Math 104a: Number theory – Problem set 5

François Thilmany

due Friday 3 August 2018

Problem 1. Complete the proof of the "if" direction of Wilson's theorem: $n \in \mathbb{N} - \{0, 1\}$ is prime if (and only if)

$$(n-1)! \equiv -1 \mod n.$$

Hint: Suppose that *n* is composite. Prove that if *n* can be factored n = ab with $a, b \in \mathbb{N}$ and $a \neq b$, then $(n-1)! \equiv 0 \mod n$ (this had been done in class, briefly reproduce the argument). If *n* cannot be factored as above, show that *n* must be the square of a prime number p > 0. If p = 2, then of course $(n-1)! = 2 \mod n$. If p > 2, show that $(n-1)! = 0 \mod n$.

Problem 2. Let p > 0 be a prime number and let $y \in \mathbb{Z}_p^{\times}$ have (multiplicative) order m. If m is even, show that $y^{m/2} = -1$. Does this still hold without the assumption that p is prime? Hint: Show that $y^{m/2}$ is a root of the polynomial $X^2 - 1$.

Problem 3. Let p > 0 be an odd prime. Prove that -1 is a square in \mathbb{Z}_p if and only if $p \equiv 1 \mod 4$.

Hint: if -1 is a square in \mathbb{Z}_p , show that \mathbb{Z}_p^{\times} has an element of order 4.

Problem 4. Let p > 0 be an odd prime and pick a generator x of the cyclic group \mathbb{Z}_p^{\times} . Prove that -x is a generator of \mathbb{Z}_p^{\times} if and only if $p \equiv 1 \mod 4$.

Problem 5. Suppose that $m \in \mathbb{N} - \{0, 1\}$ is such that \mathbb{Z}_m^{\times} is cyclic. Determine the number of different generators of \mathbb{Z}_m^{\times} .

Problem 6. Let m, n > 1 be integers such that $n \mid m$.

(a) Show that

 $\phi: \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}: x + m\mathbb{Z} \mapsto x + n\mathbb{Z}$

is a well-defined, surjective ring homomorphism.

- (b) Compute the kernel of ϕ .
- **Problem 7.** (a) If $\psi : R \to S$ is any homomorphism of rings, show that ψ restricts to a homomorphism of groups $\psi^{\times} : R^{\times} \to S^{\times}$.

- (b) If $\psi : R \to S$ is surjective, is $\psi^{\times} : R^{\times} \to S^{\times}$ necessarily surjective? Prove this or provide a counterexample.
- (c) Let $m \ge n > 0$ be integers. Prove that the canonical map (from problem 6)

$$\phi: \mathbb{Z}/p^m \mathbb{Z} \to \mathbb{Z}/p^n \mathbb{Z}: x + p^m \mathbb{Z} \mapsto x + p^n \mathbb{Z}$$

does restrict to a surjective homomorphism of groups $(\mathbb{Z}/p^m\mathbb{Z})^{\times} \to (\mathbb{Z}/p^n\mathbb{Z})^{\times}$.

Problem 8. Let *G* be a commutative group and $a, b \in G$ elements of orders *m* and *n* respectively.

- (a) Show that the order of ab divides lcm(m, n).
- (b) Prove that if gcd(m, n) = 1, then the order of *ab* is mn (= lcm(m, n)).
- (c) Give an example for which the order of ab is not equal to lcm(m, n).

Problem 9. (a) Compute the orders of 2 and 7 in \mathbb{Z}_{73}^{\times} .

- (b) Find a generator of the cyclic group \mathbb{Z}_{73}^{\times} .
- (c) Find a generator of the cyclic group $\mathbb{Z}_{146}^{\times}$.

Problem 10. Prove that 2 is a generator of $\mathbb{Z}_{3^n}^{\times}$ for any $n \in \mathbb{N} - \{0\}$.

Hint: Compute the order of 2 in $\mathbb{Z}_{3^n}^{\times}$.

Problem 11. Find all generators of \mathbb{Z}_{25}^{\times} .

Hint: Lift the generators of \mathbb{Z}_5^{\times} to elements in \mathbb{Z}_{25}^{\times} , then compute their (multiplicative) orders. If one of the lifts, say $a \in \mathbb{Z}_{25}^{\times}$, is not a generator, use an argument from class to show that a + k5 is a generator for $k \in \{1, 2, 3, 4\}$. If needed, verify that you have the right number of generators using problem 5.

Problem 12. Let p > 0 be an odd prime. Show that exactly $\frac{p-1}{2} + 1$ elements of \mathbb{Z}_p are squares.

Hint: Of course, 0 is a square. Show that the 'square' map $s : \mathbb{Z}_p^{\times} \to \mathbb{Z}_p^{\times} : x \mapsto x^2$ is two-to-one, that is, the preimage $s^{-1}(y)$ of any element y in \mathbb{Z}_p^{\times} consists of exactly two (distinct) elements. Use this to count the size of the image of s.

Here is another way: after identifying the (cyclic) multiplicative group \mathbb{Z}_p^{\times} with the additive group \mathbb{Z}_{p-1} , show that the squares correspond to even residues.

Problem 13. Let p > 0 be an odd prime and pick $a, b, c \in \mathbb{Z}_p$ with $a \neq 0$. Prove that the polynomial $ax^2 + bx + c$ has a root in \mathbb{Z}_p if and only if $b^2 - 4ac$ is a square in \mathbb{Z}_p . If $\delta \in \mathbb{Z}_p$ is such that $\delta^2 = b^2 - 4ac$, prove that the usual formula $\frac{-b\pm\delta}{2a}$ yields the two roots of $ax^2 + bx + c$.

Hint: Complete the square. Because p is an odd prime, 2 and a are invertible in \mathbb{Z}_p . You do not need to actually compute the inverse of 2 (nor of a) to complete the square.

For the two last problems, you might need the law of quadratic reciprocity. We will state it on Wednesday.

Problem 14. Determine whether:

- (a) 8 is a square in \mathbb{Z}_{97}
- (b) 5 is a square in \mathbb{Z}_{97}
- (c) 30 is a square in \mathbb{Z}_{97}
- (d) 501 is a square in \mathbb{Z}_{773} .
- (e) 503 is a square in \mathbb{Z}_{773} .

Problem 15. Use problem 13 to quickly determine if the polynomial $x^2 + 5x + 3$ has a root

- (a) in \mathbb{Z}_{11}
- (b) in \mathbb{Z}_{13}
- (c) in \mathbb{Z}_{97} .