Math 104a: Number theory - Problem set 4

François Thilmany

due Friday 27 July 2018

Problem 1. Let R be a ring and $a, b \in R$. Check that the set $a R=\{a r \mid r \in R\}$ is an ideal. Prove that $a R \subset b R$ if and only if b divides a. (Any ideal which is of the form $a R$ for some $a \in R$ is called a principal ideal, and a is called its generator, so that $a R$ is called the (principal) ideal generated by a.)

Problem 2. Let R be a ring and $p \in R$. Show that the ideal $p R=\{p r \mid r \in R\}$ of R is a prime ideal if and only if p is a prime element.

Problem 3. Let D be a Euclidean domain and I an arbitrary ideal of D. Prove that there exists $a \in D$ such that $I=a D$. (In other words, any ideal of a Euclidean domain is principal.) In particular, every ideal of the ring \mathbb{Z} is of the form $m \mathbb{Z}$ for some $m \in \mathbb{N}$.

Hint: If s denotes the Euclidean function of D and $I \neq\{0\}$, consider $a \in I-\{0\}$ with $s(a)$ minimal.

Problem 4. Let $\xi=\sqrt{-5}$, and recall the subring $\mathbb{Z}[\xi]=\{a+b \xi \mid a, b \in \mathbb{Z}\}$ of \mathbb{C} from homework 3 problem 1. Prove that:
(a) $I=\{2 \alpha+(1+\xi) \beta \mid \alpha, \beta \in \mathbb{Z}[\xi]\}$ is an ideal of $\mathbb{Z}[\xi]$.
(b) $\phi: \mathbb{Z}[\xi] \rightarrow \mathbb{Z} / 2 \mathbb{Z}: a+b \xi \mapsto a+b+2 \mathbb{Z}$ is a homomorphism of rings.
(c) $I=\operatorname{ker} \phi$.
(d) I is a maximal ideal, hence is also a prime ideal.

However, we have seen in homework 3 that neither 2 nor $1+\xi$ is prime in $\mathbb{Z}[\xi]$.
Problem 5. Solve (i.e. give all solutions $x \in \mathbb{Z}$ to) the following congruences
(a) $9 x \equiv 1 \bmod 200$
(b) $9 x \equiv 17 \bmod 200$
(c) $4 x \equiv 3 \bmod 15$
(d) $2 x \equiv 23 \bmod 128$
(e) $4 x \equiv 12 \bmod 128$

Problem 6. Find all $x \in \mathbb{Z}_{35}$ which are solutions to the equation $x^{3}-5 x^{2}+6 x=0$.
Hint: Factor the equation and use the fact that \mathbb{Z}_{5} and \mathbb{Z}_{7} are fields.

Problem 7. Find all solutions $x \in \mathbb{Z}$ of the system of congruences

$$
\left\{\begin{array}{l}
3 x \equiv 9 \bmod 12 \\
4 x \equiv 5 \bmod 35 \\
6 x \equiv 18 \bmod 21
\end{array}\right.
$$

Problem 8. Find all solutions $x \in \mathbb{Z}$ of the system of congruences

$$
\left\{\begin{array}{lc}
x^{2} \equiv 9 & \bmod 16 \\
3 x \equiv 1 & \bmod 40 \\
4 x \equiv 8 & \bmod 25
\end{array}\right.
$$

Hint: First study the possible solutions of $x^{2}=9$ in \mathbb{Z}_{16}.
Problem 9. Let $a, b, c, d \in \mathbb{Z}$. Find all the solutions $x \in \mathbb{Z}$ (in terms of a, b, c, d) of the system of congruences

$$
\left\{\begin{array}{lr}
x \equiv a & \bmod 2 \\
x \equiv b & \bmod 3 \\
x \equiv c & \bmod 5 \\
x \equiv d & \bmod 7
\end{array}\right.
$$

Problem 10. Fix $k \in \mathbb{N}$. Prove that there exists an integer m such that there are no prime numbers among $m, m+1, \ldots, m+k$. Deduce that there are actually infinitely many such m 's.

Hint: Use the Chinese remainder theorem.
Problem 11. Let $m \in \mathbb{N}$ and assume $m \neq 0,1$. Solve the equation $(x+1)^{2}=x^{2}$ in the ring \mathbb{Z}_{m} (that is, give all possible solutions $x \in \mathbb{Z}_{m}$). The answer might depend on m.

Problem 12. Prove that if m divides n, then $\varphi(m)$ divides $\varphi(n)$. (Here and below, φ denotes Euler's totient function.)

Problem 13. Show that $\varphi(n)$ is even for any integer $n>2$.

