Some Computational Questions in Robust Stabilization and Fault Detection

Keith Glover (with thanks to Xiaochuan Yuan, Ann Dowling, Andreas Varga)

October 3rd, 2010, UCSD HeltonFest
Outline

- Thermoacoustic Oscillation Control
 - Phenomenon Mechanism
 - Current Status
 - Methods and Results
 - Conclusion and Future work
- Fault Detection
Generic Problem: Flame burning in a fluid

The interaction between unsteady heat release $Q(t)$ and pressure/velocity fluctuations $p(t)/u(t)$ causes self-excited oscillations.
Current Status

1. Active control proved one of successful applications of control technology in fluid systems (Annaswamy, 2002[2], Dowling, 2005[7])

2. Lean prevaporised premixed technology is a big challenge (Dowling, 2002[6])

Current Status

1. Active control proved one of successful applications of control technology in fluid systems (Annaswamy, 2002[2], Dowling, 2005[7])

2. Lean prevaporised premixed technology is a big challenge (Dowling, 2002[6])

Research purpose

Modeling investigation of imperfectly premixed combustion for the purpose of active control (Papachristodoulou & Dowling, 2007[9])
Flame dynamics

Development

1. Empirical (Bloxsidge, 1988) \[4\]

\[
\frac{\hat{Q}(\omega)}{\bar{Q}} = \frac{1}{1 + j\omega \tau} \frac{\hat{u}(\omega)}{\bar{u}}
\]

More accurately

\[
\frac{\hat{Q}(\omega)}{\bar{Q}} = \frac{1}{(1 + j\omega \tau_1)(1 + j\omega \tau)} \frac{\hat{u}(\omega)}{\bar{u}}, \quad (\tau_1 \ll \tau)
\]
Flame dynamics

2 G-equation Flame model (Fleifil et al. 1996[8]; Dowling 1999[5])

\[x = -L \quad x = 0 \]

\[u \quad S_u \]

\[\frac{\partial G}{\partial t} + u \cdot \nabla G = S_u |\nabla G| \]

\[\frac{\partial \xi}{\partial t} = u - v \frac{\partial \xi}{\partial r} - S_u \sqrt{1 + \left(\frac{\partial \xi}{\partial r}\right)^2} \]

Flame surface \(G(x, r, t) = x - \xi(r, t) = 0 \) moves with fixed velocity \(S_u \) into unburnt gas according to the so-called G equation.
2 G-equation Flame model (Fleifil et al. 1996[8]; Dowling 1999[5])

Flame surface $G(x, r, t) = x - \xi(r, t) = 0$ moves with fixed velocity S_u into unburnt gas according to the so-called G equation

$$\frac{\partial G}{\partial t} + u \cdot \nabla G = S_u |\nabla G|$$

$$\frac{\partial \xi}{\partial t} = u - v \frac{\partial \xi}{\partial r} - S_u \sqrt{1 + \left(\frac{\partial \xi}{\partial r}\right)^2}$$

Assumption:
- $S_u = \text{Const}$ and $Q(t) \propto A(t)$
- Simple Geometry, Fully Premixed
Principles

Conservation of mass, momentum and energy

\[
\frac{1}{c} \frac{\partial^2 \rho'}{\partial t^2} - \frac{\partial^2 p'}{\partial x^2} = \frac{\gamma - 1}{c^2} \frac{\partial Q'}{\partial t}
\]
Experiments Apparatus (Balachandran, 2005)[3]
Experiment (Balachandran:2005)[3]
Experiment (Balachandran:2005)[3]
Experimental Results (Balachandran, 2005)[3]

Forced response at 160 Hz excitation
Flame dynamics

1. Imperfectly premixed flame

\[
\begin{align*}
\frac{\partial \xi}{\partial t} &= u - v \frac{\partial \xi}{\partial r} - S_u \sqrt{1 + \left(\frac{\partial \xi}{\partial r} \right)^2} \\
\frac{\partial \zeta}{\partial t} &= u - v \frac{\partial \zeta}{\partial r} + S_u \sqrt{1 + \left(\frac{\partial \zeta}{\partial r} \right)^2}
\end{align*}
\]

Equivalence/Fuel-air ratio ϕ

\[S_u(\phi) = k_1 \phi^k e^{-k_3(\phi-k_4)^2}\]

(G. Abu-orf, 1996)[1]
2. Constant and Time-varying time-delays

\[
\begin{align*}
\phi(r, t) &= \phi_0(t - \bar{\tau}(r)) \\
\phi_0 &= \frac{|u|}{|\bar{u}|} \frac{L + \bar{\xi}}{L + \bar{\xi}}
\end{align*}
\]

where

\[
\bar{\tau}(r) = \frac{L + \bar{\xi}}{|\bar{u}|}
\]

\[
L + \xi(r, t) = \int_{t-\tau(r,t)}^{t} u(t')dt'
\]

\[
\Rightarrow \frac{\partial \tau}{\partial t}(r, t) = 1 - \frac{u(t) - \partial \xi / \partial t}{u(t - \tau(r, t))}
\]
Flame dynamics

\[u = A \sin(2\pi f_i t) \]

\[A = 0.1, f_i = 300 \text{ Hz} \]

\[A = 0.3, f_i = 300 \text{ Hz} \]
Derive a linear flame model $G_f(s)$, which is the transfer function from the incoming velocity perturbation \hat{u} to global heat release variation \hat{Q}.

Fig. Fully Premixed Flames

Fig. Imperfectly Premixed Flames
However the high frequency gain is seen to be too high relative to the experimental results. Introducing some mixing gives better match.
1. Helmholtz resonator

\[\hat{u}_1 = G_h(s) \hat{p}_1 \]

2. Connect HR with downstream tube (Wave-based method)

\[\frac{\hat{u}_1}{\hat{u}_1} = G_{ac}(s) \frac{\hat{Q}}{Q} \]

Fig. Simplified diagram of the duct geometry and flow
Fig. The frequency response of the acoustic model with short tube ($l_b = 80 \text{mm}$) and long tube ($l_b = 350 \text{mm}$)
Fig. Simulations of combustion instabilities: The fractional perturbations in $u_G(t)$ (the fluid velocity), $p_1(t)$ (the pressure), and $Q(t)$ (heat release).
Controller designed for linearized model with discretized pde using \mathcal{H}_∞ techniques.

Fig. Simulation of stabilization of combustion instabilities: The fractional perturbations in $u_G(t)$ (the fluid velocity), $p_1(t)$ (the pressure), and control effort.
Analysis Tools - Integral Quadratic Constraints (Megretski and Rantzer)

- Approximate bounds on nonlinear deviations from linearized but discretized model.
- With N discrete points for r then we have a $Δ$ block of dimension $12N \times 6N$.
- Performance in both speed and robustness of the current LMI solvers were challenged by this scale of problem.
- Similar tools for delay approximation.
- Convergence as N becomes large?
A Fault Detection Problem (Andras Varga, DLR)

\[y = G_u u + G_d d + G_w w + G_f f \]

where
- \(y \) - output (measured)
- \(u \) - input (measured)
- \(d \) - disturbance (not measured)
- \(w \) - noise (not measured)
- \(f \) - fault (not measured)

Approx. Fault Detection Problem (AFDP): Find \(R \)

\[r = R \begin{bmatrix} y \\ u \end{bmatrix} = R_u u + R_d d + R_w w + R_f f \]

such that \(R_u = 0 \) and \(R_d = 0 \) and (i) \(\| R_w \|_{2/\infty} \leq \gamma \), (ii) \(\| R_{fj} \|_{2/\infty} \geq \beta \) \(\forall j \).
Standard manipulations reduce the problem to finding $Q \in \mathcal{H}_{\infty}$ such that

(i) $\|QM_{wo}\|_{2/\infty} \leq \gamma$

(ii) $\|QN_{f,j}\|_{2/\infty} \geq \beta \quad \forall j$

where M_{wo} is an outer function.

Want the maximize β/γ the sensitivity to fault versus noise.

If $\|.\|_{\infty}$ in (i) then

- if $M_{wo}^{-1} \in \mathcal{H}_{\infty}$ then optimal solution is $Q = \gamma M_{wo}^{-1}$.
- otherwise can typically make β arbitrarily large as "$Q \to M_{wo}^{-1}$".
Optimal solution with fixed form $Q = D + C(\sigma I - A)^{-1}B$ with (A, B) given but (C, D) to be chosen?
Let $X = [C \quad D]' [C \quad D]$ then

- $\|QM_{wo}\|_\infty \leq \gamma$ is equivalent to an LMI in X.
- $\|QN_{fj}\|_2 \geq \beta$ is equivalent to an LMI in X.
- but $\|QN_{fj}\|_\infty \geq \beta$ is NOT equivalent to an LMI.

[Note that although there appears to be a rank condition on X a subsequent spectral factorization can remove this]
Question: is the problem with \[\|QM_{wo}\|_\infty / \|QN_{fj}\|_\infty \] over \([C \ D]\) inherently non-convex?

Example: \(Q\) a \(2 \times 2\) constant. Let \(X = Q'Q\).

(i) \[X \leq \begin{bmatrix} \frac{1+\alpha \omega^2}{1+\omega^2} & 0 \\ 0 & \frac{\alpha + \omega^2}{1+\omega^2} \end{bmatrix} \quad \forall \omega. \]

(ii) \[\begin{bmatrix} \frac{1+j\omega}{1-j\omega} & 1 \end{bmatrix} X \begin{bmatrix} \frac{1-j\omega}{1+j\omega} \\ 1 \end{bmatrix} \geq \beta \quad \text{for some} \ \omega. \]

(iii) \[\begin{bmatrix} 1 & -\frac{1+j\omega}{1-j\omega} \\ \frac{1+j\omega}{1-j\omega} & 1 \end{bmatrix} \geq \beta \quad \text{for some} \ \omega. \]

Some manipulation gives \(\beta_{\text{max}} = \frac{4\alpha}{1+\alpha}\) and \(X_{\text{opt}} = \frac{\alpha}{1+\alpha} \begin{bmatrix} 1 & \pm 1 \\ \pm 1 & 1 \end{bmatrix} \).

Two disjoint sets of feasible solutions for \(\beta < \beta_{\text{max}}\).
Mathematics and Engineering as practiced at UCSD 2010 and beyond
G. Abu-orf.
Laminal flamelet reaction rate modeling for spark ignition engines.

A. M. Annaswamy and A. F. Ghoniem.
Active control of combustion instabilities: theory and practice.

R. Balachandran.
Experimental investigation of the response of turbulent premixed flames to acoustic oscillations.

G. J. Bloxsidge, A. P. Dowling, and P. J. Langhorne.
Reheat buzz: An acoustically coupled combustion instability, part 2. theory.

A. P. Dowling.
A kinematic model of a ducted flame.

A. P. Dowling and S. Hubbard.
Instability in lean premixed combustors.
A. P. Dowling and A. S. Morgans.
Feedback control of combustion oscillations.

Response of a laminar premixed flame to flow oscillations: A kinematic model and thermoacoustic instability results.

A. Papachristodoulou and A. P. Dowling.
Reduced order kinematic modeling of ducted flames.