Math 104a: Number theory - Problem set 5

François Thilmany

due Friday 3 August 2018

Problem 1. Complete the proof of the "if" direction of Wilson's theorem: $n \in \mathbb{N}-\{0,1\}$ is prime if (and only if)

$$
(n-1)!\equiv-1 \quad \bmod n
$$

Hint: Suppose that n is composite. Prove that if n can be factored $n=a b$ with $a, b \in \mathbb{N}$ and $a \neq b$, then $(n-1)!\equiv 0 \bmod n$ (this had been done in class, briefly reproduce the argument). If n cannot be factored as above, show that n must be the square of a prime number $p>0$. If $p=2$, then of course $(n-1)!=2 \bmod n$. If $p>2$, show that $(n-1)!=0$ $\bmod n$.

Problem 2. Let $p>0$ be a prime number and let $y \in \mathbb{Z}_{p}^{\times}$have (multiplicative) order m. If m is even, show that $y^{m / 2}=-1$. Does this still hold without the assumption that p is prime?

Hint: Show that $y^{m / 2}$ is a root of the polynomial $X^{2}-1$.
Problem 3. Let $p>0$ be an odd prime. Prove that -1 is a square in \mathbb{Z}_{p} if and only if $p \equiv 1$ mod 4.

Hint: if -1 is a square in \mathbb{Z}_{p}, show that \mathbb{Z}_{p}^{\times}has an element of order 4.
Problem 4. Let $p>0$ be an odd prime and pick a generator x of the cyclic group \mathbb{Z}_{p}^{\times}. Prove that $-x$ is a generator of \mathbb{Z}_{p}^{\times}if and only if $p \equiv 1 \bmod 4$.

Problem 5. Suppose that $m \in \mathbb{N}-\{0,1\}$ is such that \mathbb{Z}_{m}^{\times}is cyclic. Determine the number of different generators of \mathbb{Z}_{m}^{\times}.

Problem 6. Let $m, n>1$ be integers such that $n \mid m$.
(a) Show that

$$
\phi: \mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}: x+m \mathbb{Z} \mapsto x+n \mathbb{Z}
$$

is a well-defined, surjective ring homomorphism.
(b) Compute the kernel of ϕ.

Problem 7. (a) If $\psi: R \rightarrow S$ is any homomorphism of rings, show that ψ restricts to a homomorphism of groups $\psi^{\times}: R^{\times} \rightarrow S^{\times}$.
(b) If $\psi: R \rightarrow S$ is surjective, is $\psi^{\times}: R^{\times} \rightarrow S^{\times}$necessarily surjective? Prove this or provide a counterexample.
(c) Let $m \geq n>0$ be integers. Prove that the canonical map (from problem 6)

$$
\phi: \mathbb{Z} / p^{m} \mathbb{Z} \rightarrow \mathbb{Z} / p^{n} \mathbb{Z}: x+p^{m} \mathbb{Z} \mapsto x+p^{n} \mathbb{Z}
$$

does restrict to a surjective homomorphism of groups $\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{\times} \rightarrow\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times}$.
Problem 8. Let G be a commutative group and $a, b \in G$ elements of orders m and n respectively.
(a) Show that the order of $a b$ divides $\operatorname{lcm}(m, n)$.
(b) Prove that if $\operatorname{gcd}(m, n)=1$, then the order of $a b$ is $m n(=\operatorname{lcm}(m, n))$.
(c) Give an example for which the order of $a b$ is not equal to $\operatorname{lcm}(m, n)$.

Problem 9. (a) Compute the orders of 2 and 7 in \mathbb{Z}_{73}^{\times}.
(b) Find a generator of the cyclic group \mathbb{Z}_{73}^{\times}.
(c) Find a generator of the cyclic group $\mathbb{Z}_{146}^{\times}$.

Problem 10. Prove that 2 is a generator of $\mathbb{Z}_{3^{n}}^{\times}$for any $n \in \mathbb{N}-\{0\}$.
Hint: Compute the order of 2 in $\mathbb{Z}_{3^{n}}^{\times}$.
Problem 11. Find all generators of \mathbb{Z}_{25}^{\times}.
Hint: Lift the generators of \mathbb{Z}_{5}^{\times}to elements in \mathbb{Z}_{25}^{\times}, then compute their (multiplicative) orders. If one of the lifts, say $a \in \mathbb{Z}_{25}^{\times}$, is not a generator, use an argument from class to show that $a+k 5$ is a generator for $k \in\{1,2,3,4\}$. If needed, verify that you have the right number of generators using problem 5.

Problem 12. Let $p>0$ be an odd prime. Show that exactly $\frac{p-1}{2}+1$ elements of \mathbb{Z}_{p} are squares.

Hint: Of course, 0 is a square. Show that the 'square' map $s: \mathbb{Z}_{p}^{\times} \rightarrow \mathbb{Z}_{p}^{\times}: x \mapsto x^{2}$ is two-to-one, that is, the preimage $s^{-1}(y)$ of any element y in \mathbb{Z}_{p}^{\times}consists of exactly two (distinct) elements. Use this to count the size of the image of s.

Here is another way: after identifying the (cyclic) multiplicative group \mathbb{Z}_{p}^{\times}with the additive group \mathbb{Z}_{p-1}, show that the squares correspond to even residues.

Problem 13. Let $p>0$ be an odd prime and pick $a, b, c \in \mathbb{Z}_{p}$ with $a \neq 0$. Prove that the polynomial $a x^{2}+b x+c$ has a root in \mathbb{Z}_{p} if and only if $b^{2}-4 a c$ is a square in \mathbb{Z}_{p}. If $\delta \in \mathbb{Z}_{p}$ is such that $\delta^{2}=b^{2}-4 a c$, prove that the usual formula $\frac{-b \pm \delta}{2 a}$ yields the two roots of $a x^{2}+b x+c$.

Hint: Complete the square. Because p is an odd prime, 2 and a are invertible in \mathbb{Z}_{p}. You do not need to actually compute the inverse of 2 (nor of a) to complete the square.

For the two last problems, you might need the law of quadratic reciprocity. We will state it on Wednesday.

Problem 14. Determine whether:
(a) 8 is a square in \mathbb{Z}_{97}
(b) 5 is a square in \mathbb{Z}_{97}
(c) 30 is a square in \mathbb{Z}_{97}
(d) 501 is a square in \mathbb{Z}_{773}.
(e) 503 is a square in \mathbb{Z}_{773}.

Problem 15. Use problem 13 to quickly determine if the polynomial $x^{2}+5 x+3$ has a root
(a) in \mathbb{Z}_{11}
(b) in \mathbb{Z}_{13}
(c) in \mathbb{Z}_{97}.

