Truncated Moment Problems with Associated Finite Algebraic Varieties
(joint work with Seonguk Yoo)

Raúl Curto

Helton Workshop, UCSD, October 4, 2010

Dedicated to Bill on the occasion of his 65th birthday!
OUTLINE OF THE TALK

- Brief Review of Full Moment Problem
- Truncated Moment Problems (Basic Positivity, Functional Calculus, Algebraic Variety)
- Moment Matrix Extension Approach
- Positive Linear Functional Approach
- TMP Version of the Riesz-Haviland Theorem
- Structure of Positive Polynomials
- Cubic Column Relations
General Idea to Study TMP

- TMP is more general than FMP:
 fewer moments \implies less data

- Stochel: link between TMP and FMP

- Existing approaches are directed at enlarging the data by acquiring new moments, and eventually making the problem into one of flat data type (i.e., with intrinsic recursiveness).

- This naturally leads to a full MP.

- If such a flat extension of the initial data cannot be accomplished, then TMP has no representing measure.

- Helpful tool: Smul’jan’s Theorem on positivity of 2×2 matrices
The Classical (Full) Moment Problem

Let $\beta \equiv \beta(\infty) = \{\beta_i\}_{i \in \mathbb{Z}^d_+}$ denote a d-dimensional real multisequence, and let K (closed) $\subseteq \mathbb{R}^d$. The (full) K-moment problem asks for necessary and sufficient conditions on β to guarantee the existence of a positive Borel measure μ supported in K such that

$$\beta_i = \int x^i \, d\mu \quad (i \in \mathbb{Z}^d_+);$$

μ is called a rep. meas. for β.

Associated with β is a moment matrix $M \equiv M(\infty)$, defined by

$$M_{ij} := \beta_{i+j} \quad (i, j \in \mathbb{Z}^d_+).$$
Basic Positivity Condition

P_n: polynomials p over \mathbb{R} with $\deg p \leq n$

Given $p \in P_n$, $p(x) \equiv \sum_{0 \leq i+j \leq n} a_i x^i$,

$$0 \leq \int p(x)^2 d\mu(x)$$

$$= \sum_{ij} a_i a_j \int x^{i+j} d\mu(x) = \sum_{ij} a_i a_j \beta_{i+j}.$$

Now recall that we’re working in d real variables. To understand this “matricial” positivity, we introduce the following lexicographic order on the rows and columns of $M(n)$:

$$1, X_1, \ldots, X_d, X_1^2, X_2 X_1, \ldots, X_d^2, \ldots$$
Also recall that

\[M(n)_{i,j} := \beta_{i+j}. \]

Then

\[
\sum_{ij} a_i a_j \beta_{i+j} \geq 0
\]

(“matricial” positivity) \[\Leftrightarrow M(n) \equiv M(n)(\beta) \geq 0. \]
For example, for moment problems in \mathbb{R}^2,\[
M(1) = \begin{pmatrix}
\beta_{00} & \beta_{01} & \beta_{10} \\
\beta_{01} & \beta_{02} & \beta_{11} \\
\beta_{10} & \beta_{11} & \beta_{20}
\end{pmatrix},
\]
\[
M(2) = \begin{pmatrix}
\beta_{00} & \beta_{01} & \beta_{10} & \beta_{02} & \beta_{11} & \beta_{20} \\
\beta_{01} & \beta_{02} & \beta_{11} & \beta_{03} & \beta_{12} & \beta_{21} \\
\beta_{10} & \beta_{11} & \beta_{20} & \beta_{12} & \beta_{21} & \beta_{30} \\
\beta_{02} & \beta_{03} & \beta_{12} & \beta_{04} & \beta_{13} & \beta_{22} \\
\beta_{11} & \beta_{12} & \beta_{21} & \beta_{13} & \beta_{22} & \beta_{31} \\
\beta_{20} & \beta_{21} & \beta_{30} & \beta_{22} & \beta_{31} & \beta_{40}
\end{pmatrix}.
\]
In general,

\[M(n + 1) = \begin{pmatrix} M(n) & B \\ B^* & C \end{pmatrix} \]

Similarly, one can build \(M(\infty) \equiv M(\infty)(\beta) \equiv M(\beta) \).

The link between TMP and FMP is provided by a result of Stochel (2001):

Theorem (Stochel’s Theorem)

\(\beta(\infty) \) has a rep. meas. supported in a closed set \(K \subseteq \mathbb{R}^d \) if and only if, for each \(n \), \(\beta^{(2n)} \) has a rep. meas. supported in \(K \).
\[M := \{ \beta \equiv \beta(\infty) : \beta \text{ admits a rep. meas. } \mu \} \]
\[B_+ := \{ \beta \equiv \beta(\infty) : M(\infty)(\beta) \geq 0 \} \]

Clearly, \(M \subseteq B_+ \)

- (Berg, Christensen and Ressel) \(\beta \in B_+ \), \(\beta \) bounded \(\Rightarrow \beta \in M \)
- (Berg and Maserick) \(\beta \in B_+ \), \(\beta \) exponentially bounded \(\Rightarrow \beta \in M \)
- (RC and L. Fialkow) \(\beta \in B_+ \), \(M(\beta) \) finite rank \(\Rightarrow \beta \in M \)
\(\mathcal{P}_+ : \) nonnegative poly’s
\(\Sigma^2 : \) sums of squares of poly’s

Clearly, \(\Sigma^2 \subseteq \mathcal{P}_+ \)

Duality

For \(C \) a cone in \(\mathbb{R}^{\mathbb{Z}^d}_+ \), we let

\[
C^*: = \{ \xi \in \mathbb{R}^{\mathbb{Z}^d}_+ : \text{supp}(\xi) \text{ is finite and } \langle p, \xi \rangle \geq 0 \text{ for all } p \in C \}.
\]

(Riesz-Haviland) \(\mathcal{P}_+^* = \mathcal{M} \)

For, consider the Riesz functional \(\Lambda_\beta(p) := p(\beta) \equiv \langle p, \beta \rangle \), which induces a map \(\mathcal{M} \rightarrow \mathcal{P}_+^* \) \((\beta \mapsto \Lambda_\beta) \); Haviland’s Theorem says that this maps is onto, that is,

\[
\exists \mu \text{ rep. meas. for } \beta \iff \Lambda_\beta \geq 0 \text{ on } \mathcal{P}_+.
\]
\[\mathcal{P}_+ = \mathcal{M}^* \text{ (straightforward once we have a r.m.)} \]

\[\mathcal{B}_+ = (\Sigma^2)^* \text{ (straightforward)} \]

\[(\text{Berg, Christensen and Jensen}) \quad (\mathcal{B}_+)^* = \Sigma^2 \]

\[(n = 1) \quad \mathcal{P}_+ = \Sigma^2 \Rightarrow \mathcal{P}_+^* = (\Sigma^2)^* \Rightarrow \mathcal{M} = \mathcal{B}_+ \text{ (Hamburger)} \]

Generally, SOS implies the existence of a representing measure.
Consider the **full, complex** MP

\[\int \bar{z}^i z^j \, d\mu = \gamma_{ij} \ (i, j \geq 0), \]

where \(\text{supp} \ \mu \subseteq K \), for \(K \) a closed subset of \(\mathbb{C} \).

- The **Riesz functional** is given by

 \[\Lambda_{\gamma}(\bar{z}^i z^j) := \gamma_{ij} \ (i, j \geq 0). \]

- **Riesz-Haviland:**

 There exists \(\mu \) with \(\text{supp} \ \mu \subseteq K \iff \Lambda_{\gamma}(p) \geq 0 \) for all \(p \) such that \(p|_K \geq 0 \).
If \(q \) is a polynomial in \(z \) and \(\bar{z} \), and

\[
K \equiv K_q := \{ z \in \mathbb{C} : q(z, \bar{z}) \geq 0 \},
\]

then \(L_q(p) := L(qp) \) must satisfy \(L_q(p\bar{p}) \geq 0 \) for \(\mu \) to exist. For,

\[
L_q(p\bar{p}) = \int_{K_q} qp\bar{p} \, d\mu \geq 0 \quad (\text{all } p).
\]

- K. Schmüdgen (1991): If \(K_q \) is compact, \(\Lambda_\gamma(p\bar{p}) \geq 0 \) and \(L_q(p\bar{p}) \geq 0 \) for all \(p \), then there exists \(\mu \) with \(\text{supp } \mu \subseteq K_q \).
Given \(\gamma : \gamma_{00}, \gamma_{01}, \gamma_{10}, \ldots, \gamma_{0,2n}, \ldots, \gamma_{2n,0}, \) with \(\gamma_{00} > 0 \) and \(\gamma_{ji} = \overline{\gamma_{ij}} \), the **TCMP** entails finding a positive Borel measure \(\mu \) supported in the complex plane \(\mathbb{C} \) such that

\[
\gamma_{ij} = \int \overline{z}^i z^j \, d\mu \quad (0 \leq i + j \leq 2n);
\]

\(\mu \) is called a **rep. meas.** for \(\gamma \).

In earlier joint work with L. Fialkow,

We have introduced an approach based on matrix positivity and extension, combined with a new “functional calculus” for the columns of the associated **moment matrix**.
We have shown that when the TCMP is of **flat data type**, a solution always exists; this is compatible with our previous results for

\[
\begin{align*}
\text{supp } \mu &\subseteq \mathbb{R} \quad \text{(Hamburger TMP)} \\
\text{supp } \mu &\subseteq [0, \infty) \quad \text{(Stieltjes TMP)} \\
\text{supp } \mu &\subseteq [a, b] \quad \text{(Hausdorff TMP)} \\
\text{supp } \mu &\subseteq \mathbb{T} \quad \text{(Toeplitz TMP)}
\end{align*}
\]

Along the way we have developed new machinery for analyzing TMP’s in **one or several real or complex variables**. For simplicity, in this talk we focus on **one complex variable or two real variables**, although several results have multivariable versions.
Our techniques also give concrete algorithms to provide finitely-atomic rep. meas. whose atoms and densities can be explicitly computed.

We have fully resolved, among others, the cases

$$\tilde{Z} = \alpha 1 + \beta Z$$

and

$$Z^k = p_{k-1}(Z, \tilde{Z}) \quad (1 \leq k \leq \left\lceil \frac{n}{2} \right\rceil + 1; \deg p_{k-1} \leq k - 1).$$

We obtain applications to quadrature problems in numerical analysis.

We have obtained a duality proof of a generalized form of the Tchakaloff-Putinar Theorem on the existence of quadrature rules for positive Borel measures on $$\mathbb{R}^d$$.
Applications

- Subnormal Operator Theory (unilateral weighted shifts)
- Physics (determination of contours)
- Computer Science (image recognition and reconstruction)
- Geography (location of proposed distribution centers)
- Probability (reconstruction of p.d.f.’s)
- Environmental Science (oil spills, via quadrature domains)
- Engineering (tomography)

- Geophysics (inverse problems, cross sections)

Typical Problem: Given a 3-D body, let X-rays act on the body at different angles, collecting the information on a screen. One then seeks to obtain a constructive, optimal way to approximate the body, or in some cases to reconstruct the body.
Positivity of Block Matrices

Theorem

\((\text{Smul’jan, 1959})\)

\[
\begin{pmatrix}
A & B \\
B^* & C
\end{pmatrix} \succeq 0 \iff \begin{cases}
A \succeq 0 \\
B = AW \\
C \succeq W^*AW
\end{cases}
\]

Moreover, \(\text{rank } \begin{pmatrix}
A & B \\
B^* & C
\end{pmatrix} = \text{rank } A \iff C = W^*AW.\)
Corollary

Assume $\text{rank } \begin{pmatrix} A & B \\ B^* & C \end{pmatrix} = \text{rank } A$. Then

$$A \geq 0 \iff \begin{pmatrix} A & B \\ B^* & C \end{pmatrix} \succeq 0.$$
Basic Positivity Condition

\(\mathcal{P}_n \): polynomials \(p \) in \(z \) and \(\bar{z} \), \(\deg p \leq n \)

Given \(p \in \mathcal{P}_n \),

\[
p(z, \bar{z}) \equiv \sum_{0 \leq i+j \leq n} a_{ij} \bar{z}^i z^j,
\]

\[
0 \leq \int |p(z, \bar{z})|^2 \, d\mu(z, \bar{z})
= \sum_{i,j,k,l} a_{ij} \bar{a}_{kl} \int \bar{z}^{i+l} z^{j+k} \, d\mu(z, \bar{z})
= \sum_{i,j,k,l} a_{ij} \bar{a}_{kl} \gamma_{i+l, j+k}.
\]

To understand this “matricial” positivity, we introduce the following lexicographic order on the rows and columns of \(M(n) \):

\[
1, Z, \bar{Z}, Z^2, \bar{Z}Z, \bar{Z}^2, \ldots
\]
Define $M[i, j]$ as in

$$M[3, 2] := \begin{pmatrix}
\gamma_{32} & \gamma_{41} & \gamma_{50} \\
\gamma_{23} & \gamma_{32} & \gamma_{41} \\
\gamma_{14} & \gamma_{23} & \gamma_{32} \\
\gamma_{05} & \gamma_{14} & \gamma_{23}
\end{pmatrix}$$

Then

(“matricial” positivity) $\sum_{ijkl} a_{ij} \bar{a}_{k\ell} \gamma_{i+l,j+k} \geq 0$

$\Leftrightarrow M(n) \equiv M(n)(\gamma) := \begin{pmatrix}
M[0, 0] & M[0, 1] & \ldots & M[0, n] \\
M[1, 0] & M[1, 1] & \ldots & M[1, n] \\
\ldots & \ldots & \ldots & \ldots \\
M[n, 0] & M[n, 1] & \ldots & M[n, n]
\end{pmatrix} \geq 0.$
For example,

\[M(1) = \begin{pmatrix}
\gamma_{00} & \gamma_{01} & \gamma_{10} \\
\gamma_{10} & \gamma_{11} & \gamma_{20} \\
\gamma_{01} & \gamma_{02} & \gamma_{11}
\end{pmatrix}, \]

\[M(2) = \begin{pmatrix}
\gamma_{00} & \gamma_{01} & \gamma_{10} & \gamma_{02} & \gamma_{11} & \gamma_{20} \\
\gamma_{10} & \gamma_{11} & \gamma_{20} & \gamma_{12} & \gamma_{21} & \gamma_{30} \\
\gamma_{01} & \gamma_{02} & \gamma_{11} & \gamma_{03} & \gamma_{12} & \gamma_{21} \\
\gamma_{20} & \gamma_{21} & \gamma_{12} & \gamma_{22} & \gamma_{31} & \gamma_{40} \\
\gamma_{11} & \gamma_{12} & \gamma_{21} & \gamma_{13} & \gamma_{22} & \gamma_{31} \\
\gamma_{02} & \gamma_{03} & \gamma_{12} & \gamma_{04} & \gamma_{13} & \gamma_{22}
\end{pmatrix}. \]
In general,

\[M(n + 1) = \begin{pmatrix} M(n) & B \\ B^* & C \end{pmatrix} \]

Similarly, one can build \(M(\infty) \).

In the real case, \(M(n)_{ij} := \gamma_{i+j} \), \(i, j \in \mathbb{Z}_+^2 \).

Positivity Condition is not sufficient:

By modifying an example of K. Schmüdgen, we have built a family \(\gamma_{00}, \gamma_{01}, \gamma_{10}, \ldots, \gamma_{06}, \ldots, \gamma_{60} \) with positive invertible moment matrix \(M(3) \) but no rep. meas. But this can also be done for \(n = 2 \).
For $p \in P_n$, $p(z, \bar{z}) \equiv \sum_{0 \leq i+j \leq n} a_{ij} z^i \bar{z}^j$ define

$$p(Z, \bar{Z}) := \sum a_{ij} \bar{Z}^i Z^j \equiv M(n) \hat{p},$$

where $\hat{p} := (a_{00} \cdots a_{0n} \cdots a_{n0})^T$.

If there exists a rep. meas. μ, then

$$p(Z, \bar{Z}) = 0 \iff \text{supp } \mu \subseteq \mathcal{Z}(p).$$

The following is our analogue of recursiveness for the TCMP

(RG) If $p, q, pq \in P_n$, and $p(Z, \bar{Z}) = 0$,

then $(pq)(Z, \bar{Z}) = 0.$
Given a finite family of moments, build moment matrix

Identify all column relations

Build algebraic variety \mathcal{V}

Always true:

$$r := \text{rank } M(n) \leq \text{card } \text{supp } \mu \leq \nu := \text{card } \mathcal{V}(\gamma),$$

so if the variety is finite there’s a natural candidate for $\text{supp } \mu$, i.e.,

$\text{supp } \mu = \mathcal{V}(\gamma)$
Finite rank case
Flat case
Extremal case
Recursively generated relations

Strategy: Build positive extension, repeat, and eventually extremal

\[\text{rank } M(n) \leq \text{rank } M(n + 1) \leq \text{card } \mathcal{V}(M(n + 1)) \leq \text{card } \mathcal{V}(M(n)) \]

General case.
First Existence Criterion

Theorem

(RC-L. Fialkow, 1998) Let γ be a truncated moment sequence. TFAE:

(i) γ has a rep. meas.;

(ii) γ has a rep. meas. with moments of all orders;

(iii) γ has a compactly supported rep. meas.;

(iv) γ has a finitely atomic rep. meas. (with at most $(n+2)(2n+3)$ atoms);

(v) $M(n) \geq 0$ and for some $k \geq 0$ $M(n)$ admits a positive extension $M(n+k)$, which in turn admits a flat (i.e., rank-preserving) extension $M(n+k+1)$ (here $k \leq 2n^2 + 6n + 6$).
Case of Flat Data

Recall: If μ is a rep. meas. for $M(n)$, then rank $M(n) \leq \text{card supp} \mu$.

γ is flat if $M(n) = \begin{pmatrix} M(n-1) & M(n-1)W \\ W^*M(n-1) & W^*M(n-1)W \end{pmatrix}$.

Theorem (RC-L. Fialkow, 1996) If γ is flat and $M(n) \geq 0$, then $M(n)$ admits a unique flat extension of the form $M(n+1)$.

Theorem (RC-L. Fialkow, 1996) The truncated moment sequence γ has a rank $M(n)$-atomic rep. meas. if and only if $M(n) \geq 0$ and $M(n)$ admits a flat extension $M(n+1)$.

To find μ concretely, let $r := \text{rank } M(n)$ and look for the relation
\[Z^r = c_0 1 + c_1 Z + \ldots + c_{r-1} Z^{r-1}. \]

We then define
\[p(z) := z^r - (c_0 + \ldots + c_{r-1} z^{r-1}) \]
and solve the Vandermonde equation
\[
\begin{pmatrix}
1 & \ldots & 1 \\
z_0 & \ldots & z_{r-1} \\
\vdots & \ddots & \vdots \\
z_0^{r-1} & \ldots & z_{r-1}^{r-1}
\end{pmatrix}
\begin{pmatrix}
\rho_0 \\
\rho_1 \\
\vdots \\
\rho_{r-1}
\end{pmatrix}
=
\begin{pmatrix}
\gamma_{00} \\
\gamma_{01} \\
\vdots \\
\gamma_{0r-1}
\end{pmatrix}.
\]

Then
\[\mu = \sum_{j=0}^{r-1} \rho_j \delta_{z_j}. \]
Recall the lexicographic order on the rows and columns of $M(2)$:

$$1, Z, \bar{Z}, Z^2, \bar{Z}Z, \bar{Z}^2$$

- $Z = A \cdot 1$ (Dirac measure)
- $\bar{Z} = A \cdot 1 + B \cdot Z$ (supp $\mu \subseteq$ line)
- $Z^2 = A \cdot 1 + B \cdot Z + C \cdot \bar{Z}$ (flat extensions always exist)
- $\bar{Z}Z = A \cdot 1 + B \cdot Z + C \cdot \bar{Z} + D \cdot Z^2$

$$D = 0 \Rightarrow \bar{Z}Z = A \cdot 1 + B \cdot Z + \bar{B} \cdot \bar{Z} \text{ and } C = \bar{B}$$

$$\Rightarrow (\bar{Z} - B)(Z - \bar{B}) = A + |B|^2$$

$$\Rightarrow \bar{W}W = 1 \text{ (circle), for } W := \frac{Z - \bar{B}}{\sqrt{A + |B|^2}}.$$
The functional calculus we have constructed is such that \(p(Z, \bar{Z}) = 0 \) implies \(\text{supp} \ \mu \subseteq \mathcal{Z}(p) \).

When \(\{1, Z, \bar{Z}, Z^2, \bar{Z}Z\} \) is a basis for \(\mathcal{C}_{M(2)} \), the associated algebraic variety is the zero set of a real quadratic equation in

\[
x := \text{Re}[z] \text{ and } y := \text{Im}[z].
\]

Using the flat data result, one can reduce the study to cases corresponding to the following four real conics:

\[
\begin{align*}
(a) \quad \bar{W}^2 &= -2iW + 2i\bar{W} - W^2 - 2\bar{W}W \quad \text{parabola; } y = x^2 \\
(b) \quad \bar{W}^2 &= -4i1 + W^2 \quad \text{hyperbola; } yx = 1 \\
(c) \quad \bar{W}^2 &= W^2 \quad \text{pair of intersect. lines; } yx = 0 \\
(d) \quad \bar{W}W &= 1 \quad \text{unit circle; } x^2 + y^2 = 1.
\end{align*}
\]
Theorem QUARTIC

(RC-L. Fialkow, 2005) Let $\gamma^{(4)}$ be given, and assume $M(2) \geq 0$ and
$\{1, Z, \bar{Z}, Z^2, \bar{Z}Z\}$ is a basis for $C_{\mathcal{M}(2)}$. Then $\gamma^{(4)}$ admits a rep. meas. μ. Moreover, it is possible to find μ with $\text{card sup} \mu = \text{rank } M(2)$, except in some cases when $\mathcal{V}(\gamma^{(4)})$ is a pair of intersecting lines, in which cases there exist μ with $\text{card sup} \mu \leq 6$.

Corollary

Assume that $M(2) \geq 0$ and that $\text{rank } M(2) \leq \text{card } \mathcal{V}(\gamma^{(4)})$. Then $M(2)$ admits a representing measure.
The algebraic variety of γ is

$$\mathcal{V} \equiv \mathcal{V}(\gamma) := \bigcap_{p \in \mathcal{P}_n, \hat{p} \in \ker M(n)} \mathcal{Z}_p,$$

where \mathcal{Z}_p is the zero set of p.

If γ admits a representing measure μ, then

$$p \in \mathcal{P}_n \text{ satisfies } M(n)\hat{p} = 0 \iff \text{supp } \mu \subseteq \mathcal{Z}_p$$

Thus $\text{supp } \mu \subseteq \mathcal{V}$, so $r := \text{rank } M(n)$ and $v := \text{card } \mathcal{V}$ satisfy

$$r \leq \text{card supp } \mu \leq v.$$

If $p \in \mathcal{P}_{2n}$ and $p|_{\mathcal{V}} \equiv 0$, then $\Lambda(p) = \int p \, d\mu = 0$.

Here Λ is the Riesz functional, given by $\Lambda(\bar{z}^i z^j) := \gamma_{ij}$.
Basic necessary conditions for the existence of a representing measure

(Positivity) \(M(n) \geq 0 \) \hspace{1cm} (9.1)

(Consistency) \(p \in \mathcal{P}_{2n}, \ p|_\mathcal{V} \equiv 0 \implies \Lambda(p) = 0 \) \hspace{1cm} (9.2)

(Variety Condition) \(r \leq \nu, \ \text{i.e., rank} \ M(n) \leq \text{card} \ \mathcal{V} \). \hspace{1cm} (9.3)

Consistency implies

(Recursiveness) \(p, q, pq \in \mathcal{P}_n, \ M(n)\hat{p} = 0 \implies M(n)(pq)\hat{=} = 0 \). \hspace{1cm} (9.4)
Previous results:

- For $d = 1$ (the T \textit{Hamburger} MP for \mathbb{R}), positivity and recursiveness are sufficient.
- For $d = 2$, there exists $M(3) > 0$ for which γ has no representing measure.
- In general, \textit{Positivity, Consistency} and the \textit{Variety Condition} are not sufficient.

\textbf{Question C}

\textit{Suppose $M(n)(\gamma)$ is singular. If $M(n)$ is positive, γ is consistent, and $r \leq v$, does γ admit a representing measure?}
The next result gives an affirmative answer to Question C in the extremal case, i.e., $r = v$.

Theorem EXT

$(RC, L. Fialkow and M. Möller, 2005)$ For $\gamma \equiv \gamma^{(2n)}$ extremal, i.e., $r = v$, the following are equivalent:

(i) γ has a representing measure;
(ii) γ has a unique representing measure, which is rank $M(n)$-atomic (minimal);
(iii) $M(n) \geq 0$ and γ is consistent.
Since we know how to solve the singular Quartic MP, WLOG we will assume $M(2) > 0$.

Recall

Theorem A

(RC-L. Fialkow) If $M(n)$ admits a column relation of the form

$$Z^k = p_{k-1}(Z, \bar{Z}) \quad (1 \leq k \leq \left[\frac{n}{2} \right] + 1 \text{ and } \deg p_{k-1} \leq k - 1),$$

then $M(n)$ admits a flat extension $M(n+1)$, and therefore a representing measure.

Now, if $k = 3$, Theorem A can be used only if $n \geq 4$. Thus, one strategy is to somehow extend $M(3)$ to $M(4)$ and preserve the column relation $Z^3 = p_2(Z, \bar{Z})$. This requires checking that the C block in the extension satisfies the Toeplitz condition, something highly nontrivial.
Here’s a different approach: We’d like to study the case of harmonic poly’s: \(q(z, \bar{z}) := f(z) - \bar{g(z)} \), with \(\text{deg } q = 3 \). Recall that \(\text{rank } M(n) \leq \text{card } \mathcal{Z}(q) \) so of special interest is the case when \(\text{card } \mathcal{Z}(q) \geq 7 \), since otherwise the TMP admits a flat extension, or has no representing measure. In the case when \(g(z) \equiv z \), we have

Lemma

\((\text{Wilmshurst '98, Sarason-Crofoot, '99, Khavinson-Swiatek, '03}) \)

\[\text{card } \mathcal{Z}(f(z) - \bar{z}) \leq 7. \]
To get 7 points is not easy, as most complex cubic harmonic poly’s tend to have 5 or fewer zeros. One way to maximize the number of zeros is to impose symmetry conditions on the zero set K. Also, the substitution $w = z + b/3$ (which produces an equivalent TMP) transforms a cubic $z^3 + bz^2 + cz + d$ into $w^3 + \tilde{c}w + \tilde{d}$; WLOG, we always assume that there’s no quadratic term in the analytic piece.

Now, for a poly of the form $z^3 + \alpha z + \beta \bar{z}$, it is clear that $0 \in K$ and that $z \in K \Rightarrow -z \in K$. Another natural condition is to require that K be symmetric with respect to the line $y = x$, which in complex notation is $z = i\bar{z}$. When this is required, we obtain $\alpha \in i\mathbb{R}$ and $\beta \in \mathbb{R}$. Thus, the column relation becomes $Z^3 = itZ + u\bar{Z}$, with $t, u \in \mathbb{R}$.

Under these conditions, one needs to find only two points, one on the line $y = x$, the other outside that line.
We thus consider the harmonic polynomial $q_7(z, \bar{z}) := z^3 - itz - u\bar{z}$.

Proposition

(RC-S. Yoo, ’09) Card $\mathcal{Z}(q_7) = 7$. In fact, for $0 < |u| < t < 2|u|$, $\mathcal{Z}(q_7) = \{0, p + iq, q + ip, -p - iq, -q - ip, r + ir, -r - ir\}$, where $p, q, r > 0$, $p^2 + q^2 = u$ and $r^2 = \frac{t-u}{2}$.
To prove this result, we first identify the two real poly’s

\[\text{Re } q_7 = x^3 - 3xy^2 + ty - ux \] and
\[\text{Im } q_7 = -y^3 + 3x^2y - tx + uy \]

and calculate \(\text{Resultant}(\text{Re}q_7, \text{Im}q_7, y) \), which is the determinant of the Sylvester matrix, i.e.,

\[
\begin{vmatrix}
-3x & t & x^3 - ux & 0 & 0 \\
0 & -3x & t & x^3 - ux & 0 \\
0 & 0 & -3x & t & x^3 - ux \\
-1 & 0 & 3x^2 + u & -tx & 0 \\
0 & -1 & 0 & 3x^2 + u & -tx \\
\end{vmatrix}
= x (u - t + 2x^2) (u + t + 2x^2) (16x^4 - 16x^2u + t^2).
\]
Figure 1. The 7-point set $Z(q_7)$, where

$$r = \sqrt{\frac{t-u}{2}}, \quad p = \frac{1}{2}(2u + \sqrt{4u^2 - t^2}) \quad \text{and} \quad p^2 + q^2 = u$$
The fact that \(q_7 \) has the \textbf{maximum} number of zeros predicted by the Lemma is significant to us, in that each \textbf{sextic} TMP with \textit{invertible} \(M(2) \) and a column relation of the form \(q_7(Z, \bar{Z}) = 0 \) either does not admit a representing measure or is necessarily extremal.

As a consequence, the existence of a representing measure will be established once we prove that such a TMP is \textit{consistent}. This means that for each poly \(p \) of degree at most 6 that vanishes on \(Z(q_7) \) we must verify that \(\Lambda(p) = 0 \).
Since rank $M(3) = 7$, there must be another column relation besides $q_7(Z, \bar{Z}) = 0$. Clearly the columns

$$1, Z, \bar{Z}, Z^2, \bar{Z}Z, \bar{Z}^2, \bar{Z}Z^2$$

must be linearly independent (otherwise $M(3)$ would be a flat extension of $M(2)$), so the new column relation must involve $\bar{Z}Z^2$ and \bar{Z}^2Z. An analysis using the properties of the functional calculus shows that, in the presence of a representing measure, the new column relation must be

$$\bar{Z}^2Z + i\bar{Z}Z^2 - iuZ - u\bar{Z} = 0.$$
Notation

In what follows, \(\mathbb{C}_6[z, \bar{z}] \) will denote the space of complex polynomials in \(z \) and \(\bar{z} \) of degree at most 6, and let

\[
q_{LC}(z, \bar{z}) := \bar{z}^2z + i\bar{z}z^2 - iuz - u\bar{z} = i(z - i\bar{z})(\bar{z}z - u).
\]

Observe that the zero set of \(q_{LC} \) is the union of a line and a circle, and that \(\mathcal{Z}(q_7) \subset \mathcal{Z}(q_{LC}) \).
Figure 2. The sets $\mathcal{Z}(q_7)$ and $\mathcal{Z}(q_{LC})$.
Main Theorem

Let $M(3) \geq 0$, with $M(2) > 0$ and $q_7(Z, \bar{Z}) = 0$. There exists a representing measure for $M(3)$ if and only if

\[
\begin{align*}
\Lambda(q_{LC}) &= 0 \\
\Lambda(zq_{LC}) &= 0.
\end{align*}
\]

(11.1)

Equivalently,

\[
\begin{align*}
\text{Re} \gamma_{12} - \text{Im} \gamma_{12} &= u(\text{Re} \gamma_{01} - \text{Im} \gamma_{01}) = 0 \\
\gamma_{22} &= (t + u)\gamma_{11} - 2u \text{ Im} \gamma_{02} = 0.
\end{align*}
\]

Equivalently,

$q_{LC}(Z, \bar{Z}) = 0$

(11.2)
Proof. (\Longleftrightarrow) Let μ be a representing measure. We know that
$7 \leq \text{rank } M(3) \leq \text{card } \text{supp } \mu \leq \text{card } \mathcal{Z}(q_7) = 7$, so that
$\text{supp } \mu = \mathcal{Z}(q_7)$ and $\text{rank } M(3) = 7$. Thus,

$$\Lambda(q_7) = \int q_7 \, d\mu = 0.$$

Similarly, since $\text{supp } \mu \subseteq \mathcal{Z}(q_{LC})$, we also have

$$\Lambda(q_{LC}) = \Lambda(zq_{LC}) = 0,$$

as desired.
(⇐) On \(\mathcal{Z}(q_7) \) we have \(z^3 = itz + u\bar{z} \). Using this relation and (11.1), we can prove that \(\Lambda(\bar{z}^i z^j q_{LC}) = 0 \) for all \(0 \leq i + j \leq 3 \). For example,

\[
\bar{z}q_{LC} - izq_{LC} = (\bar{z} - iz)(\bar{z}^2z + i\bar{z}z^2 - iuz - u\bar{z})
\]
\[
= -uz^2 + \bar{z}z^3 - u\bar{z}^2 + \bar{z}^3z
\]
\[
= -uz^2 + \bar{z}(itz + u\bar{z}) - u\bar{z}^2 + (-itz + uz)z
\]
\[
= 0,
\]
and therefore \(\Lambda(\bar{z}q_{LC}) = i\Lambda(zq_{LC}) = 0 \). It follows that for \(f, g, h \in \mathbb{C}_3[z, \bar{z}] \) we have \(\Lambda(fq_7 + g\bar{q}_7 + hq_{LC}) = 0 \). Consistency will be established once we show that all degree-six polynomials vanishing in \(\mathcal{Z}(q_7) \) are of the form \(fq_7 + g\bar{q}_7 + hq_{LC} \).
Proposition (Representation of Polynomials)

Let $\mathcal{P}_6 := \{ p \in \mathbb{C}_6[z, \bar{z}] : p|_{z(q_7)} \equiv 0 \}$ and let

$\mathcal{I} := \{ p \in \mathbb{C}_6[z, \bar{z}] : p = fq_7 + g\bar{q}_7 + hq_{LC} \text{ for some } f, g, h \in \mathbb{C}_3[z, \bar{z}] \}.$

Then $\mathcal{P}_6 = \mathcal{I}$.

Proof. Clearly, $\mathcal{I} \subseteq \mathcal{P}_6$. We shall show that $\dim \mathcal{I} = \dim \mathcal{P}_6$. Let $T : \mathbb{C}^{30} \longrightarrow \mathbb{C}_6[z, \bar{z}]$ be given by

$$(a_{00}, \ldots, a_{30}, b_{00}, \ldots, b_{30}, c_{00}, \ldots, c_{30}) \longmapsto$$

$$(a_{00} + a_{01}z + a_{10}\bar{z} + \cdots + a_{30}\bar{z}^3)q_7$$

$$+(b_{00} + b_{01}z + b_{10}\bar{z} + \cdots + b_{30}\bar{z}^3)\bar{q}_7$$

$$+(c_{00} + c_{01}z + c_{10}\bar{z} + \cdots + c_{30}\bar{z}^3)q_{LC}.$$
Recall that $30 = \dim \mathbb{C}^{30} = \dim \ker T + \dim \Ran T$, and observe that $\mathcal{I} = \Ran T$, so that $\dim \mathcal{I} = \rank T$.

To determine $\rank T$, we first determine $\dim \ker T$. Using Gaussian elimination, we prove that $\dim \ker T = 9$ whenever $ut \neq 0$. It follows that $\rank T = 30 - 9 = 21$, that is, $\dim \mathcal{I} = 21$.
Now consider the evaluation map $S : \mathbb{C}_6[z, \bar{z}] \longrightarrow \mathbb{C}^7$ given by

$$S(p(z, \bar{z})) := (p(w_0, \bar{w}_0), p(w_1, \bar{w}_1), p(w_2, \bar{w}_2),$$

$$p(w_3, \bar{w}_3), p(w_4, \bar{w}_4), p(w_5, \bar{w}_5), p(w_6, \bar{w}_6)).$$

Again, $\dim \ker S + \dim \text{Ran } S = \dim \mathbb{C}_6[z, \bar{z}] = 28$. Using Lagrange Interpolation, it is easy to verify that S is onto, i.e., $\text{rank } S = 7$.

Moreover, $\ker S = \mathcal{P}_6$. Since $\dim \mathbb{C}_6[z, \bar{z}] = 28$, it follows that $\dim \ker S = 21$, and a fortiori that $\dim \mathcal{P}_6 = 21$.

Therefore, $\dim \mathcal{I} = 21 = \dim \mathcal{P}_6$, and since $\mathcal{I} \subseteq \mathcal{P}_6$, we have established that $\mathcal{I} = \mathcal{P}_6$, as desired.
Yet another approach to TMP: The Division Algorithm

Division Algorithm in $\mathbb{R}[x_1, \cdots, x_n]$

Fix a monomial order $>$ on $\mathbb{Z}^n_{\geq 0}$ and let $F = (f_1, \cdots, f_s)$ be an ordered s-tuple of polynomials in $\mathbb{R}[x_1, \cdots, x_n]$. Then every $f \in \mathbb{R}[x_1, \cdots, x_n]$ can be written as

$$f = a_1 f_1 + \cdots + a_s f_s + r,$$

where $a_i \in \mathbb{R}[x_1, \cdots, x_n]$, and either $r = 0$ or r is a linear combination, with coefficients in \mathbb{R}, of monomials, none of which is divisible by any of the leading terms in f_1, \cdots, f_s.

Furthermore, if $a_i f_i \neq 0$, then we have

$$\text{multideg}(f) \geq \text{multideg}(a_i f_i).$$
With S. Yoo, we have recently used the Division Algorithm to build an example of $M(3) \equiv M(3)(\beta) \geq 0$ satisfying $M(2) > 0$, $r = 7$, $\nu = \infty$, β consistent, and with no representing measure.

The Division Algorithm work is as follows: we identify sufficiently many polynomials f_1, \cdots, f_s vanishing on $V(\beta)$, and simultaneously in the kernel of the Riesz functional L_β. By the Division Algorithm, any polynomial f vanishing on $V(\beta)$ can be written as $f = a_1f_1 + \cdots + a_s f_s + r$, which readily implies that r must also vanish on $V(\beta)$. Due to the divisibility condition on the monomials of r, and the characteristics of $V(\beta)$, which generate an invertible Vandermonde matrix, we then prove that $r \equiv 0$.

With some additional work, it is then possible to prove that $f \in \ker L_\beta$, which establishes the Consistency of β.
Given a finite family of moments, build moment matrix

Identify all column relations, and build algebraic variety \mathcal{V}

Always true: $r \leq \text{card supp } \mu \leq \nu$

Finite rank case; flat case

Quartic Case

Extremal case (must check Consistency)

Harmonic cubic poly’s in Sextic Case

General singular case

Invertible case still a big mystery...