ are gcd’s of a and b,
prove that there exists a unit u ∈ D× such that d ′ = ud. Conversely, prove that if u ∈ D× and
d is a gcd of a and b, then ud is also a gcd of a and b.

(This shows that the gcd is unique up to multiplication by a unit.)

Problem 8. Show that C[x], the ring of polynomials with coefficients in C, is a Euclidean
domain with Euclidean function the degree, deg : C[x]− {0} → N : P 7→ deg P.

Hint: To show that C[x] is a domain, use the degree function. To prove that deg is an
acceptable Euclidean function, use long division of polynomials.

Problem 9. Let D be a Euclidean domain with Euclidean function s : D − {0} → N. Show
that if a divides b and s(a) = s(b), then a and b are associates. Give an example to show
that the hypothesis “a divides b” is necessary.

Hint: Write the Euclidean division of a by b, say with remainder r. What can you say
about s(r)?

Problem 10. Let D be a Euclidean domain. Using Bézout’s identity, prove Euclid’s lemma: if
p ∈ D is irreducible, then p is prime.

Hint: Adapt the proof we have seen for D = Z.

Problem 11. Show that 1+i is a prime in the Euclidean domainZ[i] = {a+bi | a, b ∈ Z} ⊂ C.
Is 2 a prime in Z[i]? What about 7?
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Definitions for problems 4-11

Definition. Let S be a set. A binary operation on S is a map S×S→ S. Binary operations are
often denoted with the common symbols ∗, ·, +, ◦, etc. If, say, ∗ denotes a binary operation
∗ : S × S→ S, then the image of a couple (a, b) ∈ S will be denoted a ∗ b.

Definition. A group is a set G endowed with a binary operation ∗ : G × G → G (∗ is often
called the product of G) with the following three properties:

(A) ∗ is associative: for any a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c)
(N) ∗ has a neutral element e (called identity): there exists e ∈ G such that g ∗ e = g = e∗ g

holds for any g ∈ G.
(I) every element has an inverse for ∗: for any g ∈ G, there exists h ∈ G such that h ∗ g =

e = g ∗ h.
If in addition, a group G satisfies the commutativity property below, then G is called commutative
or abelian.

(Com) ∗ is commutative: For any g, h ∈ G, we have h ∗ g = g ∗ h.

Example. In lectures, we will briefly explain why the following sets with binary operations
are commutative groups. (Can you identify the neutral element in each case?)
(i) Z, Q, R and C with the usual addition +
(ii) {1,−1} with usual multiplication ·
(iii) {1, i,−1,−i} with multiplication · of complex numbers.
(iv) The set Q× =Q− {0} of non-zero rational numbers with usual multiplication ·
(v) The set R× of non-zero real numbers with usual multiplication ·
(vi) The set C× of non-zero complex numbers with usual multiplication ·

Definition. A ring is a set R with two binary operations: addition "+" and multiplication "·",
that satisfy the following properties:
• R is a commutative group with +, i.e.

(A) + is associative
(N) + has a neutral element denoted 0
(I) every element a ∈ R has an inverse for +, called the opposite and denoted −a.

(Com) + is commutative
• Multiplication · : R× R→ R satisfies

(A) · is associative
(N) · has a neutral element denoted 1

(Com) · is commutative
• + and · are compatible via the distribution law:

(D) for any a, b, c ∈ R, we have a · (b+ c) = a · b+ a · c.

Example. In lectures, we will briefly explain why the following sets with operations are rings.
In this homework, you may use this fact without proof, but indicate where you use it.
(i) Z, Q, R and C are rings with the usual addition and usual multiplication.
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(ii) The set Z[i] = {a + bi | a, b ∈ Z} ⊂ C with addition and multiplication of complex
numbers.

(iii) C[x], the set of polynomials with coefficients in C, is a ring with addition and multi-
plications of polynomials.

Definition. Let D be a ring. If D satisfies the cancellation law
(C) for any a ∈ D− {0} and b, c ∈ D, if ab = ac then b = c

and if D 6= {0} (equivalently, 1 6= 0 in D), then D is called an integral domain (or domain for
short). By convention, the one-element ring R= {0} is not a domain.

Example. The examples of rings Z, Q, R, C, Z[i] and C[x] above are all integral domains.
We will see examples of rings that are not domains in class.

Definition. An integral domain D is called Euclidean if there is a Euclidean function s :
D − {0} → N. A Euclidean function is a function s : D − {0} → N which satisfies the two
properties:
(i) If a, b ∈ D− {0} are such that a divides b, then s(a)≤ s(b).
(ii) For any a, b ∈ D− {0}, there are q, r ∈ D such that

a = bq+ r and either r = 0 or s(r)< s(b).

Property (ii) says we can do Euclidean division in D using s.

Example. (i) We have proved in class that Z is a Euclidean domain with the Euclidean
function s(a) = |a|.

(ii) We will prove that Z[i] is a Euclidean domain with the Euclidean function N defined
by N(a+ bi) = a2 + b2.
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