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Qsym over Sym is free
by

A. M. Garsia and N. Wallach

Astract
We study here the ring QSn of Quasi-Symmetric Functions

in the variables x1, x2, . . . , xn. F. Bergeron and C. Reutenauer [4]
formulated a number of conjectures about this ring, in particular
they conjectured that it is free over the ring Λn of symmetric func-
tions in x1, x2, . . . , xn. We present here an algorithm that recursively
constructs a Λn-module basis for QSn thereby proving one of the
Bergeron-Reutenauer conjectures. This result also implies that the
quotient of QSn by the ideal generated by the elementary symmet-
ric functions has dimension n!. Surprisingly, to show the validity of
our algorithm we were led to a truly remarkable connection between
QSn and the harmonics of Sn.

I. Introduction
Quasi-symmetric functions arose in the theory of P-partitions and were first intro-

duced by Gessel (see [9] p. 401). The space QSn of quasi-symmetric functions in the alphabet
Xn = {x1, x2, . . . , xn} may be defined as the linear span of the polynomials

m[p1,p2,...,pk][Xn] =
∑

1≤i1<i2<···<ik≤n

xp1
i1

xp2
i2

· · ·xpk

ik
(for k ≤ n and p1, p2, . . . , pk ≥ 1) I.1

It is customary to call a vector p = (p1, p2, . . . , pk) with positive integer components a “com-
position”, the integer k is called the “length” of p and is denoted “l(p)”. We also set

|p| = p1 + p2 + · · · + pk

and call |p| the “size ” of p. The collection of all compositions is denoted “C”. It will also be
convenient to denote by “C=k” and “C≤k” the subcollections of C consisting of compositions
of lengths = k and ≤ k respectively.

For p ∈ C, we denote by λ(p) the partition obtained by rearranging in decreasing order
the parts of p. This given it is easy to see that the polynomial

Mλ[Xn] =
∑

λ(p)=λ

mp[Xn] I.2

is none other that the ordinary “monomial” symmetric function. For this reason the poly-
nomials defined by I.1 are called “quasi-monomials”. It may be shown that the product of
any two quasi-monomials is a linear combinations of quasi-monomials and thus QSn is also a
ring. It follows from I.2 that the ring Λn of symmetric functions in x1, x2, . . . , xn is contained
in QSn. F. Bergeron and C. Reutenauer in [4] conjectured that QSn is a free module over
Λn. They also conjectured that the quotient

QSn/In I.3
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where In is the ideal generated in QSn by the homogeneous symmetric functions of positive
degree has dimension n!. We give here an algorithmic proof of both conjectures. To give a
precise statement of our results we need to make some preliminary remarks.

Since every symmetric function is a polynomial in the elementary symmetric functions

e1[Xn], e2[Xn], . . . , en[Xn]

we may write
In =

(
e1[Xn], e2[Xn], . . . , en[Xn]

)
QSn

. I.4

It follows from this that if {η1[Xn], η2[Xn], . . . , ηN [Xn]} ⊆ QSn is any basis of QSn/In then any
quasi-symmetric function P ∈ QSn has an expansion of the form

P =
N∑

i=1

ηi[Xn]Ai(e1[Xn], e2[Xn], . . . , en[Xn]
)

I.5

with the A′
is polynomials in their arguments. The Bergeron-Reutenauer conjecture asserts

that these expansions are unique. In fact uniqueness for the expansions in I.5 for a single col-
lection {η1[Xn], η2[Xn], . . . , ηN [Xn]} yields the Cohen-Macauliness of QSn as well as the asserted
n! dimension for the quotient QSn/In.

Our approach is to derive the existence of such bases for QSn from the analogous
result for the ordinary polynomial ring Q[Xn]. To make this precise we need to recall some
basic facts. To begin let us say that an integral vector p = (p1, p2, . . . , pk) (with pi ≥ 0) is
“n-subtriangular” if

p1 ≤ n − 1 , p2 ≤ n − 2 , · · · , pk ≤ n − k ,

Here and after we will denote by SUBn the collection of all n-subtriangular vectors of length
n . A monomial xp = xp1

1 xp2
2 · · ·xpk

k whose exponent vector (p1, p2, . . . , pk) is “n-subtriangular”
will be called “n-subtriangular” as well. Now it is well known and proved by E. Artin in [2]
that the collection of n-subtriangular monomials ABn = {xε}ε∈SUBn

is a basis for the quotient
ring

Rn = Q[Xn]/In .

Since we shall make extensive use of this result in the sequel it will be convenient to briefly
call the elements of ABn “Artin monomials”.

We will study here alternate bases for the quotient ring Rn which are of the form{
mp[Xn]

}
p∈Sn−1

⋃ {
xε

}
ε∈Zn

I.6

with Sn−1 and Zn appropriately chosen subcollections of C≤n−1 and SUBn respectively. To be
precise we can obtain such bases by applying the Gauss elimination process modulo In to
the collection {

mp[Xn]
}

p∈C≤n−1

I.7
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followed by the Artin monomials {
xε

}
ε∈SUBn

This done we let Sn−1 be simply the set of compositions indexing the elements of I.7 that
survive the process and likewise we let Zn be the set of exponents of the Artin monomials
that remain at the end of the process. It immediately follows from the fact that I.7 is a basis
for Rn that the collection{

mp[Xn] eq1
1 [Xn]eq2

2 [Xn] · · · eqn
n [Xn]

}
p∈Sn−1

qi≥0

⋃ {
xε eq1

1 [Xn]eq2
2 [Xn] · · · eqn

n [Xn]
}

ε∈Zn

qi≥0

I.8

is a basis for Q[Xn].

With this notation in place our main result can be stated as follows.

Theorem A
For n ≥ 2, whenever Sn−1 and Zn are obtained by means of the algorithm described

above the resulting subcollection of I.8 given by{
mp[Xn] eq1

1 [Xn]eq2
2 [Xn] · · · eqn

n [Xn]
}

p∈Sn−1

qi≥0

⋃ {
xε eq1

1 [Xn]eq2
2 [Xn] · · · eqn+1

n [Xn]
}

ε∈Zn

qi≥0

I.9

is basis for QSn. In particular this implies that QSn is a free module over the ring Λn of
symmetric functions.

Note that since I.9 is contained in I.8, its independence is immediate. Thus to show
that I.9 is a basis for QSn we need only show that it spans QSn. This will obtained by a
counting argument based on some truly remarkable identities. To appreciate their signifi-
cance we need some preliminary remarks. To begin it is easily shown that the Hilbert series
of QSn is given by the rational function

FQSn
(q) = 1 +

q

1 − q
+

q2

(1 − q)2
+ · · · +

qn

(1 − q)n
.

Now we can show that it may also be written in the form

FQSn
(q) =

Pn(q)
(1 − q)(1 − q2) · · · (1 − qn)

I.10

with Pn(q) a polynomial with positive integer coefficients. This discovery, due to Bergeron
and Reutenauer, already by itself should suggest to the wise the Cohen-Macauliness of QSn .
But we can proceed a bit further and derive from I.10 that we must have

Pn(q)
(1 − q)(1 − q2) · · · (1 − qn)

=
Pn−1(q)

(1 − q)(1 − q2) · · · (1 − qn−1)
+

qn

(1 − q)n
. I.11

Let “[n]q!” denote the customary q-analogue of n!, that is

[n]q! = (1 + q)(1 + q + q2) · · · (1 + q + q2 + · · · + qn−1) .
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Putting everything to a common denominator we can rewrite I.11 in the form

FQSn
(q) =

Pn−1(q) + qn
(
[n]q! − Pn−1(q)

)
(1 − q)(1 − q2) · · · (1 − qn)

. I.12

In particular from I.10 we derive that the polynomial Pn(q) must satisfy the recursion

Pn(q) = Pn−1(q) + qn
(
[n]q! − Pn−1(q)

)
. I.13

This given, the following two beautiful identities are the culminating point of our
efforts.
Theorem I.1

If {mp[Xn]}p∈Sn−1 are the quasimonomials that survive the Gauss elimination process
applied to the collection {mp[Xn]}p∈C≤n−1 , then

∑
p∈Sn−1

q|p| = Pn−1(q) I.14

Equivalently, if {xε }ε∈Zn
are the Artin monomials that survive the Gauss elimination process

described above then ∑
ε∈Zn

q|p| = [n]q! − Pn−1(q) I.15

In view of I.12 the assertion that the collection in I.9 is a basis for QSn is an immediate
consequence of I.14 and I.15. Now it develops that these identities follow from a remarkable
property of the Harmonics of Sn. To state it we need some definitions. To begin let σi(n)
denote the cycle (i, i + 1, . . . , n) and set

τn =
n∑

i=1

σi(n) , τ ′
n =

n∑
i=1

(−1)n−i σi(n) I.16

It is well known that the space Hn of Harmonics of Sn is the linear span of the
derivatives of the Vandermonde determinant ∆[Xn] = det‖xn−j

i ‖n
i,j=1 . In symbols

Hn = L
[
∂p

x∆[Xn]
]
.

Now it is easily seen that τ ′
n preserves harmonicity. Taking all this into account the identities

in I.14 and I.15 are consequences of the following basic fact

Theorem I.2
The kernel of τ ′

n as a map of Hn−1 into Hn has dimension (n − 2)! .

The connection between Harmonics and Quasy-Symmetric functions stems from the following
surprising result.
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Theorem I.3
A polynomial h[Xn−1] ∈ Hn−1 is in the kernel of τ ′

n if and only if it is of the form

h[Xn−1] = Q(∂x1 , ∂x2 , . . . , ∂xn−1))∆[Xn−1]

with
Q(x1, x2, . . . , xn−1) ∈ QS[Xn−1] .

We shall see that Theorem I.3 implies Theorem I.2. Indeed it follows from Theorem
I.3 that the Hilbert series of the kernel of τ ′

n on Hn−1 is given by the polynomial

Pn−2(1/q) q(
n−1

2 ) .

We have essentially two different proofs of our freeness result, a leasurely one which
derives the identities in I.14 and I.15 from Theorem I.3 and a more economical one which
derives that the collection in I.9 is a basis directly by proving the dimension result of Theorem
I.2.

This paper is divided into six sections. In the first section we prove some useful
properties of the ring of Quasi-symmetric functions, and for sake of completeness review
some basic facts about Hilbert series and expansions in the polynomial ring Q[Xn] we shall
also give there a combinatorial proof of the positivity of Pn(q). In the second section we give a
precise description of our algorithm and establish some criteria that imply its validity. In the
third section we develop the connection between Quasi-symmetric functions and Harmonics
and show that Theorem I.3 implies Theorem I.1. In the fourth section we give a proof of
Theorem I.3 and explore some further consequences of our arguments. In the fifth section
we show from general principles that our algorithmic approach is not only sufficient but also
necessary and obtain our second proof of the freeness of QSn . The sixth and last section
contains a number of remarks and identities which are by-products of our efforts and we
regard to be interesting in themselves and conducive to further investigations.

Acknowledgement
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Reutenauer for sharing the contents of their unpublished work, for suggesting the problem
and encouragement throughout our efforts. In particular their conjectured basis turned out
to be an invaluable tool in many of our computer explorations.
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1. Hilbert series and properties of QSn.

If V is a graded vector space, we have the direct sum decomposition

V = Ho(V) ⊕H1(V) ⊕ · · · ⊕ Hk(V) ⊕ · · ·

where Hd(V) denotes the subspace of V spanned by the homogeneous elements of degree d.
We recall that the “Hilbert series ” of V, denoted here by “FV(q)”, is the generating functions
of dimensions

FV(q) =
∑
d≥0

dim(Hd(V)) qd . 1.1

Now we have the following basic criterion.

Proposition 1.1
Let {η}η∈B be a collection of homogeneous elements of V, then

a) If {η}η∈B is a basis we necessarily have

∑
η∈B

qdegree(η) = FV(q) . 1.2

b) Conversely if 1.2 holds true then the following three properties are equivalent
(i) {η}η∈B is a basis of V,

(ii) {η}η∈B spans V,

(iii) {η}η∈B is an independent set.
Proof

Equating coefficients of qd in 1.2 yields

#
{
η ∈ B : degree(η) = d

}
= dim(Hd(V )) 1.3

and this is clearly necessary for {η}η∈B to be a basis. This proves a) . On the other hand if
1.2 his true then 1.3 holds for all d and to show that the subcollection {η}η∈B ,degree(η)=d is a
basis of Hd(V) we need only show that its spans Hd(V) or that it is an independent set. This
proves b).

The space of quasi-symmetric functions QSn is graded by the customary degree of a
polynomial and its Hilbert series is given by the rational function

FQSn
(q) = 1 +

q

1 − q
+

q2

(1 − q)2
+ · · · +

qn

(1 − q)n
1.4

In fact, if we denote by QS=k[Xn] the linear span of the quasimonomials {mp[Xn]}p∈C=k
, we

easily see that we have

FQS=k[Xn](q) =
∑
p∈C

l(p)=k

q|p| =
∑
p1≥1

∑
p2≥1

· · ·
∑
pk≥1

qp1+p2+···+pk =
qk

(1 − q)k
, 1.5
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and then 1.4 follows from the direct sum decomposition

QSn = QS=0[Xn] ⊕QS=1[Xn] ⊕QS=2[Xn] ⊕ · · · ⊕ QS=n[Xn] . 1.6

Setting as we did in the introduction for each n ≥ 1

Pn(q) = (1 − q)(1 − q2) · · · (1 − qn)FQSn
(q) 1.7

we have seen (in I.13) that these polynomials satisfy the recursion

Pn(q) = Pn−1(q) + qn
(
[n]q! − Pn−1(q)

)
. 1.8

Starting from the initial conditions

P0(q) = P1(q) = 1 1.9

we obtain the following three terms of the sequence {Pn(q)}n≥1:

P2(q) = 1 + q3 ,

P3(q) = 1 + q3 + 2q4 + 2q5 ,

P4(q) = 1 + q3 + 2q4 + 5q5 + 5q6 + 5q7 + 3q8 + q9 + q10 .

Note that setting q = 1 in 1.8 we derive that

Pn(1) = n! 1.10

thus Pn(q) may be viewed an another q-analogue of n!. This given, it should be of interest
to see a combinatorial interpretation of its positivity. There is in fact, a combinatorial
interpretation of the positivity of the difference [n]q!− Pn−1(q). It will be good to give it here
since it leads in a natural way to the recursive construction of our bases. To begin, let Art[Xn]
denote the sum of all Artin monomials in x1, x2, . . . , xn. That is

Art[Xn] =
n−1∏
i=1

(
1 + xi + x2

i + · · · + xn−i
i

)
=

∑
ε∈SUBn

xε . 1.12

With this notation, we let
{
Π[Xn]

}
n≥1

be the sequence of polynomials defined by setting

1) Π[X1] = 1 ,

2) Π[Xn] = Π[Xn−1] + x1x2 · · ·xn

(
Art[Xn] − Π[Xn−1]

) 1.13

We can now easily see that we must have

Proposition 1.2
a) Each Π[Xn] is a sum of n! distinct (n + 1)-subtriangular monomials,
b) The compositions appearing as exponents of monomials in Π[Xn] have length ≤ n.
c) In particular the polynomial Pn(q) must have positive integer coefficients.
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Proof
Since multiplication by x1x2 · · ·xn sends an n-subtriangular monomial into an (n + 1)-

subtriangular monomial, then if we recursively assume a) and b) to be true for n − 1, it
immediately follows from 1.13 2) that a) and b) will also be true for n. To prove c) note
that if we set all the variables equal to q in Π[Xn] we obtain the sequence of polynomials{
Pn(q)

}
n≥1

satisfying the recursion in 1.8 with the initial condition in 1.9 This shows that
Pn(q) q-counts the monomials in Π[Xn] by degree.

To simplify our language, a set An of homogeneous polynomials with the property
that the collection

Bn =
{

b[Xn]eq1
1 [Xn]eq2

2 [Xn] · · · eqn
n [Xn]

}
b∈An

1.14

is a basis for the polynomial ring Q[Xn], will be simply called a “Λn-basis for Q[Xn]”. Likewise,
a set of quasi-monomials {mp[Xn]}p∈Sn (with Sn ∈ C≤n) such that

Bn =
{

mp[Xn]eq1
1 [Xn]eq2

2 [Xn] · · · eqn
n [Xn]

}
p∈Sn

qi≥0

1.15

is a basis for QSn will be briefly called called “Λn-basis of QSn” .

It will be good to keep in mind the following basic criteria

Proposition 1.3
(a) A set An of homogeneous polynomials is an Λn-basis for Q[Xn] if and only if

(i) The collection in 1.14 spans Q[Xn] and
(ii)

∑
b∈An

qdegree(b) = [n]q!
likewise

(b) A set of quasi-monomials {mp[Xn]}p∈Sn
is an Λn-basis for QSn if and only if

(i) The collection in 1.15 spans QSn and
(ii)

∑
p∈Sn

q|p| = Pn(q)
Proof

In the first case we have

∑
P∈Bn

qdegree(P ) =
[n]q!

(1 − q)(1 − q2) · · · (1 − qn)
= FQ[Xn](q)

and in the second case from 1.7 we get

∑
P∈Bn

qdegree(P ) =
Pn(q)

(1 − q)(1 − q2) · · · (1 − qn)
= FQSn

(q)

Thus in both cases the result follows from Proposition 1.2.

As we mentioned in the introduction the following result is well known.
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Theorem 1.1
The set of monomials {xε}ε∈SUBn

is a basis for the quotient

Rn = Q[Xn]/
(
e1[Xn], e2[Xn], . . . , en[Xn]

)
.

in particular it follows that {xε}ε∈SUBn
is a Λn-basis for Q[Xn].

A proof of the first assertion may be found in [2]. For our purposes we need only recall
how to expand, modulo (e1, e2, . . . en), every polynomial in x1, x2, . . . , xn as a linear combination
of n-subtriangular monomials. To this end note that by equating the coefficients of the tn−i+1

in the identity

(1 − xi+1t) · · · (1 − xnt) ≡ 1
(1 − x1t) · · · (1 − xi t)

(
mod(e1, e2, . . . , en)

)
1.17

we derive that the homogeneous symmetric functions

{
hn−i+1[x1, x2, . . . , xi]

}n

i=1
,

lie all in (e1, e2, . . . , en). In fact, they are the Gröbner basis of this ideal. In particular it
follows that for 1 ≤ i ≤ n we have

xn−i+1
i ≡ −

n−i+1∑
r=1

xn−i+1−r
i hr[x1 + x2 + · · · + xi−1] (mod (e1, e2, . . . en)) . 1.18

We can clearly see how this identity may be used to recursively reduce the exponent of xi to
a value ≤ n − i at the expense of increasing the exponents of x1, x2, . . . , xi−1. This algorithm
will eventually transfer all the extra powers on x1 where it will necessarily terminate because
for i = 1, 1.18 reduces to

xn
1 ≡ 0 (mod (e1, e2, . . . en)) .

Of course this proves the second assertion since it implies that the collection

Bn =
{

xε1
1 xε2

2 · · ·xεn−1
n−1 ep1

1 [Xn]ep2
2 [Xn] · · · epn

n [Xn] : 0 ≤ εi ≤ n − i& pi ≥ 0
}

spans the polynomial ring Q[Xn] and then an application of Proposition 1.3 yields uniqueness.

To formalize an argument that will be used several times in the sequel we need to
introduce some notation. To begin, it will be convenient to denote by QS≤k[Xn] the subspace
of QS[Xn] spanned by quasimonomials indexed by compositions of length ≤ k. In symbols

QS≤k[Xn] = L
[
mp[Xn] : l(p) ≤ k

]
.

Likewise we set
QS=k[Xn] = L

[
mp[Xn] : l(p) = k

]
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We shall make frequent use of the following basic property of quasi-symmetric func-
tions:
Proposition 1.4

For P (x1, x2, . . . , xn) ∈ QSn we have

P (x1, x2, . . . , xn−1, 0) = 0 1.19

if and only if
P ∈ QS=n[Xn] = en[Xn] Q[Xn] . 1.20

In particular P must be of the form

P = A[Xn] en[Xn] 1.21

with A[Xn] ∈ Q[Xn].
Proof

We have already observed that when l(p) = n we have

mp[Xn] = xp1
1 xp2

2 · · ·xpn
n

Thus 1.20 implies 1.19. To show the converse note that if P is of degree d the expansion of
P in terms of quasimonomials may be written in the form

P (x1, x2, . . . , xn) = P (0) +
n∑

k=1

∑
l(p)=k

|p|≤d

cp mp(x1, x2, . . . , xn)

This gives

P (x1, x2, . . . , xn−1, 0) = P (0) +
n−1∑
k=1

∑
l(p)=k

|p|≤d

cp mp(x1, x2, . . . , xn−1, 0)

Since, the quasimonomials
{
mp[Xn−1]

}
l(p)≤n−1

are independent, the condition in 1.19 forces

the vanishing of all the coefficients in this expansion. In other words 1.19 forces P to be of
the form

P (x1, x2, . . . , xn) =
∑

l(p)=n

|p|≤d

cp mp(x1, x2, . . . , xn) ,

but this is 1.20.

The step of replacing Xn−1 by Xn is best viewed as the action of a linear operator

En : QS[Xn−1]→QS[Xn]

which we call “extension” and is defined by setting for every composition p of length ≤ n− 1

En mp[Xn−1] = mp[Xn] .
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The operator En has a number of properties that are worth recording.

Proposition 1.5
(i) En has a left inverse which simply consists of setting xn = 0. In symbols

En P [Xn−1]
∣∣∣
xn→0

= P [Xn−1] (∀ P ∈ QS[Xn−1] ).

(ii) For any two compositions p, q we have

En (mp[Xn−1]mq[Xn−1]) − (En mp[Xn−1])(En mq[Xn−1]) ∈ QS=n[Xn] 1.22

(iii) The operator “Enen−1” which simply consists of multiplication by en−1[Xn−1] followed
by En is well defined as a map of

Q[Xn−1]/(e1, e2, . . . , en−1)Q[Xn−1] into Q[Xn]/(e1, e2, . . . , en)Q[Xn]

(iv) For every composition p ∈ C≤n−1 we have

Enen−1mp[Xn−1] ≡ 0
(

mod (e1, e2, . . . , en)
)

Proof
Note that for p = (p1, p2, . . . , pk) we have the addition formula

mp[Xn] = mp[Xn−1] + m(p1,...,pk−1)[Xn−1]xpk
n . 1.23

Thus
mp[Xn]

∣∣∣
xn→0

= mp[Xn−1] + m(p1,...,pk−1)[Xn−1]xpk
n

∣∣∣
xn→0

= mp[Xn−1]

This proves (i). Note next that if

mp[Xn−1]mq[Xn−1] =
∑

r

cr
p,q mr[Xn−1]

then by definition
En (mp[Xn−1]mq[Xn−1]) =

∑
r

cr
p,q mr[Xn]

and consequently (by (i)):

En (mp[Xn−1]mq[Xn−1])
∣∣∣
xn→0

=
∑

r

cr
p,q mr[Xn−1] = mp[Xn−1]mq[Xn−1] . 1.24

Likewise

En mp[Xn−1])(En mq[Xn−1])
∣∣∣
xn→0

= mp[Xn]mq[Xn]
∣∣∣
xn→0

= mp[Xn−1]mq[Xn−1] .
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Subtracting this from 1.24 and using Proposition 1.4 gives 1.22.

To show (iii) let P [Xn−1] ∈ Q[Xn−1] and suppose that for Ai[Xn−1] ∈ Q[Xn−1] we have

P [Xn−1] =
n−1∑
i=1

Ai[Xn−1]ei[Xn−1] .

Then

en−1[Xn−1]P [Xn−1] =
n−1∑
i=1

en−1[Xn−1]Ai[Xn−1]ei[Xn−1] .

Since en−1[Xn−1]Ai[Xn−1] ∈ QSn−1, we derive from 1.22 that for some A[Xn] ∈ Q[Xn] we have

En

(
en−1[Xn−1]P [Xn−1]

)
=

n−1∑
i=1

En

(
en−1[Xn−1]Ai[Xn−1]

)
ei[Xn] + A[Xn]en[Xn] .

This proves
En

(
en−1[Xn−1]P [Xn−1]

)
∈ (e1[Xn], e2[Xn], . . . , en[Xn]) .

Finally note that from (ii) it follows that

Enen−1mp[Xn−1] = en−1[Xn]mp[Xn] + A[Xn] en[Xn]

for some A[Xn] ∈ Q[Xn]. This proves (iv) and completes the proof.

2. The Algorithm
The validity of our algorithm stems from a sequence of propositions that are of inde-

pendent interest. The following two basic properties play a crucial role in our developments.
They may be defined as follows

Property Gn

In the quotient ring Q[Xn]/(e1, e2, . . . , en)Q[Xn], the subspace spanned by the quasi-
monomials indexed by compositions of length ≤ n − 1 has Hilbert series Pn−1(q).

Property Kn

For n > 2 the kernel of Enen−1 as a map of

Q[Xn−1]/(e1, e2, . . . , en−1)Q[Xn−1] into Q[Xn]/(e1, e2, . . . , en)Q[Xn]

is the projection of QSn−1 into Q[Xn−1]/(e1, e2, . . . , en−1)Q[Xn−1].

Our ultimate goal may be stated as

Property Bn

The space QSn has a Λn-basis
{
mp[Xn]

}
p∈Sn

for a suitable collection Sn ∈ C≤n with

∑
p∈Sn

q|p| = Pn(q) . 2.2
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These properties interlace in a remarkable way to yield Theorem A.

Theorem 2.1

Gn =⇒ Bn 2.2

Proof
Let Sn−1 ⊆ C≤n−1 be such that

{
mp[Xn]

}
p∈Sn−1

is a basis for the linear span

L
[
mp[Xn] : p ∈ C≤n−1

]
in the quotient ring Q[Xn]/(e1, e2, . . . , en)Q[Xn]. Note that under Gn. we must have∑

p∈Sn−1

q|p| = Pn−1(q) . 2.3

Now select Zn ⊆ SUBn so that the colletion

{mp[Xn]}p∈Sn−1 ∪ {xε}ε∈Zn
2.4

is a basis for the quotient Q[Xn]/(e1, e2, . . . en)Q[Xn]. We may find such a collection by the Gauss
elimination process, modulo (e1, e2, . . . en)Q[Xn], applied to

{mp[Xn]}p∈Sn−1 followed by {xε}ε∈SUBn .

Then {xε}ε∈Zn simply consists of the monomials xε that survive the process. Since the Hilbert
series of Q[Xn]/(e1, e2, . . . en)Q[Xn] is [n]q!, from 2.3 we derive that we must have∑

ε∈Zn

q|ε| = [n]q! − Pn−1(q) . 2.5

It also follows that the collection

Bn =
{

mp[Xn] eq1
1 [Xn]eq2

2 [Xn] · · · eqn
n [Xn]

}
p∈Sn−1

qi≥0

⋃ {
xε eq1

1 [Xn]eq2
2 [Xn] · · · eqn

n [Xn]
}

ε∈Zn

qi≥0

2.6

is a basis for Q[Xn].
We claim that the collection

QBn =
{

mp[Xn] eq1
1 [Xn]eq2

2 [Xn] · · · eqn
n [Xn]

}
p∈Sn−1

qi≥0

⋃ {
xε eq1

1 [Xn]eq2
2 [Xn] · · · eqn+1

n [Xn]
}

ε∈Zn

qi≥0

2.7

is a basis for QSn. We first observe that the containment QBn ⊆ Bn implies that QBn is
independent. Thus to show that it is a basis, by case b) (iii) of Proposition 1.1, we need only
verify that it has the correct distribution of degrees. To this end note that 2.7 gives

∑
b∈QBn

q|p| =

∑
p∈Sn−1

q|p| + qn
( ∑

ε∈Zn
q|ε|

)
(1 − q)(1 − q2) · · · (1 − qn)

(by 2.3 and 2.5) =
Pn−1(q) + qn

(
[n]q! − Pn−1(q)

)
(1 − q)(1 − q2) · · · (1 − qn)

(by I.13) = FQSn
(q) .
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We have thus proved Property Bn with

Sn = Sn−1 ∪
{
ε + 1n

}
ε∈Zn

2.8

where for ε = (ε1, ε2, . . . , εn) for convenience we set

ε + 1n = (ε1 + 1, ε2 + 1, . . . , εn + 1) . 2.9

Theorem 2.2

Gn−1 + Kn =⇒ Gn 2.10

Proof
Let

{
mp[Xn−1]

}
p∈Sn−2

and
{
xε

}
ε∈Zn−1

be obtained as in the proof of Theorem 2.1 with

n replaced by n − 1. By construction we have the following properties

(a)
∑

p∈Sn−2

q|p| = Pn−2(q)

(b)
∑

ε∈Zn−1

q|ε| = [n − 1]q! − Pn−2(q) .

(c)
{
mp[Xn−1]

}
p∈Sn−2

∪
{
xε

}
ε∈Zn−1

is a Λn−1-basis for Q[Xn−1]

(d)
{
mp[Xn−1]

}
p∈Sn−2

∪
{
en−1[Xn−1]xε

}
ε∈Zn−1

is a Λn−1-basis for QSn−1

(e)
{
mp[Xn−1]

}
p∈Sn−2

∪
{
xε

}
ε∈Zn−1

is a basis for Q[Xn−1]/(e1.e2, . . . , en−1)Q[Xn−1]

This given, we claim that

(i)
{
mp[Xn−1]

}
p∈Sn−2

is a basis for the kernel of Enen−1 on Q[Xn−1]/(e1, . . . , en−1)Q[Xn−1]
.

(ii)
{
mp[Xn]

}
p∈Sn−2

∪
{
mε+1n−1 [Xn]

}
ε∈Zn−1

is a basis for the the subspace of Q[Xn]/(e1, . . . , en)Q[Xn] .

spanned by the quasi-monomials indexed by compositions of length ≤ n − 1

Using (d), we obtain that for any quasi-symmetric polynomial Q[Xn−1] ∈ QSn−1 we have the
expansion

Q[Xn−1] =
∑

p∈Sn−2

cp(e1, e2, . . . , en−1) mp[Xn−1] +
∑

ε∈Zn−1

dε(e1, e2, . . . , en−1) en−1[Xn−1]xε

with cp(y1, y2, . . . , yn−1) and dε(y1, y2, . . . , yn−1) polynomials in their arguments. This gives

Q[Xn−1] ≡
∑

p∈Sn−2

cp(0, 0, . . . , 0) mp[Xn−1]
(

mod (e1, e2, . . . , en−1)
)

This proves that
{
mp[Xn−1]

}
p∈Sn−2

spans QSn−1 modulo (e1, e2, . . . , en−1)Q[Xn−1]
. Since (c) gives

that
{
mp[Xn−1]

}
p∈Sn−2

is independent, claim (i) then follows from property Kn.
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To show claim (ii) we need to prove that the collection

An =
{
mp[Xn]

}
p∈Sn−2

∪
{
mε+1n−1 [Xn]

}
ε∈Zn−1

is independent and spans the desired space. To prove independence, suppose, if possible,
that for some constants cp and dε we have

∑
p∈Sn−2

cp mp[Xn] +
∑

ε∈Zn−1

dε mε+1n−1 [Xn] =
n∑

i=1

Ai[Xn] ei[Xn] . 2.11

Setting xn = 0 we then get that

∑
p∈Sn−2

cp mp[Xn−1] + en−1[Xn−1]
∑

ε∈Zn−1

dε xε =
n−1∑
i=1

Ai[Xn−1] ei[Xn−1] .

Now this implies that

∑
p∈Sn−2

cp mp[Xn−1] ≡ 0
(

mod(e1, e2, . . . , en−1)
)
. 2.12

But, as we have seen, property (e) in particular asserts that
{
mp[Xn−1]

}
p∈Sn−2

is an indepen-

dent set. Thus 2.12 forces the vanishing of all the constants cp. This given, 2.11 now reduces
to ∑

ε∈Zn−1

dε mε+1n−1 [Xn] ≡ 0
(

mod(e1, e2, . . . , en)Q[Xn]

)
.. 2.13

However, using the relation
Enen−1 xε = mε+1n−1 [Xn]

we may rewrite 2.13 as

Enen−1

( ∑
ε∈Zn−1

dε xε
)

≡ 0
(

mod(e1, e2, . . . , en)Q[Xn]

)

Thus from (i) we deduce that for some constants ap we must have

∑
ε∈Zn−1

dε xε ≡
∑

p∈Sn−2

apmp[Xn−1]
(
mod(e1, e2, . . . , en−1)Q[Xn−1]

)

But this is inconsistent with our construction of the collection Zn−1 unless all the coefficients
dε do vanish. To complete our proof of claim (ii) choose any composition q ∈ C≤n−1 and note
(from property (d)) that we must have the expansion

mq[Xn−1] =
∑

p∈Sn−2

cp(e1, . . . , en−1)[Xn−1]mp[Xn−1] +
∑

ε∈Zn−1

dε(e1, . . . , en−1)[Xn−1]en−1[Xn−1]xε ,
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where cp(y1, . . . , yn−1) and dε(y1, . . . , dn−1) are suitable polynomials in their arguments. Apply-
ing En to both sides of this identity (and using (ii) of Proposition 1.5) we get

mq[Xn] =
∑

p∈Sn−2

cp(e1, . . . , en)[Xn]mb[Xn] +
∑

ε∈Zn−1

dε(e1, . . . , en−1)[Xn]mε+1n−1 [Xn] + A[Xn] en[Xn].

Thus

mq[Xn] ≡
∑

p∈Sn−2

cp(0, . . . , 0)mb[Xn]+
∑

ε∈Zn−1

dε(0, . . . , 0)mε+1n−1 [Xn]
(
mod (e1, e2, . . . , en)Q[Xn]

)
.

This yields the desired spanning property of the basis An.
Finally note that from (a) and (b) we derive that

∑
b∈An

q|b| = Pn−2 + qn−1
(
[n − 1]q! − Pn−2

)
= Pn−1(q)

This proves Gn and completes the proof of the theorem.

Remark 2.1
Note that the above argument shows that (under Kn) if we start with a subset Sn−2 ⊆

C≤n−2 such that the collection

An−2 =
{
mp[Xn−1]

}
p∈Sn−2

is a basis for the linear span
L

[
mp[Xn−1] : p ∈ C≤n−2

}
and Zn−1 ∈ SUBn−1 is obtained by the Gauss elimination process as indicated in the proof of
Theorem 2.1, then a basis for the linear span

L
[
mp[Xn] : p ∈ C≤n−1

}
is given by the collection

An =
{
mp[Xn]

}
p∈Sn−1

with
Sn−1 = Sn−2 ∪ {ε + 1n−1}ε∈Zn−1 .
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3. Quasi-symmetric functions and Harmonics of Sn.
Note that by combining Theorems 2.1 and 2.2 we derive the following diagram of

implications
G2 →B2

↓
K3 → G3 →B3

↓
K4 → G4 →B4

↓
K5 → G5 →B5

· · · · · · · · · · · ·
· · · · · · · · · · · ·

↓
Kn → Gn →Bn

3.1

It is apparent from this diagram that, after having verified G2, and proved Kn for all n ≥ 3
we will have established the validity of our algorithm for proving the Cohen-Macauliness of
all the rings of Quasi-Symmetric functions. In this section we prove that property Kn is
equivalent to the statement of Theorem I.3.

But before we can proceed with our arguments we need a few additional facts about
the Harmonics of Sn. To begin, recall that we let ∆[Xn] denote the Vandermonde determinant
in x1, x2, . . . , xn. That is

∆[xn] = ‖xn−j
i ‖n

i,j=1 .

Now it is well known that we have

P ∈ (e1, e2, . . . , en)Q[Xn] ⇐⇒ P [∂n] ∆[Xn] = 0 , 3.2

where for a polynomial P [Xn] ∈ Q[Xn] we set

P [∂n] = P (∂x1 , ∂x2 , . . . , ∂xn) .

This shows the well known fact that the orthogonal complement of the ideal (e1, e2, . . . , en)Q[Xn]

is given by the linear span of derivatives of ∆[Xn]. This space is denoted here by “Hn” and
its elements are usually called “Harmonics of Sn”. In symbols

Hn = L
[
P (∂)∆[Xn]

]
. 3.3

Another consequence of 3.2 is that the Artin monomials yield us a basis for the Harmonics.
To be precise a basis for Hn is given by the collection

{
∂ε

x ∆[Xn]
}

ε∈SUBn
. 3.4

The bridge between Kn and Theorem I.3 is provided by the following purely combi-
natorial fact.
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Proposition 3.1
For P [Xn−1] ∈ QS=n−1 we have

En P [Xn−1] = τn P [Xn−1] . 3.5

where τn is as defined in I.16.
Proof

It is sufficient to prove 3.5 for monomials. So let

P [Xn−1] = xp1
1 xp2

2 · · ·xpn−1
n−1

with pi ≥ 1 for all i = 1, 2, . . . , n − 1. Then

EnP [Xn−1] =
∑

1≤i1<i2<···<in−1≤n

xp1
i1

xp2
i2

· · ·xpn−1
in−1

=
n∑

i=1

σi(n) xp1
1 xp2

2 · · ·xpn−1
n−1 = τn P [Xn−1] Q.E.D.

The connection between Quasi-Symmetric Functions and Harmonics stems from the
following basic result:

Proposition 3.2
For any P [Xn−1] ∈ Q[Xn−1] we have

Enen−1P [Xn−1] ≡ 0
(
mod(e1, e2, . . . , en)Q[Xn]

)
3.6

if and only if
τ ′
n P (∂x1 , ∂x2 , . . . , ∂xn−1)∆[Xn−1] = 0 3.7

Proof
From 3.2 and 3.5 we derive that 3.6 is equivalent to

(
τnen−1P

)(
∂n)∆[Xn] = 0 . 3.8

Since
σi(n)∆[Xn] = (−1)n−i∆[Xn]

we may rewrite 3.8 in the form

τ ′
n

(
P (∂x1 , ∂x2 , . . . , ∂xn−1)∂x1∂x2 · · · ∂xn−1∆[Xn]

)
= 0 . 3.9

Now it is easily verified that we have

∂x1∂x2 · · · ∂xn−1∆[Xn] = n! ∆[Xn−1] .

Using this identity in 3.9 proves the equivalence of 3.6 and 3.7.
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The crucial step in our developments is provided by the following immediate corollary
of Proposition 3.2.

Theorem 3.1
Theorem I.3 and Kn are equivalent. Moreover On the validity of Theorem I.3 and

Gn−1 the Kernel of τ ′
n as map of

Hn−1 into Hn

has Hilbert series
q(

n−1
2 )Pn−2(1/q) 3.10

Equivalently, the the Kernel of Enen−1 as map of

Q[Xn−1]/(e1, e2, . . . , en−1)Q[Xn−1] into Q[Xn]/(e1, e2, . . . , en)Q[Xn]

has Hilbert series
Pn−2(q) 3.11

Proof
Proposition 3.2 asserts that a polynomial P [Xn−1] is in the kernel of Enen−1 if and only

if the harmonic polynomial
P (∂x1 , ∂x2 , . . . , ∂xn−1)∆[Xn−1] 3.12

is in the kernel of τ ′
n. Now Theorem I.3 implies that this holds true if and only if we have

P (∂x1 , ∂x2 , . . . , ∂xn−1)∆[Xn−1] = Q(∂x1 , ∂x2 , . . . , ∂xn−1)∆[Xn−1] 3.13

for some quasi-symmetric polynomial Q[Xn−1] ∈ QSn−1. But from 3.2 we derive that this
holds true if and only if

P [Xn−1] ≡ Q [Xn−1] mod (e1, e2, . . . , en−1)Q[Xn−1] . 3.14

Conversely, the equivalence of 3.7 and 3.6 yields that if the harmonic polynomial in 3.12 is
in the kernel of τ ′

n then P [Xn−1] itself must be in the kernel of Enen−1. But then from Kn

we derive that 3.14 must hold true for some Q[Xn−1] ∈ QSn−1. The equivalence of 3.14 and
3.13 then yields that Theorem I.3 holds true for τ ′

n. Note further that we have seen in the
proof of Theorem 2.2 that under Gn−1 and Kn a basis for the kernel of Enen−1 is given by
the collection

{
mp[Xn−1]

}
p∈Sn−2

it follows then from the equivalence of 3.6 and 3.7 that under

Gn−1 a basis for the kernel of τ ′
n is given by the collection{

mp

(
∂x1 , ∂x2 , . . . , ∂xn−1

)
∆[Xn−1]

}
p∈Sn−2

. 3.15

Thus we see that the assertions in 3.10 and 3.11 regarding the Hilbert series of τ ′
n and

Enen−1 are immediate consequences of property (a) in the proof of Theorem 2.2.

To complete the first proof of the validity of our algorithm we must verify that we
can start the inductive process and establish Theorem I.3. The latter will be carried out in
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the next section. To illustrate our algorithm we end this section by showing the validity of
G2,G3 and G4. To this end recall that Gn asserts that, modulo the ideal (e1, e2, . . . , en)Q[Xn],
the linear span

L
[
mp[Xn−1] : p ∈ C≤n−1

]
3.16

has Hilbert series Pn−1(q). Now recall that we have

P1(q) = 1 , P2(q) = 1 + q3 , P3(q) = 1 + q3 + 2q4 + 2q5 ,

This given we have the following findings

G2: For n = 2 the linear span in 3.16, modulo the ideal (e1, e2)Q[X2]
, reduces to Q. Thus it

is of dimension 1 = (2 − 1)!. Since P1(q) = 1 we see that G2 is trivially true. Now for
n = 2 the Artin basis reduces to {1, x1} and the basic relations are

x2 = e1 − x1

x2
1 = x1e1 − e2 .

Thus from the construction given in the proof of Theorem 2.1, we obtain that our
Λ2-bases for Q[X2] and QS2 are respectively

{1, x1} and {1, x1x2 × x1} .

Note that here, the Gauss elimination step eliminates “1” out of {1, x1}. Thus our
Λ2-basis for QS2 may be rewritten as

{
1, m2,1[X2]

}
. 3.17

G3: For n = 3 the Artin basis is

{
1 , x1 , x2 , x1x2 , x2

1 , x2
1x2

}
3.18

and the basic relations are

x3 = e1 − x1 − x2

x2
2 = −x2x1 − x2

1 − e2 + e1x1 + e1x2

x3
3 = e1x

2
1 − e2x1 + e3

3.19

Applying the operator E3 to the collection in 3.17 gives

{
1 , m2,1[X3]

}
3.20

Now it is easily verified that this collection spans the linear span in 3.16 for n = 3.
Indeed, m1[X3] , m11[X3], m2[X3] and m2,1[X3] + m2,1[X3] are symmetric, and all quasi-
monomials indexed by 2-part compositions of degree greater than 3 vanish modulo
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(e1, e2, e3)Q[X3]
. Clearly, the collection in 3.20 is independent modulo (e1, e2, e3)Q[X3]

and
since P2(q) = 1 + q3 we see that G3 is satisfied. Next, from the expansion

m2,1[X3] = x2
1x2 + x2

1x3 + x2
2x3

and the relations in 3.1 we derive that

m2,1[X3] ≡ x2
1x2 (mod (e1, e2, e3)Q[X3]

)

This given, if we apply Gauss elimination modulo (e1, e2, e3)Q[X3]
to 3.20 followed by

3.18, we find that the elements that survive are

x1 , x2 , x1x2 , x2
2

Thus in this case we have

Z3 =
{
[1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 2, 0]

}
,

and we derive that a Λ3-basis for Q[X3] is given by the collection

{
1 , m2,1[X3]

}
∪

{
x2 , x1 , x1x2 , x2

2

}
.

This implies that the collection

{
1 , m2,1[X3]

}
∪

{
m2,1,1[X3], m1,2,1[X3], m2,2,1[X3], m1,3,1[X3]

}
. 3.21

is a Λ3 basis for QS3. We may now set

S3 =
{
[ ], [2, 1], [2, 1, 1], [1, 2, 1], [2, 2, 1], [1, 3, 1]

}
3.22

G4: To diminish our work for n = 4 and to illustrate another aspect of our algorithm
we shall take the shortcut of proving B4 directly in this case, G4 then will follow
automatically. To this end note that for the Gauss elimination process to deliver
Λn-bases for Q[Xn] and QSn it is sufficient to show that we can construct a collection{
mp[Xn]

}
p∈Sn−1

, which is independent modulo (e1, e2, . . . , en)Q[Xn], with Sn−1 ∈ C≤n−1

satisfying the requirement ∑
p∈Sn−1

q|p| = Pn−1(q) .

Indeed then the collection of Artin monomials
{
xε

}
ε∈Zn

that survive will necessarily
have degree distribution given by [n]q!− Pn−1(q), and that is all that is needed for Bn.
Now if we follow the process used in the proof of Theorem 2.2 our choice for Sn−1

when n = 4 should be the collection in 3.22. We are thus reduced to showing that the
collection

A4 =
{
1 , m2,1[X4]

}
∪

{
m2,1,1[X4], m1,2,1[X4], m2,2,1[X4], m1,3,1[X4]

}
. 3.23
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is independent modulo (e1, e2, e3, e4)Q[X4]
. Clearly, we need only check the independence

of the subcolllection {
m2,1,1[X4], m1,2,1[X4], m2,2,1[X4], m1,3,1[X4]

}
. 3.24

Now, denoting by “≡” equivalence modulo (e1, e2, e3, e4)Q[X4]
, from 1.18 we obtain

x4
1 ≡ 0 ,

x3
2 ≡ −x1x

2
2 − x2

1x2 − x3
1 ,

x2
3 ≡ −x1x2 − x1x3 − x2x3 − x2

1 − x2
2 ,

x4 ≡ −x1 − x2 − x3 .

This gives
m2,1,1[X3] ≡ −x3

1x2 ,

m1,2,1[X3] ≡ x3
1x2 + x2

1x2x3 + x1x
2
2x3 ,

m2,2,1[X3] ≡ −x2
1x

2
2x3 ,

m1,3,1[X3] ≡ −x3
1x

2
2 − x2

1x
2
2x3 ,

and the independence of 3.24 is assured. Since∑
p∈S3

q|p| = 1 + q3 + 2q4 + 2q5 = P3(q)

our observations yield that B4 holds true and in particular the collection A4 in 3.23
must necessarily a basis for the linear span in 3.16 for n = 4.

4. The action of τ ′
n on the Harmonics of Sn−1

The goal of this section is to determine the kernel of τ ′
n on Hn−1. Before we can state

and prove our results we need to establish a few properties of τ ′
n as well as some further facts

about harmonics.

We begin with a simple but important observation.
Proposition 4.1

For any polynomial P [Xn−2] ∈ Q[Xn−2] and any exponent a ≥ 0 we have

τ ′
n xa

n−1P [Xn−2] = −xa
n τ ′

n−1P [Xn−2] + xa
n−1P [Xn−2] 4.1

in particular on Q[Xn−2] we have
τ ′
n = 1 − τ ′

n−1

Proof
The result follows from the simple fact that for 1 ≤ i ≤ n−1 the cycles σi(n) and σi(n−1)

have the same action on polynomials in x1, x2, . . . , xn−2. This given, from the definition in I.16
we derive that

τ ′
n xa

n−1P [Xn−2] =
n−1∑
i=1

(−1)n−i xa
n σi(n)P [Xn−2] + xa

n−1P [Xn−2]

= −xa
n

n−1∑
i=1

(−1)n−1−i σi(n − 1)P [Xn−2] + xa
n−1P [Xn−2]
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This proves 4.1.

The following identities will play a crucial role in many of our arguments.

Proposition 4.2
For any polynomial P [Xn−2] ∈ Q[Xn−2]

a) τ ′
n τ ′

n−1 P [Xn−2] = 0 ,

b) τ ′
n

2
P [Xn−2] = τ ′

n P [Xn−2] ,
4.2

Proof
It easily verified that τ ′

2τ
′
1 1 = 0 thus to prove 4.2 a) we can proceed by induction and

assume that for P [Xn−3] ∈ Q[Xn−3] we have

τ ′
n−1 τ ′

n−2 P [Xn−3] = 0 . 4.3

Clearly we need only verify 4.2 a) when P [Xn−2] is a monomial. Now let m[Xn−2] = xa
n−2mo[Xn−3]

where mo[Xn−3] is a monomial in x1, x2, . . . xn−3, Then from 4.1 (for n-1) we derive that

τ ′
n−1 xa

n−2mo[Xn−3] = −xa
n−1τ

′
n−2 mo[Xn−3] + xa

n−2 mo[Xn−3] .

Thus

τ ′
n τ ′

n−1 xa
n−2mo[Xn−3] = −τ ′

n xa
n−1τ

′
n−2mo[Xn−3] + τ ′

n xa
n−2 mo[Xn−3]

(by 4.1) = −
(
− xa

n τ ′
n−1 τ ′

n−2 mo[Xn−3] + xa
n−1τ

′
n−2 mo[Xn−3]

)
+ τ ′

n xa
n−2 mo[Xn−3]

(by 4.3) = −xa
n−1τ

′
n−2 mo[Xn−3] − τ ′

n−1 xa
n−2 mo[Xn−3] + xa

n−2 mo[Xn−3]

(by 4.1) = −xa
n−1τ

′
n−2 mo[Xn−3] + xa

n−1 τ ′
n−2 mo[Xn−3] − xa

n−2 mo[Xn−3] + xa
n−2 mo[Xn−3]

This completes the induction and the proof of 4.2 a). To prove 4.2 b) we note that, again
by 4.1(with a = 0) we get for all monomials mo[Xn−2] ∈ Q[Xn−2]

τ ′
nτ ′

n mo[Xn−2] = τ ′
n

(
− τ ′

n−1mo[Xn−2] + mo[Xn−2]
)

= −τ ′
n τ ′

n−1mo[Xn−2] + τ ′
n mo[Xn−2](

by 4.2 a)
)

= τ ′
n mo[Xn−2] .

Remark 4.1
We should note that 4.2 a) implies in particular that for all n ≥ 3 the Vandermonde

∆[Xn−1] is in the kernel of τ ′
n. To see this note that since the cycles σi(n) may be taken as

representatives of the left cosets of Sn−1 in Sn we may write ∆[Xn−1] in the form

∆[Xn−1] = τ ′
n−1τ

′
n−2 · · · τ ′

1 xn−2
1 xn−3

2 · · ·xn−2 .

To see what other harmonics are in the kernel of τ ′
n we need further identities.
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Proposition 4.3
Denoting by ∆(r)[Xn−1] the cofactor of xr

n in the matrix ‖xn−j
i ‖n

i,j=1 we have

(i) ∆[Xn] =
n−1∑
r=0

(−xn)r ∆(r)[Xn−1]

(ii) ∆(r)[Xn−1] = en−r−1[Xn−1]∆[Xn−1]

(iii)
n−1∑
i=1

∂xi∆
(r)[Xn−1] = (r + 1) ∆(r+1)[Xn−1]

4.4

Proof
Note that we may write

∆[Xn] = (x1 − xn)(x2 − xn) · · · (xn−1 − xn) ∆[Xn−1]

=
n−1∑
r=0

(−xn)ren−r−1[Xn−1] ∆[Xn−1]

comparing with (i) yields (ii). To prove (iii) we note that (ii) gives

n−1∑
i=1

∂xi
∆(r)[Xn−1] =

( n−1∑
i=1

∂xi
en−r−1[Xn−1]

)
∆[Xn−1] + en−r−1[Xn−1]

( n−1∑
i=1

∂xi
∆[Xn−1]

)

and (iii) is derived from the following two identities that are easily proved

n−1∑
i=1

∂xi
∆[Xn−1] = 0 &

n−1∑
i=1

∂xi
en−r−1[Xn−1] = (r + 1)en−r−2[Xn−1] .

These identities yield us an important corollary.

Theorem 4.1
For a polynomial P [Xn−1] ∈ Q[Xn−1] we have

P [∂n−1]∆[Xn] = 0 ⇐⇒ P [∂n−1]∆(0)[Xn−1] = 0 , 4.5

In particular it follows that the ideal of polynomials that kill ∆(0)[Xn−1] is generated by the
modified power sums

n−1∑
i=1

xk
i +

(
−

n−1∑
i=1

xi

)k

( for k = 2, 3, . . . , n) 4.6

Thus
n−1∑
i=1

∂k
xi

∆(r)[Xn−1] = (−1)k−1(r + 1) ↑k−1 ∆(r+1)[Xn−1] 4.7

with (r + 1) ↑k−1= (r + 1)(r + 2) · · · (r + k).
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Proof
Hitting the expansion in 4.4 (i) with P [∂n−1] gives

P [∂n−1]∆[Xn] =
n−1∑
r=0

(−xn)r P [∂n−1]∆(r)[Xn−1] 4.8

setting xn = 0 proves “=⇒”. To prove the converse note that from 4.4 (iii) we get( n−1∑
i=1

∂xi

)k

∆(r)[Xn−1] = (r + 1) ↑k−1 ∆(r+k)[Xn−1] , 4.9

thus ( n−1∑
i=1

∂xi

)k

P [∂n−1]∆(0)[Xn−1] = k!P [∂n−1]∆(k)[Xn−1] .

Now we see that

P [∂n−1]∆(0)[Xn−1] = 0 =⇒ P [∂n−1]∆(k)[Xn−1] = 0 (for all k) . 4.10

and P [∂n−1]∆[Xn] = 0 then follows from 4.8.
It is well known that the ideal of polynomials that kill ∆[Xn] is also generated by the

power sums
n∑

i=1

xk
i (for k = 1, 2, . . . , n)

Thus it follows that the modified power sums given in 4.7 must also kill ∆[Xn]. Conversely,
assume that P [xn−1] kills ∆[Xn]. We must then have

P [xn−1] =
n∑

k=1

Ak

( n∑
i=1

xk
i

)
. 4.12

Since the left hand side is independent of xn we may make the replacement xn →−
∑n−1

i=1 xi

in the right hand side and obtain

P [xn−1] =
n∑

k=2

Ak

(
n−1∑
i=1

xk
i +

(
−

n−1∑
i=1

xi

)k
)

.

This proves that the modified power sums generate the ideal of polynomials that kill ∆(0)[Xn−1].
Now we also see from 4.10 that the modified power sums kill all of the polynomials ∆(r)[Xn−1].
This given, 4.7 immediately follows from 4.9.

Remark 4.2
Note that since for k + r > n − 1 the alternant

∑n−1
i=1 ∂k

xi
∆(r)[Xn−1] has degree less than(

n−1
2

)
, it must necessarily vanish. We derive from this that the alternant ∆(r)[Xn−1] is killed

by the collection of polynomials

{ n−1∑
i=1

xk
i +

(
−

n−1∑
i=1

xi

)k }n−1−r

k=2

⋃ { n−1∑
i=1

xk
i

}n

k=n−r

⋃ {( n−1∑
i=1

xi

)n−r}
.

In fact it is shown in [1] that this collection generates the ideal of polynomials that kill
∆(r)[Xn−1].



October 2, 2002 26

Remark 4.3
Note that since every symmetric function in Q[Xn−1] is a polynomial in the power

sums
∑n−1

i=1 xk
i it follows from 4.7 that if Q[Xn−1] is symmetric and homogeneous of degree k

then, for a suitable constant CQ,r we must have

Q[∂n−1]∆(r)[Xn−1] = CQ,r ∆(r+k)[Xn−1] , 4.13

where, for Q(x1, x2, . . . , xm) ∈ Q[Xm] here and after we shall use the symbol “Q[∂m]” to denote
the operator “Q(∂x1 , ∂x2 , · · · , ∂xm

)”.

Before we proceed with the next result we should note that every polynonial h[Xn] ∈ Hn

may be written in the form
h[Xn] = P (∂n−1)∆[Xn] 4.14

with P ∈ Q[Xn−1]. This is an immediate consequence of the identity

∂xn
∆[Xn] = −

n−1∑
i=1

∂xi
∆[Xn] 4.15

which shows that derivations with respect to xn are not needed in the production of harmonic
polynomials.

Proposition 4.4
Every harmonic h[Xn] ∈ Hn may be written in the form

h[Xn] =
n−1∑
r=0

(−xn)r hr[Xn−1] 4.16

where for a suitable polynomial P ∈ Q[Xn−1] we have

hr[Xn−1] = P (∂n−1) ∆(r)[Xn−1] .
(
for r = 0, 1, . . . n − 1

)
4.17

In particular, h[Xn] is of maximum degree n − 1 in xn if and only if

hn−1[Xn−1] = P (∂n−1)∆[Xn−1]  = 0 4.18

Proof
These identities follow by combining 4.14 with the expansion in 4.4 (i).

Proposition 4.5
For

h[Xn−1] =
m∑

r=0

(−1)rxr
n−1hr[Xn−2] 4.19

with hr[Xn−2] ∈ Q[Xn−2] for r = 0, 1, . . . , m we have

τ ′
n h[Xn−1] = −τ ′

n−1ho[Xn−2] + h[Xn−1] −
m∑

r=1

(−1)rxr
nτ ′

n−1hr[Xn−2] 4.20
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Proof
Using 4.1on 4.19 gives

τ ′
n h[Xn−1] =

m∑
r=0

(−1)r
(
− xr

n τ ′
n−1hr[Xn−2] + xr

n−1 hr[Xn−2]
)

= −τ ′
n−1ho[Xn−2] −

m∑
r=1

(−1)rxr
n τ ′

n−1hr[Xn−2] +
m∑

r=0

(−1)rxr
n−1 hr[Xn−2]

)

and this is 4.20.

The next result may be viewed as a first step in the identification of the kernel of τ ′
n.

Proposition 4.6
A harmonic polynomial h[Xn−1] is in the kernel of τ ′

n if and only if

h[Xn−1] = τ ′
n−1ho[Xn−2] 4.21

This given, it follows that

τ ′
n−1hr[Xn−2] = 0

(
for r = 1, . . . n − 2

)
4.22

Proof
From Proposition 4.4 we derive that h[Xn−1] may be written precisely in the form

given by 4.19 with m = n − 2. We can thus use Proposition 4.5 and conclude that when
τ ′
nh[Xn−1] = 0 we must necessarily have

0 = −τn−1ho[Xn−2] + h[Xn−1] −
n−2∑
r=1

(−1)rxr
nτn−1hr[Xn−2] 4.23

and 4.22 follows by setting xn = 0. Conversely, suppose that 4.21 holds true. This given,
note that the harmonicity of h[xn−1] yields

n−1∑
i=1

∂xi
h[xn−1] = 0 .

Moreover, since the operator
∑n−1

i=1 ∂xi commutes with τ ′
n−1, hitting 4.21 with

∑n−1
i=1 ∂xi gives

τ ′
n−1h1[Xn−2] = 0 .

But then all the relations in 4.22 follow from 4.4 (iii) by successive applications of the
operator

∑n−1
i=1 ∂xi . However the validity of 4.21 together with 4.22 yields 4.23, and this, via

4.20, forces τ ′
nh[Xn−1] = 0, completing the proof.

We are thus led to study the space of harmonics in H[Xn−1] that can be written in
the form given in 4.21. To this end we have the following important auxiliary result.
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Theorem 4.2
For given polynomial ∆ denote by L∂

[
∆]

]
the linear span of derivatives of ∆. Then a

basis for L∂

[
∆(o)[Xn−1]

]
is given by the collection of polynomials

B0[Xn−1] =
{

∂ε
x∆(r)[Xn−1]

}
ε∈SUBn−1

0≤r≤n−1

. 4.24

In particular we derive that
dim L∂

[
∆(o)[Xn−1]

]
= n! . 4.25

Proof
Note that Theorem 4.1 implies in particular that L∂

[
∆(o)[Xn−1]

]
and L∂

[
∆[Xn]

]
have

the same dimension. Since
dim L∂

[
∆[Xn]

]
= n!

4.25 necessarily follows. Thus to obtain that Bo[Xn−1] is a basis we need only show that it is
an independent set. To do this we proceed by contraddiction. Suppose if possible that we
have a set of polynomials

Pr[Xn−1] =
∑

ε∈SUBn−1

aε,r xε for 0 ≤ r ≤ n − 1 4.26

such that
n−1∑
r=0

Pr[∂n−1]∆(r)[Xn−1] = 0 . 4.27

Now let r1 be the first r such that Pr[Xn−1]  = 0. This given, if we hit 4.27 by
∑n−1

i=1 ∂k
xi

and
use 4.7 we obtain

n−1−k∑
r=r1‘

(−1)k−1(r + k) ↑k−1 Pr[∂n−1]∆(r+k)[Xn−1] = 0 ,

since
∑n−1

i=1 ∂k
xi

∆(r)[Xn−1] = 0 for r + k > n − 1. Now for k = n − 1 − r1 this reduces to

Pr1 [∂n−1]∆(n−1)[Xn−1] = 0 . 4.28

Now our definition of ∆(r)[Xn−1] gives ∆(n−1)[Xn−1] = ∆[Xn−1] and since the collection in 3.4 is a
basis for L∂

[
∆[Xn−1]

]
, we cannot have 4.28 with Pr1 [Xn−1]  = 0. This yields our contraddiction

and completes the proof of the theorem.

Remark 4.4
Although the following additional fact is not needed here we should point out that

the collection
Br0 [Xn−1] =

{
∂ε

x∆(r)[Xn−1]
}

ε∈SUBn−1

r0≤r≤n−1

.
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gives a basis for the subspace L∂

[
∆(ro)[Xn−1]. In fact, the identical argument that gives the

independence of Bo[Xn−1] gives also the independence of Br0 [Xn−1]. The result then follows
since it was shown in [3] that

dim L∂

[
∆(ro)[Xn−1] ≤ (n − ro)(n − 1)! .

If we do not wish to us this inequality, the alternate path is to show that this collection spans
L∂

[
∆(ro)[Xn−1]. This can be done as follows. By Theorem 4.2 we know that every element

of this space must have an expansion in terms of the basis in 4.24. So it only remains to
show that the terms with r < ro in 4.24 do not occur in these expansions. But this follows
immediately since every element of L∂

[
∆(ro)[Xn−1] is killed by the operator

∑n
i=1 ∂n−ro

xi
while

these unwanted elements are not.
We are finally in a position to give our proof of Theorem I.3. Recall that it states:

Theorem I.3
A polynomial h[Xn−1] ∈ H[Xn−1] is in the kernel of τ ′

n if and only if

h[Xn−1] = Q[∂n−1]∆[Xn−1] 4.30

with Q ∈ QSn−1.
Proof

Combining case (iv) of Proposition 1.5 with Proposition 3.2 we derive that for every
composition p ∈ C≤n−1 we have

τ ′
n mp[∂n−1]∆[Xn−1] = 0 .

This proves the sufficiency. Thus we need only show the necessity. The special cases we
worked out in section 3. yield the validity of the theorem for n = 2, 3, 4. We can thus proceed
by induction on n and assume it is valid up to n − 1.

Now, given that
h[Xn−1] = P [∂n−2]∆[Xn−1]

from Proposition 4.6 we derive that

h[Xn−1] = τ ′
n−1P [∂n−2]∆[Xn−1]

∣∣
xn−1=0

= τ ′
n−1P [∂n−2]∆(0)[Xn−2] .

Theorem 4.2 then implies that there is a unique set of polynomials

Pr[Xn−2] =
∑

ε∈SUBn−2

aε,r xε (for r = 1, 2, . . . , n − 2)

giving

P [∂n−2]∆(0)[Xn−2] =
n−2∑
r=0

Pr[∂n−2]∆(r)[Xn−2] .
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Thus we may write h[Xn−1] in the form

h[Xn−1] =
n−2∑
r=0

τ ′
n−1Pr[∂n−2]∆(r)[Xn−2] . 4.31

Let us suppose that for some 0 ≤ ro < n − 2 we have

Pro
[Xn−2]  = 0 and Pr[Xn−2] = 0

(
for 0 ≤ r < ro

)
so

h[Xn−1] =
n−2∑
r=r0

τ ′
n−1Pr[∂n−2]∆(r)[Xn−2] . 4.32

It will be convenient here and after to set

D(k)
m =

m∑
i=1

xk
i ,

this given, hitting 4.32 with D
(k)
n−1 the harmonicity of h[Xn−1] gives

0 =
n−2∑
r=r0

D
(k)
n−1τ

′
n−1Pr[∂n−2]∆(r)[Xn−2]

=
n−2∑
r=r0

τ ′
n−1Pr[∂n−2]D

(k)
n−2∆

(r)[Xn−2]

( by 4.7) =
n−2∑
r=r0

(−1)k−1(r + 1) ↑k−1 τ ′
n−1Pr[∂n−2]∆(r+k)[Xn−2]

.

For k = n − 2 − ro this forces

τ ′
n−1Pr0 [∂n−2]∆(n−2)[Xn−2] = 0

Since ∆(n−2)[Xn−2] = ∆[Xn−2], the induction hypothesis gives that

Pr0 [∂n−2]∆[Xn−2] = Qr0 [∂n−2]∆[Xn−2]

with Qr0 [Xn−2] ∈ QSn−2. This implies that

Pr0 [∂n−2] = Qr0 [∂n−2] +
n−2∑
i=1

Ai[Xn−2]ei[Xn−2]

Thus

Pr0 [∂n−2]∆(r0)[Xn−2] = Qr0 [∂n−2] ∆(r0)[Xn−2] +
n−2∑
i=1

Ai[∂n−2]ei[∂n−2]∆(r0)[Xn−2]

(by Remark 4.3) = Qr0 [∂n−2] ∆(r0)[Xn−2] +
n−2∑
i=1

Ci,r0Ai[∂n−2]∆(r0+i)[Xn−2] .
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This gives

τ ′
n−1Pr0 [∂n−2]∆(r0)[Xn−2] = τ ′

n−1Qr0 [∂n−2] ∆(r0)[Xn−2] +
n−2∑
i=1

Ci,r0 τ ′
n−1Ai[∂n−2]∆(r0+i)[Xn−2] . 4.33

Now note that we have

∆(r0)[Xn−2] = Cr0,n ∂x1∂x2 · · · ∂xn−2∆
(r0+1)[Xn−1] .

with Cr0,n = (n − 1)!/(r0 + 1). Thus

τ ′
n−1Qr0 [∂n−2]∆(r0)[Xn−2] = αr0,n τ ′

n−1Qr0 [∂n−2]∂x1∂x2 · · · ∂xn−2∆
(r0+1)[Xn−1]

= αr0,n τ ′
n−1Qr0 [∂n−2]en−2[∂n−2]∆(r0+1)[Xn−1]

. 4.34

But

τ ′
n−1Qr0 [∂n−2]en−2[∂n−2]∆(r0+1)[Xn−1] =

(
τn−1Qr0 [Xn−2]en−2[Xn−2]

)
[∂n−1]∆(r0+1)[Xn−1] . 4.35

Now 3.20 and (ii) of Proposition 1.6 give that for a suitable A[Xn−1] ∈ Q[Xn−1] we have

τn−1Qr0 [Xn−2]en−2[Xn−2] = Qr0 [Xn−1]en−2[Xn−1] + A[Xn−1] en−1[Xn−1] .

Substituting this in 4.35 gives

τ ′
n−1Qr0 [∂n−2]en−2[∂n−2]∆(r0+1)[Xn−1] =

(
Qr0 [∂n−1]en−2[∂n−1] + A[∂n−1] en−1[∂n−1]

)
∆(r0+1)[Xn−1] .

Now it is easily verified that

en−1[∂n−1]
)
∆(r0+1)[Xn−1] = 0 ,

while for a suitable constant C we have

en−2[∂n−1] ∆(r0+1)[Xn−1] =




0 if ro > 0 ,

C ∆[Xn−1] if r0 = 0 .

Combining this result with 4.34 we finally obtain

τ ′
n−1Qr0 [∂n−2]∆(r0)[Xn−1] =




0 if ro > 0 ,

C ′ Q0[∂n−1]∆[Xn−1] if r0 = 0 .
4.36

for possibly another constant C ′.
Now suppose first that ro = 0. In this case, combining 4.36 with 4.33 and 4.32 we

derive that h[Xn−1] may be rewritten in the form

h[Xn−1] = C ′Q0[∂n−1]∆[Xn−1] +
n−2∑
r=1

τ ′
n−1P

′
r[∂n−2]∆(r)[Xn−2]
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with a new set of polynomials

P ′
r[Xn−2] =

∑
ε∈SUBn−2

a′
ε,r xε .

We can now work with the difference

k[Xn−1] = h[Xn−1] − C ′Q0[∂n−1]∆[Xn−1] =
n−2∑
r=1

τ ′
n−1P

′
r[∂n−2]∆(r)[Xn−2] . 4.37

Applying the same reasoning to k[Xn−1], we see that the first alternative in 4.36 will apply
in this case and we will be able to rewrite k[Xn−1] in the form

k[Xn−1] =
n−2∑
r=2

τ ′
n−1P

′′
r [∂n−2]∆(r)[Xn−2] .

with a second set of polynomials

P ′′
r [Xn−2] =

∑
ε∈SUBn−2

a′′
ε,r xε .

Clearly we are in a position to repeat this process and reduce the expansion of k[Xn−1] to a
single summand. To be precise we ultimately obtain that for some polynomial R[Xn−1] we
have

k[Xn−1] = τ ′
n−1R[∂n−2]∆[Xn−2] .

But now we can use the further determinantal identity

∆[Xn−2] = 1
(n−2)! ∂x1∂x1 · · · ∂xn−2∆[Xn−1]

and obtain that

k[Xn−1] = 1
(n−2)! τ ′

n−1R[∂n−2]∂x1∂x2 · · · ∂xn−2∆[Xn−1]

= 1
(n−2)!

(
τn−1R[Xn−2]en−2[Xn−2]

)
[∂n−1]∆[Xn−1]

(by Proposition 3.1 ) = 1
(n−2)!

(
En−1R[Xn−2]en−2[Xn−2]

)
[∂n−1]∆[Xn−1]

= Q1[∂n−1]∆[Xn−1]

4.38

where for convenience we have set

Q1[Xn−1] = 1
(n−2)!

(
En−1R[Xn−2]en−2[Xn−2]

)
.

Combining 4.38 with 4.37 we finally derive that

h[Xn−1] = C ′Q0[∂n−1]∆[Xn−1] + Q1[∂n−1]∆[Xn−1] .
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Since Q1[Xn−1] is Quasi-Symmetric this final identity completes the induction and the proof
of the theorem.

5. The alternate proof of Theorem A.
In this section we will use an alternate approach for establishing that

QSn is a free module over Λn.

We will prove this by showing that Theorem A is equivalent to Theorem I.2 and
then proving Theorem I.2. In the course of the derivation several results will be proved
that show that the algorithm in the introduction is forced by the structure of the algebra of
quasi-symmetric polynomials.

A few caveats concerning the contents of this section are necessary at this point. To
begin with, some of the constructs introduced in previous sections will be dealt with here
with a slightly different notation. The style and the tools used may be more germane to
contemporary commutative algebra litterature than the algebraic combinatorial litterature
of recent years. We hope that this lack of uniformity in the paper will make its contents
accessible to a wider audience.

Recall that if Xn is the alphabet x1, ..., xn then we have the elementary symmetric
functions e1[Xn], ..., en[Xn]. If the alphabet is understood we will drop here the [Xn]. We will
also look upon Q[Xn] as a module for e1, ..., en+1 with en+1 acting by 0. We denote by ϕn

the map of Q[Xn] onto Q[Xn−1] given by ϕn(f)(x1, ..., xn−1) = f(x1, ..., xn−1, 0). We also recall
the map En : QSn−1 → QSn given by En(m[p1,...,pk][Xn−1]) = m[p1,...,pk][Xn]. Then ϕnEn(f) = f for
f ∈ QSn−1 (see Proposition 1.5). We will also denote by π the natural projection of Q[Xn]
onto Q[Xn]/

∑
eiQ[Xn].

We observe that we have an exact sequence of e1, ..., en+1 modules

en+1 ϕn+1

0 → Q[Xn+1] → QSn+1 → QSn → 0 .

Here the first map is given by multiplication by en+1 and en+1 acts by 0 on the last space.

If M is a vector space over Q that is a module for commuting operators e1, ..., en then
we can form the Koszul complex of M as follows. We consider the free vector space V over Q

with basis e1, ..., en. We set Cr([e1, ..., en]M) = M
⊗ ∧

rV if e1, ..., en are understood we will just
write Cr(M). We define the coboundary operator ∂ : Cr(M) → Cr−1(M) by

∂(m
⊗

ej1

∧
ej2

∧
· · ·

∧
ejr ) =

r∑
i=1

(−1)i+1ejim
⊗

ej1

∧
ej2

∧
· · ·

∧
êji · · ·

∧
ejr

here (as is usual) the “ hat” means remove. The r-th homology of this complex will be
denoted Hr([e1, ..., en], M) or Hr(M) if the ei are understood. In particular we have

H0(M) = M/
∑

eiM ;
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H1(M) = {
∑

mi

⊗
ei|

∑
eimi = 0}/∂(C2(M)).

As usual, QSn and Λn are graded by degree and we look upon QSn as a graded Λn-module.
The standard theory of the Koszul complex (cf.H. Matsumura, Commutative Ring Theory,
Cambridge,1986, Theorem 16.5) implies

Lemma 5.1. The Λn-module QSn is free if and only if

H1([e1[Xn], ..., en[Xn]],QSn) = 0.

We note that QS1 = Λ1. We will now assume (until further notice) that we know that
QSm is free as a Λm module for all m ≤ n. We will now embark on an inductive proof of the
freeness for QSn+1. The exact sequence above leads to the long exact sequence

H1(Q[Xn+1]) → H1(QSn+1) → H1([e1[Xn], ..., en+1[Xn]],QSn) →
→ H0(Q[Xn+1]) → H0(QSn+1) → H0(QSn) → 0 .

We first observe that the previous lemma and the fact that Q[Xn+1] is a free Λn-module
implies that H1(Q[Xn+1]) = 0. We next calculate

H1([e1[Xn], ..., en+1[Xn+1]],QSn)

and the connecting homomorphism. We first note that

H0([e1[Xn], ..., en+1[Xn+1]],QSn) = H0([e1[Xn], ..., en[Xn]],QSn).

We are assuming that QSn is a free Λn module and the lemma above imply that if mi ∈ QSn

and
∑

i≤n+1 eimi = 0 then (since en+1mn+1 = 0) there exists

v ∈
⊕

1≤i<j≤n

M
⊗

ei

∧
ej

with ∂v =
∑

i≤n mi

⊗
ei. Thus modulo ∂C1(QSn) every class in

H1([e1[Xn], ..., en+1[Xn+1]],QSn)

is represented by an element of the form m
⊗

en+1. We note that if ui ∈ QSn then we have
∂

∑
i<n+1 ui

⊗
ei

∧
en =

∑
i<n eiui

⊗
en. We therefore see that

H1([e1[Xn], ..., en+1[Xn+1]],QSn) = H0(QSn)
⊗

en+1.

We next calculate the connecting homomorphism. Let v = m
⊗

en+1 be a representative of
a class in H1([e1[Xn], ..., en+1[Xn+1]],QSn) . Then m = ϕn+1(u) with u ∈ QSn+1. We can take
u = En+1(m). Then the element en+1En+1(m) is in the image of the map of Q[Xn+1] to QSn+1.



Topics in Algebraic Combinatorics LECTURE NOTES October 2, 2002 35

Hence the connecting homomorphism is just m
⊗

en+1 !−→ πEn+1(m). We therefore have the
exact sequence

0 → H1(QSn+1) → H0(QSn)
⊗

en+1 →
→ H0(Q[Xn+1]) → H0(QSn+1) → H0(QSn) → 0

with the connecting homomorphism (which will be called δ) as described. At this point we
have the following

Proposition 5.1.
The map u !−→ En+1(u) +

∑
i≤n+1 ei Q[Xn+1] from H0(QSn)to H0(Q[Xn+1])is well defined.

Furthermore, QSn+1is a free Λn+1-module if and only if this map is injective. Furthermore,
if it is free it is free on (n + 1)! generators.
Proof.

If the map is injective then, since its kernel is H1(QSn+1), H1(QSn+1) = 0. If H1(QSn+1) =
0 then the map is injective. The last assertion is also clear since dimH0(Q[Xn+1]) = (n+1)! and
if H1(QSn+1) = 0 then dimH0(QSn+1) = dimH0(Q[Xn+1]).

Remark 5.1.
The above exact sequence shows that our construction of the basis in I.9 is essentially

the “ only way” of getting such a basis. This observation will become clearer in the proof of
the next proposition.

We will now use Proposition 5.1 to establish a more direct relationship with the
chain of ideas in the previous sections. Recall that Hn denotes the space of Sn-harmonic
polynomials in Q[Xn].

Proposition 5.2.
A necessary and sufficient condition for QSn+1to be a free module over the ring of

invariants for the symmetric group is that

dim kerπ ◦ En+1|enHn
≤ (n − 1)! 5.1

Proof.
If we apply the above exact sequence to the case of n then we see that since we are

assuming that H1(QSn) = 0 we have the exact sequence

0 → H0(QSn−1)
⊗

en → H0(Q[Xn]) → H0(QSn) → H0(QSn−1) → 0 .

We note that this implies that the dimension of the kernel of the map H0(Q[Xn]) → H0(QSn)
induced by multiplication by en is (n−1)! and that there is a subspace, Wn, of the Sn harmonic
polynomials in Q[Xn] such that enWn projects bijectively onto the image Vn of H0(Q[Xn]). It
also implies that if apply π ◦ En to QSn−1 we get a subspace of H0(QSn) complementary to
the image of H0(Q[Xn]). Let Gn denote this subspace. Then H0(QSn) = Gn ⊕ Vn. Then we
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note that π ◦ En+1(Gn) ∩ π ◦ En+1(enQ[Xn]) = (0). Indeed, let f be in that intersection. Then
since it is in π ◦ En+1(Vn) we see that if g is a representative then ϕn ◦ ϕn+1(g) = 0. But since
it is in π ◦ En+1(Gn) it has a representative of the form En+1 ◦ En(h) with h in QSn−1. But
ϕn ◦ ϕn+1(En+1 ◦ En(h)) = h. This proves the assertion. If H1(QSn+1) = 0 the dimension of the
image of enQ[Xn] under π ◦ En+1 is at least (n)! − (n − 1)!. Suppose it is greater. This implies
that π ◦ En+1(QSn) has dimension d > (n)!. Applying ϕn+1 we see that dimH0(QSn) ≥ d > n!.
But we are assuming that QSn is free as a Λn module. This implies that it must have n!
generators as a free Λn-module. Thus if QSn+1 is free as a Λn module then the map π ◦ En+1

restricted to enQ[Xn] has an (n − 1)! dimensional kernel. This certainly proves the necessity.
We now prove the sufficiency. If H1(QSn+1)  = 0 then dim Imπ ◦ En+1(QSn) < n!. Since

Gn ∩ enQ[Xn] = (0) we see that

(Gn

⊕
enHn) +

∑
i

ei,QSn = QSn.

This implies that dimπ ◦ γn−1(QSn−1) = (n− 2)! + dimπ ◦ γn−1(en−1,n−1Hn−1). Now assuming the
upper bound in 5.1 for the dimension of the kernel we see that

dimπ ◦ En+1(QSn) ≥ (n − 1)! + n! − dim kerπ ◦ En+1|enHn
≥ n!.

This contradiction implies the sufficiency.

As in the introduction we define

τn =
n∑

i=1

(i, i + 1, . . . , n) and τ ′
n =

n∑
i=1

(−1)n−i(i, i + 1, . . . , n) .

The basic role (for our purposes) of these elements of the group algebra of Sn is that if
f ∈ Q[Xn] then (Proposition 3.1)

Enenf = τnenf.

This implies that
dim kerπ ◦ En+1|Hn

= dim ker(f !→ πτn+1enf)

the latter being considered as a map from Hn to Q[Xn+1]/
∑

eiQ[Xn+1].

The Vandermonde determinant (or discriminant) in Xn , that is
∏

1i<i<j≤n(xi−xj), will
be denoted here ∆n . If f ∈ Q[Xn] then we shall set here

∂(f) = f(∂x1 , ..., ∂xn
) .

We recall that we have f ∈
∑

i≤n eiQ[Xn] if and only if ∂(f)∆n = 0. With this notation in mind
we see that the condition of Proposition 5.2 is

dim ker(f → ∂(τn+1(enf)) ∆n+1) ≤ (n − 1)!
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where the above map is considered to be a map of Hn−1 to Hn. We recall that we have

∂(en)∆n+1 = (n + 1)! ∆n .

This yields the identity (see the proof of Proposition 3.2)

∂(τn+1(enf)) ∆n+1) = (n + 1)! τ ′
n+1(∂(f)∆n)

for f ∈ Q[Xn]. Finally we note that ∂(Hn)∆n = Hn. Putting this together we see that
Proposition 5.2 can be refomulated as

Proposition 5.3.
A necessary and sufficient condition that QSn+1be a free module over Λn+1is that

dim ker τ ′
n+1|Hn

≤ (n − 1)!.

As in section 4 we introduce the differential operators D
(j)
n =

∑
1≤k≤n

∂xj
k
, we will write

D(j) if we are differentiating all of the variables. We have

Lemma 5.2.
We have f ∈ ker τ ′

n+1|Hn
if and only if f = e−xnD

(1)
n−1φ with φ ∈ Q[Xn−1] satisfying the

conditions
(1) (−τ ′

n + e−xnD
(1)
n−1)φ = 0

(2) (D(j) + (−D(1))j)φ = 0 for j ≥ 2 .

Proof.
Let f ∈ Q[Xn] be such that D(1)f = 0. We write f =

∑
fjx

j
n with fj ∈ Q[Xn−1]. Then the

condition that D(1)f = 0 means that

D(1)fj = −(j + 1)fj+1.

Thus if we set φ = f0 then f = e−xnD
(1)
n−1φ. The converse is also easily checked, that is if f is

given as e−xnD
(1)
n−1φ then D(1)f = 0. We are now ready to prove the Lemma. We note that

τ ′
n+1e

−xnD
(1)
n−1φ = e−xnD

(1)
n−1φ − e−xn+1D(1)

n τ ′
nφ .

Thus if f = e−xnD
(1)
n−1φ is such that τ ′

n+1f = 0, comparing coefficients the powers of xn+1, we get

0 = e−xnD
(1)
n−1φ − τ ′

nφ .

Thus f = e−xnD
(1)
n−1φ satisfies τ ′

n+1f = 0 if and only if condition (1) is satisfied. We next look
at the condition that f is harmonic. We note that

D(j)e−xnD
(1)
n−1φ = e−xnD

(1)
n−1((D(j) + (−D(1))j)φ).
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Thus f = e−xnD
(1)
n−1φ is harmonic if and only if the condition (2) is satisfied.

We are finally ready to complete the induction that has been weighing on us through-
out this section. That is to say we will now prove dim ker τ ′

n+1|Hn
≤ (n − 1)!. We first observe

that one can check that this is true directly and without much difficulty for n ≤ 2. We also
recall that we are assuming that QSm is free as a Λm module for all m ≤ n.

Let V denote the space of a φ satisfying the two conditions of Lemma 5.2. Let Vj

denote the subspace of V consisting of those elements φ ∈ V such that (D(1))jφ = 0. We write
cn−1 = dim ker(τ ′

n − I)|Hn−1 . We prove by induction on j that dimVj ≤ (j − 1)(n − 2)! + cn−1. We
first look at V1. Then if φ ∈ V1 we have φ ∈ Hn−1 and

τ ′
nφ = φ.

Then dimV1 = cn−1. Now consider φ ∈ V2 then

−τ ′
nφ + φ − xn D(1)φ = 0.

If φ =
∑
j≥0

φjx
j
n−1 with φj ∈ Q[Xn−2] then we have

−φ +
∑
j≥0

τ ′
n−1(φj)xj

n + φ − xn D(1)φ = 0 .

Thus
τ ′
n−1φ0 = 0 and D(1)φ = τ ′

n−1φ1 .

Thus we have D(1)φ ∈ Hn−1 and τ ′
nD(1)φ = 0. This implies by the inductive hypothesis that

dimD(1)V2 ≤ (n − 2)!. Since ker D(1)
|V2 = V1 we see that dimV2 ≤ (n − 2)! + cn−1. Suppose that we

have shown that
dimVj ≤ (j − 1)(n − 2)! + cn−1.

Let us consider α = (D(1))jφ with φ ∈ Vj+1. If we write φ =
∑
j

φjx
j
n−1 (as usual) and write out

condition (1) above we have
τ ′
n−1(φj) = ±(D(1))jφ = ±α.

Thus α ∈ ker τ ′
n|Hn−1 . Thus dim(D(1))jVj+1 ≤ (n − 2)!. Now ker(D(1))j

|Vj+1 = Vj. Hence

dimVj+1 ≤ dimVj + (n − 2)! .

Thus to complete the proof we must show that cn−1 ≤ (n − 2)!. This will be proved

by an argument analogous to the one above. If ξ ∈ Q[Xn−2] and if φ = e−xn−1D
(1)
n−2ξ then φ ∈

ker(τ ′
n − I)|Hn−1 if and only if ξ satisfies the two conditions

a) τ ′
n−1 ξ = 0

b)
(
D(j) + (−D(1))j

)
ξ = 0 .
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Let W be the space of those elements ξ of Q[Xn−2] that satisfy (a) and (b). Let Wj =
{φ ∈ W |(D(1))jφ = 0}. We now show that dimWj ≤ j(n−3)! by induction on j. This will complete
the proof since Wn−2 = W . We have W1 = ker τ ′

n−1|Hn−2 , so dimW1 = (n − 3)! by the inductive
hypothesis. Now (D(1))jWj+1 ⊂ W1 and ker(D(1))j

|Wj+1 = Wj. Thus dimWj+1 ≤ dimWj + (n − 3)!.
The proof is complete.

6. Final Remarks and identities
It should be apparent at this point that our algorithm for constructing Λn-module

bases for QSn follows closely the recursion satisfied by the numerator of its Hilbert series.
Namely

Pn(q) = Pn−1(q) + qn
(
[n]q! − Pn−1(q)

)
. 6.1

Now it happens that there is a very intriguing further recursion satisfied by the polynomial
Pn(q) which we have been unable to translate into an alternate algorithm for proving the free-
ness of QSn. We shall present here since it may be conducive to further findings concerning
this remarkable algebra. More precisely we have the following result

Theorem 6.1
The expression

Qn(q) =
[n + 1]q! − Pn(q)

[n]q
6.2

yields a polynomial in N[q]. In fact, the pair Pn(q), Qn(q) satisfies the following recursions

a) Pn(q) = Pn−1(q) + qn [n − 1]qQn−1(q)

b) Qn(q) = q Pn−1(q) + [n − 1]qQn−1(q)
6.3

with initial conditions P1(q) = 1 and Q1(q) = q. In particular we derive that

Pn(q) = Pn−1(q) + qn+1
n∑

r=2

[n − 1]q · · · [n − r + 1]q Pn−r(q) . 6.4

Proof
Substituting 6.1 into 6.2 gives

Qn(q) =
1

[n]q

(
[n + 1]q − Pn−1(q) − qn[n]q! + qnPn−1(q)

)

=
1

[n]q

(
[n]q[n]q − (1 − qn)Pn−1(q)

)
= [n]q − (1 − q)Pn−1(q)

= [n]q − Pn−1(q) + q Pn−1(q)(
by 6.2 for n → n − 1

)
= [n − 1]qQn−1(q) + q Pn−1(q) .

This proves 6.3 b). Clearly, 6.3 a) is obtained by combining 6.1 with 6.2 for n → n − 1. We
have seen in 1.9 that P1(q) = 1 and then 6.2 for n = 1 gives Q1(q) = q. The identity in 6.4 is
obtained by combining 6.3 a) with recursive applications of 6.3 b).
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Remark 6.1
The recursion in 6.4 suggests the existence of a very special Λn-basis for QSn consisting

of a Λn−1-basis for QSn−1 followed by certain Artin monomials multiplying en times Λn−r-bases
for QSn−r. Such a basis might be found if we could only find a setting that explains why the
ratio in 6.2 turns out to be polynomial with non-negative integer coefficients.

In the context of special bases we should mention that a substantial part of our
computer data was obtained using the conjectured Λn-basis of Bergeron-Reutenauer [4].
Assuming the validity of their conjecture we were able to carry out computer explorations
of a size that appeared forbidding by any other means. The construction of the Bergeron-
Reutenauer basis may be obtained by a process which closely follows the constrution of
the polynomials Π[Xn] defined in 1.12 and 1.13 with Artin monomials replaced by “descent
monomials”.

Let us recall that for a given permutation σ = (σ1, σ2, · · · , σn) we define the descent
monomial dσ[Xn] corresponding to σ by setting

dσ[Xn] =
∏

1≤i≤n−1

σi>σi+1

xσ1xσ2 · · ·xσi
. 6.9

For convenience let us set

rdσ[Xn] =
∏

1≤i≤n−1

σi>σi+1

xn+1−σ1xn+1−σ2 · · ·xn+1−σi
.

and call it a “reversed” descent monomial. This given let

DM[Xn] =
∑

σ∈Sn

rdσ[Xn] 6.9

and recursively define the sequence of polynomials Ξ[Xn] by setting

1) Ξ[X1] = 1 ,

2) Ξ[Xn] = Ξ[Xn−1] + x1x2 · · ·xn

(
DM[Xn] − Ξ[Xn−1]

) 6.10

It develops that there is a complete analogue of Proposition 1.2. More precisely, setting

Sn =
{
p : xp is a summand in Ξ[Xn]

}
6.11

we have

Proposition 6.1
a) Each Ξ[Xn] is a sum of n! distinct monomials each of which is a summand in DM[Xn+1]
b) The compositions in Sn have length ≤ n.
c)

∑
p∈Sn

q|p| = Pn(q) .
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Proof
It is easily seen that multiplication by x1, x2, . . . , xn of a reversed descent monomial in

DM[Xn] yields a reversed descent monomial in DM[Xn+1]. Thus if we inductively assume a)
and b) to be true for n − 1 the recursions in 6.10 will assure them to be true for n. It is well
known that we have ∑

σ∈Sn

qmaj(σ) = [n]q!

where “maj(σ)” denotes the major index of σ. Since degree(dσ[Xn]) = maj(σ), setting all the
variables xi equal to q in 6.10 2) yields the recursion

∑
p∈Sn

q|p| =
∑

p∈Sn−1

q|p| + qn
(
[n]q! −

∑
p∈Sn−1

q|p|
)

.

This proves that both sides of c) satify the same recursion. Since both sides satisfy the same
initial conditions the identity in must hold true for all n. This completes our proof.

F. Bergeron and C. Reutenauer conjectured that the collection

Bn =
{
mp[Xn]

}
p∈Sn

6.12

is a Λn-basis for QSn. Note that if we set

DZn =
{

p : xp is a monomial in DM[Xn] − Ξ[Xn−1]
}

then the collection in 6.12 may be written in the form

Bn =
{

mp[Xn]
}

p∈Sn−1

∪
{

en[Xn]xp
}

p∈DZn

6.13

which is completely analogous to the bases constructed in the proof of Theorem 2.1. Now
we conjecture that the collection

An =
{

mp[Xn]
}

p∈Sn−1

∪
{

xp
}

p∈DZn

6.14

is itself a Λn-basis for Q[Xn]. We have extensive data in support of this conjecture. In
particular, computer explorations based on its validity, predicted a variety of facts which
eventually led us to the proof of Theorem I.3.

Remark 6.2
It was shown in [6] that the collection of descent monomials

{
dσ[Xn]

}
σ∈Sn

is a basis
for the quotient Q[Xn]/(e1, e2, . . . , en). Since this quotient is Sn-invariant, the same will be
true for the collection of reversed descent monomials. In going from

{
rdσ[Xn]

}
σ∈Sn

to An we
see from 6.10 2) that we have replaced the monomials in DM[Xn] that are in

{
xp

}
p∈Sn−1

by

the quasi-monomials in
{
mp[Xn]

}
p∈Sn−1

. If this replacement caused no loss of independence

modulo (e1, e2, . . . , en), then An would necessarily be a Λn-basis for Q[Xn] and it would then
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follow that Bn is a Λn-basis for QSn. The same conclusions can be drawn if An is shown
to span the quotient Q[Xn]/(e1, e2, . . . , en). Thus a direct proof of the independence or the
spanning property of An not only would provide a further proof of the freeness of QSn but
it would as well establish the Bergeron-Reutenauer conjecture about Bn.

We should also mention that our quest for a proof of Theorem I.2 led us to a most
surprising fact concerning the action of the group algebra element τ ′

n. In fact, some of the
identities proved in Section 4. yield the following result

Theorem 6.2
The Hilbert series FKn

(q) of the kernel of τ ′
n as a map from Q[Xn−1] into Q[Xn] satisfies

the following recursion.

FKn
(q) + FKn−1(q) =

1
(1 − q)n−2

6.15

with initial condition FK2(q) = 1. In particular it follows that

FKn
(q) = E(n) +

n−2∑
r=1

E(n − r)
q

(1 − q)r
6.16

with E(m) = 1 − m mod 2.
Proof

From Propositions 4.2 and 4.5 it follows that a polynomial h[Xn−1] ∈ Q[Xn−1] is in the
kernel of τ ′

n if and only if
h[Xn−1] = τ ′

n−1 ho[Xn−2] 6.17

with
ho[Xn−2] ∈ Q[Xn−2] . 6.18

Indeed, any polynomial h[Xn−1] of degree m in xn−1 may be written in the form given by 4.19
that is

h[Xn−1] =
m∑

r=0

(−1)rxr
n−1hr[Xn−2] .

If τ ′
n h[Xn−1] = 0 formula 4.20 (for xn = 0) gives 6.17 with 6.18. Conversely, if 6.17 and 6.18

hold true then 4.2 a) of Proposition 4.2 gives τ ′
n h[Xn−1] = 0. In other words the kernel of τ ′

n

is the range of τ ′
n−1. Since the Hilbert series of the co-kernel and the range of τ ′

n−1 on Q[Xn−2]
are the same we must necessarily have

FKn
(q) =

1
(1 − q)n−2

− FKn−1(q) . 6.19

This proves 6.15. Now 6.16 is trivially true for n = 2 because the only elements of Q[X1] that
are killed by τ ′

2 are the constants. We can thus proceed by induction and assume 6.16 true
for n − 1, and 6.19 gives

FKn(q) =
1

(1 − q)n−2
− E(n − 1) −

n−3∑
r=1

E(n − 1 − r)
q

(1 − q)r
. 6.20
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Since for n ≥ 3 we have

1
(1 − q)n−2

= 1 +
q

1 − q
+

q

(1 − q)2
+ · · · + q

(1 − q)n−2

substituting this in 6.20 gives

FKn
(q) = 1 − E(n − 1) +

n−3∑
r=1

(
1 − E(n − 1 − r)

) q

(1 − q)r
+

q

(1 − q)n−2
.

and this is just another way of writing 6.16 completing the proof of the theorem.

What is surprising about the relation in 6.15 is that it yields the simplest mechanism
for producing the polynomials Pn(q). More precisely 6.15 implies that

Theorem 6.3

FKn+2(q) =
q(

n+1
2 )Pn(1/q)

(1 − q)(1 − q2) · · · (1 − qn)
6.21

Proof
For convenience set

FKn+2(q) =
Γn(q)

(1 − q)(1 − q2) · · · (1 − qn)
,

and 6.15 becomes

Γn(q)
(1 − q)(1 − q2) · · · (1 − qn)

+
Γn−1(q)

(1 − q)(1 − q2) · · · (1 − qn−1)
=

1
(1 − q)n

.

Making the replacement q → 1/q we may thus rewrite this in the form

(−1)nΓn(1/q) q(
n+1

2 )

(1 − q)(1 − q2) · · · (1 − qn)
+

Γn−1(1/q) (−1)n−1q(
n
2)

(1 − q)(1 − q2) · · · (1 − qn−1)
=

(−1)nqn

(1 − q)n
.

Multiplying both sides by (1 − q)(1 − q2) · · · (1 − qn) converts this to

Γn(1/q) q(
n+1

2 ) = (1 − qn)Γn−1(1/q) q(
n
2) + qn [n]q! .

= Γn−1(1/q) q(
n
2) + qn

(
[n]q! − Γn−1(1/q) q(

n
2)

)
,

6.22

which we can easily recognize to be the recursion satisfied by Pn(q). Note that for n = 3
formula 6.17 gives

FK3(q) =
q

1 − q
=

Γ1(q)
1 − q

.

Therefore
q(

1+1
2 )Γ1(1/q) = 1 = P1(q) .
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Combining this with 6.22 yields the equality

q(
n+1

2 )Γn(1/q) = Pn(q) , 6.23

completing the proof of the theorem.

The reappearence of Pn(q) in this further context begs for an explanation. Comparing
formula 3.10 with the equality

FKn(q) =
q(

n−1
2 )Pn−2(1/q)

(1 − q)(1 − q2) · · · (1 − qn−2)

suggests using the freeness of Q[Xn−1] over Λn−1 to relate the kernel of τ ′
n on Hn−1 to kernel

of τ ′
n on Q[Xn−1]. However we found this path fraught with technical difficulties.

The group algebra elements τn and τ ′
n have appeared in previous literature. Indeed,

denoting by L the left regular representation of Sn, it was shown in [10] that the matrix L(τn)
is diagonable with eigenvalues

0 , 1 , 2 , . . . , n − 2 , n . 6.24

It was later shown by Diaconis et al. in [5] (see also [7]) that the multiplicity of i in L(τn) is
equal to the number of permutations with i fixed points, beautifully explaining the absence
of n − 1 in 6.24.

In [5] Diaconis et al. imbed a conjugate of τn as the first member of a one-parameter
family Ba of group algebra elements naturally arising in a card shuffling context. This yielded
them an explicit formula for all the successive powers of τn and a number of interesting
identities. It develops that these identities and further ones can be established in a very
simple, elementary way. We will end this writing with a brief presentation of this further
development.

If α and β are two words in an alphabet A, we denote by “α ∪∪ β ” the formal sum of
all the words that can be obtained by shuffling α and β as it is done with two decks of cards.
This given, let us set for 1 ≤ a ≤ n

Ba =
∑

α∈Sa

α ∪∪ βa,n 6.25

where a permutation α ∈ Sa is viewed here as a word in the alphabet {1, 2, . . . , a} and βk,n

denotes the word (a + 1)(a + 2) · · · (n). It is easy to see that the right hand side of 6.25 is
none other than the sum of all the permutations of Sn with a + 1, a + 2, . . . n occurring in their
natural order. It is also seen that B1 reduces to the sum of cycles

B1 =
n∑

i=1

(1, 2, . . . , i) .
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This implies that τn and B1 are conjugate elements of the group algebra of Sn. To be precise

τn = σ(n) B1 σ(n) 6.26

with σ(n) the top element of Sn.
Interpreting all the Ba’s as elements of the group algebra of Sn we have the following

basic identities.
Proposition 6.1

For 1 ≤ a ≤ n − 1
B1 Ba = aBa + Ba+1 , 6.27

thus
Ba = B1(B1 − I)(B1 − 2I) · · · (B1 − (a − 1)I) , 6.28

where I represents the identity permutation. This in turn gives

Bk
1 =

k∑
r=1

Sk,a Ba 6.29

where Sk,a as customary denotes the Stirling number of the second kind. We also have

Ba × Bb =
a+b∑

r= a∨b

(
a

r − b

)(
b

r − a

)
(a + b − r)! Br 6.30

Proof
The identity in 6.27 can be obtained by grouping the permutations σ occurring in Ba

according to the value of σ1. Clearly σ1 can only take the values 1, 2, . . . , a + 1. Each of the
groups where 1 ≤ σ1 ≤ a yield a term Ba upon multiplication by B1 and the group where
σ1 = a + 1 is easily seen to give the term Ba+1. This given, we can rewrite 6.27 in the form

Ba+1 = (B1 − a I)Ba

and 6.28 then follows by iteration. Formulas 6.29 and 6.30 are immediate consequences of
the classical identities (see [8] V. I p. 35)

xk =
k∑

a=1

Sk,a x(x − 1)(x − 2) · · · (x − a + 1)

(x)↓a× (x)↓b =
a+b∑

r= a∨b

(
a

r − b

)(
b

r − a

)
(a + b − r)! (x)↓r

where for convenience we have set

(x)↓k = x(x − 1)(x − 2) · · · (x − k + 1) .
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Remark 6.3
We should note that formula 6.28 already implies that τn, as a group algebra element,

is diagonable with eigenvalues a subset of the integers in 6.24. Indeed, since both Bn−1 and
Bn reduce to the sum of all the permutations of Sn, formula 6.27 for a = n−1 may be rewritten
as

B1Bn−1 = n Bn−1

and from 6.28 with a = n − 1 we get that

B1(B1 − I)(B1 − 2 I) · · · (B1 − (n − 2)I)(B1 − n I) = 0

This implies the diagonability of B1. The diagonability of τn then follows from 6.26. To
get more precise information about the multiplicities of the eigenvalues we may follow the
argument given in [5]. This is based on the following identity of Diaconis et Al. which can
be obtained here as Corollary of 6.29.

Proposition 6.3

Bk
1 =

n∑
i=1

ik
1
i!

n∑
a=i

(−1)a−i

(a − i)!
Ba (for 1 ≤ k ≤ n) 6.31

Proof
It is well know that the Stirling numbers of the second kink may be expressed in the

form
Sk,a =

k!
a!

(et − 1)a
∣∣
tk

Substituting this into 6.29 gives

Bk
1 =

k∑
a=1

Ba
k!
a!

(et − 1)a
∣∣
tk 6.32

However note that since for a > k we clearly have

k!
a!

(et − 1)a
∣∣
tk = 0

we may rewrite 6.32 in the form

Bk
1 =

n∑
a=1

Ba
k!
a!

(et − 1)a
∣∣
tk

=
n∑

a=1

Ba
k!
a!

a∑
i=0

(
a

i

)
eit(−1)a−i

∣∣∣
tk

=
n∑

a=1

Ba
k!
a!

a∑
i=0

(
a

i

)
ik

k!
(−1)a−i

=
n∑

a=1

Ba

a∑
i=1

ik

i!(k − i)!
(−1)a−i
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and 6.31 is obtained by changing order of summation.

It is easily shown that the operators

Ei =
1
i!

n∑
a=i

(−1)a−i

(a − i)!
Ba

do sum to the identity. Moreover it follows from 6.31 that they are the orthogonal projections
onto the eigenspaces of B1. Denoting by L the left regular represedntation of Sn, it follows
from this that the multiplicity of i in the matrix L(B1) is given by the trace of L(Ei). Now
we have

trace L(Ei) =
1
i!

n∑
a=i

(−1)a−i

(a − i)!
trace L(Ba)

and since the left regular represenation has trace zero except at the identity this formula
reduces to

trace L(Ei) =
1
i!

n∑
a=i

(−1)a−i

(a − i)!
n!

=
n!
i!

n−i∑
a=0

1
a!

(−1)a

=
(

n

i

)
(n − i)!

n−i∑
a=0

1
a!

(−1)a =
(

n

i

)
Dn−i

where Dm denotes the number of fixed-point-free permutations of Sm. The desired conclusion
concerning multiplicities follows since the number of permutation of Sn with i fixed points is
precisely equal to

(
n
i

)
Dn−i .
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