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Below is a non-exhaustive list of results that were covered in class, section or homework.
You can use these results without reproving them, provided it is not the point of the ques-
tion and you make a clear reference either to the name of the theorem or by recalling the
statement. If in doubt, ask!

From the homework, unless it is part of the question, you may quote by recalling the
statement:

HW1: problems 1, 3, 9, 12, and 13.
HW2: problems 4, 5, 7, 8, and 10.
HW3: problems 7, 8, 11, and 13.
HW4: problems 1, 2, 3, 12, and 13.
HW5: problems 1, 2, 3, 6, 7, 8, 12, and 13.

From lectures, you may quote the following results.

Theorem (Euclidean division in Z). Let a ∈ Z and b ∈ N− {0}. There exists unique q, r ∈ Z
such that a = bq+ r and 0≤ r < b.

Theorem (Bézout’s identity in Z). Any two integers a, b have a greatest common divisor (gcd).
If d is a gcd of a and b, there exist x , y ∈ Z such that ax + b y = d.

Lemma (Euclid’s lemma in Z). If p ∈ Z is irreducible, then p is prime.

Theorem (Unique factorization in Z). Every nonzero a ∈ Z can be written as

a = ±pe1
1 . . . per

r

where the pi ’s are distinct positive primes and ei ∈ N− {0} (possibly r = 0, in which case the
empty product is understood to be 1). Moreover, this factorization is unique up to rearranging
the primes pi.

Proposition (Computing gcd’s using the Euclidean algorithm). Let a, b ∈ N and assume a ≥
b. Then gcd(a, b) is the last non-zero term in the sequence (rk) constructed inductively as follows:
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r−1 = a, r0 = b, and given rk−1 and rk 6= 0, define rk+1 to be the remainder of the Euclidean
division of rk−1 by rk:

rk−1 = rkq+ rk+1 0≤ rk+1 < rk.

Theorem (Infinitude of primes in Z). There are infinitely many (positive) prime numbers in
Z.

Theorem (Solution of linear diophantine equations). Let a, b, c ∈ Z. The linear diophantine
equation

ax + b y = c

has a solution (x0, y0) ∈ Z2 if and only if d := gcd(a, b) divides c. If so, any solution is of the
form (x0 +

b
d t, y0 −

a
d t) for some t ∈ Z.

Proposition (Prime elements are irreducible). Let R be a ring and p ∈ R a prime. Then p is
irreducible in R.

Theorem (Bézout’s identity in Euclidean domains). Any two elements a, b of a Euclidean
domain D have a gcd. If d ∈ D is a gcd of a and b, there exist x , y ∈ D such that ax + b y = d.

Lemma (Euclid’s lemma in Euclidean domains). Let D be a Euclidean domain. If p ∈ D is
irreducible, then p is prime.

Theorem (Unique factorization in Euclidean domains). Let D be a Euclidean domain. Any
a ∈ D− {0} can be written as

a = upe1
1 . . . per

r

where u is a unit, the pi ’s are pairwise non-associate primes in D and ei ∈ N− {0}. (Possibly
r = 0, in which case the right hand side is just u.) Moreover, this factorization is unique up to
rearranging the primes pi and multiplying u or the pi ’s by units.

Proposition. The set Z[i] = {a+ bi | a, b ∈ Z} ⊂ C is a Euclidean domain when endowed with
addition and multiplication of complex numbers and with the Euclidean function

N : Z[i]→ N : a+ bi 7→ a2 + b2.

Moreover, the function N is (strongly) multiplicative, i.e. N(αβ) = N(α)N(β) for any α,β ∈
Z[i].

Theorem (Classification of Pythagorean triples). The set T of primitive Pythagorean triples
(a, b, c) ∈ Z3 with a, b, c > 0 and a odd is parametrized by

T =
�

(m2 − n2, 2mn, m2 + n2) | m, n ∈ Z, m> n> 0, gcd(m, n) = 1 and m, n have different parity
	

.
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Proposition (Construction of ring quotients). Let I be an ideal of a ring R. There exists a
unique ring structure on the set R/I := {a+ I | a ∈ R} of equivalence classes modulo I for which
the map

R→ R/I : a 7→ a+ I

is a ring homomorphism.

Theorem (Isomorphism theorem for rings). Let ϕ : R→ S be a homomorphism of rings. Then
kerϕ := {x ∈ R | ϕ(x) = 0} is an ideal of R, imϕ := {ϕ(x) | x ∈ R} is a (sub)ring (of S), and
ϕ induces an isomorphism

ϕ : R/kerϕ→ imϕ : x + kerϕ 7→ ϕ(x).

Proposition. Let I be an ideal of a ring R.
(i) I is prime if and only if R/I is an integral domain.

(ii) I is maximal if and only if R/I is a field.

Theorem. Let m ∈ N and assume m 6= 0,1. An element a + mZ ∈ Zm has a multiplicative
inverse in Zm if and only if gcd(a, m) = 1. In consequence, Zm is a field iff Zm is a domain iff m
is a prime number.

Theorem (Chinese remainder theorem). Let I1, . . . , In be pairwise comaximal ideals and set
I = I1 ∩ · · · ∩ In. Then the map

R/I → R/I1 × · · · × R/In : x + I 7→ (x + I1, . . . , x + In)

is an isomorphism of rings.

Theorem (Chinese remainder theorem for Z). Let m ∈ N−{0, 1} and write m= pe1
1 . . . per

r for
some distinct, positive primes pi. Then

Zm
∼= Zp

e1
1
× · · · ×Zper

r
.

Corollary (Solving systems of congruences). Let m ∈ N − {0,1} and write m = pe1
1 . . . per

r
for some distinct, positive primes pi. Let a, b ∈ Z. Then the congruence ax ≡ b mod m is
equivalent to the system of congruences



















ax ≡ b mod pe1
1

ax ≡ b mod pe2
2

...
...

ax ≡ b mod per
r .
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In consequence, any system of congruences


















a1 x ≡ b1 mod m1

a2 x ≡ b2 mod m2
...

...
al x ≡ bl mod ml .

can be replaced by an equivalent system of congruences with prime-power moduli, and in turn,
if the latter is consistent, by a single congruence with modulus lcm(m1, . . . , mr).

Proposition. The congruence ax ≡ b mod m has a solution x ∈ Z iff d = gcd(a, m) divides b.
If so, all solutions x ∈ Z are solution of the congruence a

d x ≡ d
b mod m

d and vice-versa.

Proposition (ϕ is weakly multiplicative). The Euler totient functionϕ is weakly multiplicative,
that is, if gcd(m, n) = 1 , then ϕ(mn) = ϕ(m)ϕ(n). In particular, if m = pe1

1 . . . per
r for some

distinct, positive primes pi, then ϕ(m) = ϕ(pe1
1 ) . . .ϕ(per

r ).

Proposition (ϕ for prime powers). Let p ∈ N be a prime number. Then

ϕ(pe) = pe−1(p− 1) = pe(1−
1
p
).

Corollary (Euler’s formula). Let m ∈ N− {0, 1}. Then

ϕ(m) = m ·
∏

p positive prime
p divides m

�

1−
1
p

�

.

Theorem (Lagrange). Let H be a subgroup of a finite group G. Then #H divides #G. In
consequence, if g ∈ G has order n, then 〈g〉 := {. . . , g−1, g0, g, g2, . . . } is a subgroup of size n,
and thus n divides #G.

Corollary (Euler). If gcd(a, m) = 1, then

aϕ(m) ≡ 1 mod m.

In other words, the multiplicative order of a modulo m divides ϕ(m).

Corollary (Fermat’s little theorem). If p > 0 is a prime number and a ∈ Z is not divisible by
p, then

ap−1 ≡ 1 mod p.

In consequence, for any a ∈ Z, ap ≡ a mod p.

Theorem. Let F be a field and P ∈ F[x]−{0} a non-zero polynomial of degree n with coefficients
in F. Then P has at most n distinct roots in F.
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Theorem (Wilson). p ∈ N− {0} is prime if and only if (p− 1)!≡ −1 mod p.

Proposition (Order of elements in cyclic groups and counting them by order). Let C be a
cyclic group of size n generated by some element g ∈ C and let k ∈ Z. Then the order of gk is

n
gcd(k,n) . In consequence, the number of elements of order d ∈ N in C is either ϕ(d) if d divides
n, or 0 otherwise.

Corollary.
n=

∑

d divides n
0<d≤n

ϕ(d)

Theorem (Finite subgroups of multiplicative groups of fields are cyclic). Let F be a field and
G be a finite subgroup of F× (= F − {0}). Then G is a cyclic group.

Corollary (Multiplicative groups of finite fields are cyclic). If F is a finite field, then F× is
cyclic. In particular, Z×p is cyclic when p > 0 is a prime number.

Theorem (Order of elements in Z×pn). Let p > 0 be a prime number and a ∈ Z such that p
does not divide a. Let t be the order of a+ pZ in Z×p and let pm be the largest power of p which
divides at − 1. Then, provided either m> 1 or p > 2, the order tn of a+ pnZ in Z×pn is

tn =

¨

t if n≤ m
tpn−m if n≥ m.

Corollary. If p > 2 is a prime number and n ∈ N − {0}, then Z×pn is a cyclic group (of size
ϕ(pn) = pn−1(p− 1)).

Proposition. Z×2n is cyclic (of size 1 or 2) if and only if n= 1 or 2. Otherwise, if n≥ 3 then Z×2n

is isomorphic to C2 × C2n−2 .

Theorem (Structure of Z×m). Let m ∈ N− {0,1} and write m = 2epe1
1 . . . per

r for some positive,
distinct primes pi > 2. If e ≤ 2, then

Z×m
∼= Cϕ(2e) × Cϕ(pe1

1 )
× · · · × Cϕ(per

r ).

If e ≥ 3, then
Z×m
∼=
�

C2 × C 1
2ϕ(2e)

�

× Cϕ(pe1
1 )
× · · · × Cϕ(per

r ).

Corollary (When is Z×m cyclic?). Let m ∈ N− {0, 1}. Z×m is a cyclic group if and only if m is of
the form 2, 4, pn or 2pn for some prime p > 2 and n ∈ N− {0}.

Theorem (Euler’s criterion). Let p > 0 be an odd prime. a ∈ Z×p is a square if and only if

a
p−1

2 = 1.

Equivalently, a is not a square if and only if a
p−1

2 = −1.
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Proposition (Properties of the Legendre symbol). Let p > 0 be an odd prime. The Legendre
symbol

�

a
p

�

has the following properties:

(i)
�

a
p

�

only depends on a+ pZ.

(ii)
�

a2

p

�

= 0 or 1 depending if p divides a or not.

(iii)
�

a
p

�

is (strongly) multiplicative in the first entry, that is for any a, b ∈ Z,

�

ab
p

�

=
�

a
p

��

b
p

�

.

(iv)
�

−1
p

�

=

¨

1 if p = 1 mod 4 or if p = 2

−1 if p = −1 mod 4
.

Theorem (Gauss’ lemma). Let p > 0 be an odd prime and a ∈ Z be such that p does not
divide a. Let µ count the number of negative remainders obtained when reducing the elements
a, 2a, . . . , p−1

2 a modulo p to the set {− p−1
2 , . . . ,−1, 0,1, . . . , p−1

2 }. Then

�

a
p

�

= (−1)µ.

Corollary (When is 2 is a square mod p?). Let p > 0 be an odd prime. 2 is a square in Zp if
and only if p = ±1 mod 8. Equivalently, 2 is not a square in Zp if and only if p = ±3 mod 8.

Theorem (Quadratic reciprocity law). Let p, q > 0 be distinct odd primes. Then
�

q
p

�

=
�

p
q

�

unless p and q are both congruent to −1 modulo 4, in which case
�

q
p

�

= −
�

p
q

�

.

Equivalently,
�

q
p

�

·
�

p
q

�

= (−1)
p−1

2 ·
q−1

2 .
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