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Pebbles
and

Expansions in the Polynomial Ring
by

Adriano M. Garsia

Astract We show here that some simple combinatorial facts concerning
arrangements of pebbles on an n×n board have surprising consequences
in the study of expansions in the polynomial ring Q[x1, x2, . . . , xn]. In
particular in this manner we obtain a purely combinatorial proof of
an identity of Lascoux-Schutzenberger given in Funkt. Anal 21 (1987)
77-78.

I. Introduction
We recall that the “lattice cells” of the Cartesian plane are the subsets

Ci,j = {(x, y) : i − 1 ≤ x ≤ i & j − 1 ≤ x ≤ j }

The “n × n board” is the collection of lattice cells

Bn = {Ci,j : 1 ≤ i, j ≤ n } .

The “diagonal ” of the board is the collection

Dn = {Ci,i : 1 ≤ i ≤ n }

We will deal here with arrangements of pebbles in the n × n board with the following prop-
erties:

(1) At most one pebble in each cell and no pebbles in the diagonal.

(2) The pebbles above the diagonal are white and arranged in left justified rows, some of
which may be empty.

(2) Below the diagonal the pebbles are black but unrestricted.

The display below illustrates such an arrangement in B8. For clarity we have shaded the
diagonal cells. The numbers on the left of the board indicate the row counts of the white
pebbles and the numbers below the board indicate the column counts of the black pebbles.

Fig. I.1
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Given such a filling F the vectors which give the row counts of white pebbles and
column counts of the black cells will be respectively denoted α(F) and β(F). For the filling
in Fig. 1 we have

α(F) = (0, 1, 0, 2, 1, 5, 0, 3) and β(F) = (0, 0, 1, 2, 1, 2, 3, 4)

It will be convenient to set for any vector of integers α = (α1, α2, . . . , αn)

|α| = α1 + α2 + · · · + αn .

We shall say that a vector of integers α = (α1, α2, · · · , αn) is “subtriangular” if

0 ≤ αi ≤ i − 1 ( for i = 1, . . . , n).

Clearly for all our board fillings F both α(F) and β(F) are subtriangular vectors in particular
we necessarily have also the inequalities

|α(F)| ≤
(

n

2

)
, |β(F)| ≤

(
n

2

)
. I.1

Given two subtriangular vectors α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn) we shall denote by
C(α, β) the collection of all fillings of Bn satisfying conditions (1), (2) and (3) and whose white
row counts and black row counts are given by α and β respectively. In symbols

C(α, β) =
{
F : α(F) = α & β(F) = β

}
I.2

We should note that the cardinality of the collection C(α, β) is given by a product of binomial
coefficients. More precisely we have

#C(α, β) =
n∏

i=1

(
i − 1
βi

)
I.3

Given a filling F we let τi(F) denote the total number of pebbles (white or black) in
the ith row of the board. We set

τ(F) = (τ1(F), τ2(F), . . . , τn(F))

and call it “the vector of total row counts”. For the example in Fig. 1 we have

τ(F) = (3, 1, 5, 3, 3, 4, 3, 3) I.4

It will be convenient to set
δ = (0, 1, 2, 3, . . . , n − 1) . I.5

This given we shall say that two subtriangular vectors α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn)
are “complementary” is and only if

β = δ − α I.6
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that is
βi = i − 1 − αi for i = 1, 2, . . . , n

The contents of these notes are divided into three sections. In the first section we establish
some properties of the vectors of total counts for the elements of our collections C(α, β). In the
second section we derive consequences of these properties for polynomials in Q[x1, x2, . . . , xn]
and in the third section we give some applications.

Acknowledgement
We are grateful to Jeff Remmel for several stimulating exchanges and invaluable help

in the proof of Theorem 1.1.

1. Pebbles’ magics.
To simplify our presentation it will be good to make some preliminary remarks and

introduce further terminology. To begin, given a filling F of the board Bn we shall denote
by F≤i the filling of the board Bi obtained by removing the last n− i rows and columns of F .
Note that since there are no pebbles on the diagonal, there can’t more than n−1 total pebbles
falling in any row of our fillings. Thus if a τ(F) has distinct components these can only be
the integers 0, 1, 2, 3, . . . , n− 1 in some order. We shall then say that τ(F) is a “permutation of
δ ” or briefly a “permutation” and F itself will be called “permutational”. A filling F of Bn

will be called “perfect” if the fillings

F≤2 , F≤3 , . . . , F≤n

are all permutational. If F is permutational and σ = (σ1, σ2, . . . , σn) is the permutation giving

τ(F) = (δσ1 , δσ2 , . . . , δσn)

then the sign of σ will be briefly referred as the “sign of F”. In symbols

sign(F) = sign(σ) 1.1

This given, the total pebble counts have the following remarkable properties:

Theorem 1.1
Let α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn) be any given subtriangular vectors, then

(a) Every τ(F) with distinct components must be a permutation of δ.
(b) If |α|+|β| �= |δ|, the total count vectors τ(F) have repeated components for all F ∈ C(α, β).

(c) If β = δ−α then the collection C(α, β) has a unique permutational filling F . This filling
is also perfect and we have

sign(F) = (−1)β1+β2+...+βn , . 1.2

(d) If |α| + |β| = |δ| but β �= δ − α there may be more than one permutational filling in
C(α, β). However in this case the signs of the fillings always add up to zero.



1

0

1

0

0 0

0 0

10

0 1

July 21, 2002 4

Proof
We have observed above that Property (a) holds true. Property (b) is an immediate

consequence of (a). To prove c) we start by looking at the case n = 2. Here there are only two
complementary pairs, namely

(
(0, 1), (0, 0)

)
and

(
(0, 0), (0, 1)

)
. The two collections C

(
(0, 1), (0, 0)

)
and C

(
(0, 0), (0, 1)

)
reduce to the single fillings given in the figure below.

Fig 1.1

For the first filling we have τ(F) = (0, 1) = δ and for the second τ(F) = (1, 0) = (1, 2) δ.
So the sign, in each case, is as stated in 1.2 and thus property (c) holds true in this case.
We can thus proceed by induction. We shall begin by showing that when β = δ − α we can
easily construct a filling Fo ∈ C(α, β) that is not only permutational but also perfect. We then
show that Fo is the only permutational filling in C(α, β). Since both fillings in Fig. 1.1 are
trivially perfect let us assume that for any choice of complementary α′ = (α1, α2, . . . αn−1) and
β′ = (β1, β2, . . . , βn−1) we have constructed a perfect filling F ′

o ∈ C(α′, β′). Let αn, βn be given
with αn + βn = n − 1 and let α = (α1, α2, . . . αn−1, αn), β = (β1, β2, . . . , βn−1, βn) For convenience
set αn = k and βn = n − 1 − k. Note that to complete the induction we need only construct a
permutational filling Fo ∈ C(α, β) such that

F≤n−1 = F ′
o . 1.3

These conditions uniquely determine Fo. In fact, to satisfy 1.3 , we must construct Fo by
filling the subboard Bn−1 of Bn with F≤n−1 then place k left justified white pebbles in the top
row of Bn and n − 1 − k black pebbles in the last column of Bn. Now the requirement that
τ(Fo) be a permutation of (0, 1, . . . , n− 1) determines the rows where these black pebbles must
be placed. The reason for this is simple. Given that αn = k, we necessarily have τn(F) = k for
all F ∈ C(α, β). So we need only assure that

τ1(Fo), τ2(Fo), . . . , τn−1(Fo)

are a permutation of
0, 1, . . . , k − 1, k + 1, . . . , n − 1 .

Since 1.3 yields that τi(Fo) = τi(F ′
o) + 0

1 we see that we are forced to place the black pebbles
in the rows where the components of τi(F ′

o) take the values

k, k + 1, . . . , n − 2 .

This completes our induction and the proof that perfect fillings always exist and are unique.
However the possibility remains that there may be permutational fillings that are not perfect.
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To exclude this possibility we need to familiarize ourselves with the nature of our perfect fill-
ings. This is best done with an example that illustrates the algorithm which transpires from
our existence proof. In fact, for a given α = (α1, α2, . . . , αn) our inductive process determines
the sequence of steps we must follow to construct the successive fillings

F≤2(Fo)→F≤3(Fo)→F≤4(Fo)→ · · ·→F≤n−1(Fo)→F(Fo) .

The display below illustrates the sequence we obtain for α = (0, 1, 0, 3, 1, 2).

Fig. 1.2

The information contained in such a display can be compressed into a triangular array
given by the sequence of vectors

τ(F≤2) , τ(F≤3) , . . . τ(F≤n−1) , τ(F) , 1.4

placed from bottom to top under the diagonal of Bn. In this manner the sequence of fillings
displayed in Fig 1.2 reduces to the single diagram given below

Fig. 1.3

Clearly we can recover the successive fillings in Fig. 1.2 by placing a pebble in a cell whenever
the integer in the cell is greater than the integer in the cell immediately to the left. We should
also note that our argument shows that the triangular arrays resulting from a perfect filling
may be directly constructed from a very simple recursion. In fact, if c(i, j) (for i ≤ j) denotes
the content of cell (i, j), then the triangular array corresponding to a given subtriangular
vector α = (α1, α2, . . . , αn) is obtained by setting

c(i, i) = αi and for j > i c(i, j) = c(i, j − 1) +




0 if c(i, j − 1) < αj ,

1 if c(i, j − 1) ≥ αj .
1.5
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In particular we see that the contents of row i only depend on the components

αi, αi+1, . . . , αn .

Keeping this in mind we shall complete our proof of Property (c) by induction on n. Let
us assume then that for any two complementary subtriangular vectors α′ = (α′

1, α
′
2, . . . , α

′
n−1)

and β′ = (β′
1, β

′
2, . . . , β

′
n−1) there is one and only one permutational filling F ′

o in C(α′, β′) and its
sign is as given in 1. By what we have shown it follows that F ′

o must be perfect. Now let
α = (α1, α2, . . . , αn) and let β = δ − α, and suppose that the filling F ∈ C(α, β) is permutational.
Note that the position of the component n − 1 in τ(F) is uniquely determined by α. To see
this note that either we have αi < i − 1 for all i or for some k ≥ 2 we have

αk = k − 1 and αj < j − 1 ∀ j = k + 1, k + 2, . . . , n

Now in the first case we must have τn(F) = n − 1 and in the second case τ k(F) = n − 1. In
fact, in the first case the total pebble counts on rows 2, 3, . . . , n cannot exceed n−2. The same
must hold true in the second case for the same reason for rows k +1, k +2, . . . , n. On the other
hand, also for rows 1, 2, . . . , k−1 the counts cannot exceed n−2 because αk = k−1 forces βk = 0
which in turn prevents placing any black pebbles in column k. Thus in any case the position
of n − 1 is uniquely determined by α as asserted.

Proceeding in the second case we construct a filling F ′ of Bn−1 by removing row k

entirely from F together with the k − 1 empty cells below the diagonal in column k and n− k

empty cells immediately above the diagonal in columns

k + 1, k + 2, . . . , n .

It is easily seen that the resulting filling F ′ is in C(α′, β′) with

α′ = (α1, α2, . . . , αk−1, αk+1, . . . , αn) and β′ = (β1, β2, . . . , βk−1, βk+1 − 1, . . . , βn − 1)

moreover α′ and β′ are complementary and we must also have

τ1(F ′) = τ1(F), τ2(F ′) = τ2(F) , . . . , τk−1(F ′) = τk−1(F), τk(F ′) = τk+1(F), . . . , τn−1(F ′) = τn(F) 1.6

In other words τ(F ′) is simply obtained by removing the component n− 1 from τ(F). It thus
follows that F ′ is a permutational filling of C(α′, β′). By induction F ′ must also be perfect. It
then follows from the recursions in 1.5 that the top n− k rows of the triangular arrays for α′

and α must be identical. This gives that

τk(F ′) = τk+1(Fo) , τk+1(F ′) = τk+2(Fo) , . . . , τn−1(F ′) = τn(Fo) 1.7

with Fo the perfect filling of C(α, β). From the recursions in 1.5 it also follows that the first
k − 1 entries in rows 1, 2, . . . , k − 1 of the triangular arrays for α′ and α must also be identical.
Since there can’t be any black pebbles in column k of Fo, it follows that the partial row sums
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for Fo can’t change across column k. But after that the recursions will force them to change
precisely as the partial row sums change for α′. This shows that we must also have

τ1(F ′) = τ1(Fo) , τ2(F ′) = τ2(Fo) , . . . , τk−1(F ′) = τk−1(Fo) 1.8

Since both τk(Fo) and τk(F) must necessarily be equal to n−1, we see that combining 1.7 and
1.8 with 1.6 we derive that

F = Fo

This proves that F is perfect. To complete the induction in this case we need only check
that the sign is correct. To this end note that by induction we must have

sign(F ′) = (−1)β1+β2+···+βk−1+βk+1+···+βn−(n−k) . 1.9

Since τk(F) = n− 1, it takes exactly n− k adjacent transpositions to move n− 1 to the end of
τ(F), after doing that we obtain a vector that is τ(F ′) concatenated with n − 1. Thus

sign(F) = (−1)n−ksign(F ′) 1.10

since βk = 0, 1.9 and 1.10 give 1.2. This completes the proof of (c) in this case. The other
case can essentially be dealt in the same manner by specialiizing k = 1 in the various steps
of the argument.

We are left to prove Property (d). To begin let us suppose that we have a permuta-
tional filling F ∈ C(α, β) and suppose further that β �= δ − α. This given we claim that for at
least one i = 2, 3, . . . , n− 1 the vector τ(F≤i) must have repeated components. To see this note
that since all the components of τ(F≤i) are ≤ i − 1, if τ(F≤i) has distinct components it must
then be a rearrangement of (0, 1, . . . , i− 1). But that cannot happen for all i because then we
have

|τ(F≤i)| − |τ(F≤i−1)| = i − 1 .

Now this difference is also given by the number of white pebbles in row i of F≤i plus the
number of black pebbles in column i of F≤i. But the former is αi and the latter is βi. This
would yield

αi + βi = i − 1 for all i = 2, 3, . . . , n

which is excluded by our assumption that β �= δ − α.
Suppose then that io is the largest i for which τ(F≤i) has repeated components. And

suppose as well that h, k are the largest pair for which τh(F≤io) = τk(F≤io) and let φ(F) be the
new filling obtained by interchanging the tail ends of rows h and k of F that are to the right
of column io. This construction defines a map F→φ(F) with the following three properties

(1) F ∈ C(α, β) ⇒ φ(F) ∈ C(α, β) .

(2) φ is an involution of C(α, β), that is φ(φ(F)) = F ∀F ∈ C(α, β).
(3) sign

(
φ(F)

)
= −sign(F)
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where for convenience we make the convention that the sign of a vector with repeated
components is assigned the value zero.

Property (1) is clear since the interchange of row tails preserves the column counts of
black pebbles.

Property (2) follows from the fact that the interchange of row tails preserves the i′s

for which τh(F≤i) has or has not distinct components, as well as the largest pair h, k for which
the equality τh(F≤io

) = τk(F≤io
) holds true. .

Finally property (3) is assured by the fact that τh(φ(F)) = τk(F) and τk(φ(F)) = τh(F).
So when τ(F) is a rearrangement of δ the map φ changes the sign of the corresponding
permutation.

In summary this involution produces a pairing of the elements of C(α, β) which couples
an element F for which τ(F) has positive sign with one with negative sign, forcing the signs
to add up to zero as asserted. This completes the proof of the Theorem.

In the case α = (0, 1, 0, 2, 4, 2) and β = (0, 0, 1, 2, 1, 2) we found only 8 fillings whose total
row counts are rearrangements of (0, 1, 2, 3, 4, 5). These are displayed below along with the
pairing induced by φ.
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2. A remarkable scalar product for Q[Xn]
In the space of polynomials in x1, x2, . . . , xn with rational coefficients we introduce a

scalar product “
〈

,
〉
” by setting for xp = xp1

1 xp2
2 · · ·xpn

n and xq = xq1
1 xq2

2 · · ·xqn
n

〈
xp , xq

〉
=

det
∥∥x

pj+qj

i

∥∥n

i,j=1

det
∥∥xj−1

i

∥∥n

i,j=1

2.1

Given a symmetric polynomial P it will be convenient to use plethystic notation and denote
P [x1, x2, . . . , xk] by the symbol “P [Xk]” with Xk = x1 + x2 + · · · + xk.

This section is dedicated to the proof of the following result

Theorem 2.1
For a subtriangular vector β = (β1, β2, . . . , βn) set

φβ [x1, x2, . . . , xn] = (−1)|β|eb2 [X1]eβ3 [X2]eβ4 [X3] · · · eβn [Xn−1] . 2.2

This given, for any subtriangular vector α = (α1, α2, . . . , αn) we have

〈
xα , φβ

〉
=




1 if β = δ − α ,

0 if β �= δ − α .
2.3

Proof
Note that for α = (0, 1, 0, 2, 1, 5, 0, 3) and β = (0, 0, 1, 2, 1, 2, 3, 4) we have

xα = x2x
2
4x5x

5
6x

3
8

and
φβ = −e1[X2]e2[X3]e1[X4]e2[X5]e3[X6]e4[X7] .

Now a typical monomial occurring in the expansion of φβ is of the form

xa × (xb1xb2) × (xc) × (xd1xd2) × (xe1xe2xe3) × (xf1xf2xf3xf4) 2.4

with

1 ≤ a ≤ 2 , 1 ≤ b1 < b2 ≤ 3 , 1 ≤ c ≤ 4 , 1 ≤ d1 < d2 ≤ 5 , 1 ≤ e1 < e2 < e3 , 6 , 1 ≤ f1 < f2 < f3 < f4 ≤ 7 ,

In particular one of these monomials is

xq = x3
1x

2
2x

4
3x4x

2
5x7 = x1 × (x2x3) × (x3) × (x1x3) × (x3x4x5) × (x1x2x5x7) . 2.5

A moment of reflection should reveal that we can represent each of the monomials in 2.4 as a
placement of black pebbles in B8. That is the factor xa is represented by a pebble in column
3 and row a, the factor xb1xb2 by two pebbles in column 4 in rows b1 and b2, etc. , and finally



July 21, 2002 10

the factor xf1xf2xf3xf4 by 4 pebbles in column 8 and rows f1, f2, f3, f4. At the same time the
monomial xα can be represented by a placement of α2, α3, . . . , αn left justified white pebbles
in rows 2, 3, . . . , n. In particular, we see in this manner that the pair

xα = x2x
2
4x5x

5
6x

3
8 , xq = x3

1x
2
2x

4
3x4x

2
5x7

may be represented by the filling displayed in Fig. 1. Now the scalar product〈
xα , φβ

〉
=

〈
x2x

2
4x5x

5
6x

3
8 , e1[X2]e2[X3]e1[X4]e2[X5]e3[X6]e4[X7]

〉
is a sum of terms of the form〈

x2x
2
4x5x

5
6x

3
8 , xa × (xb1xb2) × (xc) × (xd1xd2) × (xe1xe2xe3) × (xf1xf2xf3xf4)

〉
.

In particular one of the terms will be

〈
xα , xq

〉
=

det‖xαj+qj

i ‖8
i,j=1

det‖xj−1
i ‖8

i,j=1

=

det




x3
1 x3

1 x4
1 x3

1 x3
1 x5

1 x1 x3
1

x3
2 x3

2 x4
3 x3

2 x3
2 x5

2 x2 x2
3

x3
3 x3

3 x4
3 x3

3 x3
3 x5

3 x3 x3
3

x3
4 x3

4 x4
4 x3

4 x3
4 x5

4 x4 x3
4

x3
5 x3

5 x4
5 x3

5 x3
5 x5

5 x5 x3
5

x3
6 x3

6 x4
6 x3

6 x3
6 x5

6 x6 x3
6

x3
7 x3

7 x4
7 x3

7 x3
7 x5

7 x7 x3
7

x3
8 x3

8 x4
8 x3

8 x3
8 x5

8 x8 x3
8




det‖xj−1
i ‖8

i,j=1

= 0 .

We should be able to see now how our study of arrangements of pebbles helps in the evalu-
ation of the scalar product in 2.3. In fact, in full generality, each of the terms obtained in
the expansion of the scalar product

〈
xα , φβ

〉
will correspond to a placement of pebbles in

Bn. A term corresponding to an F ∈ C(α, β) where τ(F) has repeated components will yield a
determinant with two equal columns and thus contributes nothing to the sum. So the only
surviving terms are those represented by an F ∈ C(α, β) where τ(F) has distinct components.
But, Theorem 1.1 asserts that this can only happen when |α| + |β| =

(
n
2

)
, and τ(F) is a rear-

rangement of δ. But then the determinant in the numerator of
〈
xα , xτ(F)

〉
will evaluate to

a multiple of the denominator, the factor being the sign of the permutation that rearranges
τ(F) to δ. But then again by Theorem 1.1 we derive that when β �= δ − α all these terms will
add up to zero, and when β = δ − α the only surviving term will be one producing the sign
(−1)β1+β2+···+βn which is precisely the factor we need to produce a 1 in the first case of 2.3.
Thus 2.3 holds true as desired and our proof is complete.

It should be of interest to see how the identity in 2.3 may be proved analytically. To
this end we need the following auxiliary result which is interesting in its own right.

Proposition 2.1
For a, n integers we have

n∑
i=1

xa
i∏n

j=1

j �=i

(xi − xj)
=

{
0 if 0 ≤ a < n − 1 ,

1 if a = n − 1 .
2.6
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Proof
The Lagrange interpolation formula gives that for a polynomial P (x) of degree < n we

have

P (x) =
n∑

i=1

P (xi)

∏n
j=1

j �=i

(x − xj)

∏n
j=1

j �=i

(xi − xj)
. 2.7

Dividing by the product
∏n

j=1(x − xj) this may be rewritten as

P (x)∏n
j=1(x − xj)

=
n∑

i=1

P (xi)∏n
j=1

j �=i

(xi − xj)
1

x − xi
. 2.8

Setting P (x) = xa (for a ≤ n − 1) and replacing x by 1/t gives

tn−1−a∏n
j=1(1 − t xj)

=
n∑

i=1

xa
i∏n

j=1

j �=i

(xi − xj)
1

1 − t xi
.

This given setting t = 0 we obtain 2.6 precisely as asserted.

The analytic proof that
〈
xα , φβ

〉
= 0 when |α| + |β| �=

(
n
2

)
is based on the same idea

that yielded part (a) and (b) of Theorem 1.1. So we shall not repeat ourselves here. This
given we shall prove 2.3 under the assumption that

|α| + |β| =
(

n

2

)
. 2.9

To begin note that we may also compute the scalar product defined in 2.1 according to the
formula 〈

f , g
〉

=
∑

α∈Sn

α
( f(x) g(x)∏

n≥ i >j≥1(xi − xj)
)

2.10

Now for f(x) = xα and g(x) = φβ(x) we may use the decomposition of Sn into left cosets of
Sn−1 and write their scalar product in the form

〈
xα , φβ(x)

〉
= (−1)|β|

n∑
i=1

(i, n)
(

xαn
n eβn(Xn−1)

(xn − x1)(xn − x2) · · · (xn − xn−1)

∑
α∈Sn−1

α
(xα1

1 · · ·xαn−1
n−1 eβ2(X1) · · · eβn−1(Xn−2)∏

n−1≥ i >j≥1(xi − xj)

))

Thus if we inductively assume that 2.3 has been proved for n − 1 variables, then the inner
summand will not vanish only when

βi + αi = i − 1 for i = 1, 2, . . . , n − 1 . 2.11

But then the assumption in 2.9 gives that we must also have

αn + βn = n − 1 2.12
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That proves the second case of 2.3. But when 2.11 and 2.12 hold true, the inductive hypoth-
esis gives that

〈
xα , φβ(x)

〉
= (−1)βn

n∑
i=1

(i, n)
(

xαn
n eβn(Xn−1)

(xn − x1)(xn − x2) · · · (xn − xn−1)

)

= (−1)βn

n∑
i=1

xαn
i eβn(Xn − xi)∏n

j=1

j �=i

(xi − xj)
.

2.13

Using the addition formula

eβn
(Xn − xi) =

βn∑
r=0

(−xi)r eβn−r(Xn)

the identity in 2.13 yields

〈
xα , φβ(x)

〉
= (−1)βn

βn∑
r=0

(−1)r eβn−r(Xn)
n∑

i=1

xαn+r
i∏n

j=1

j �=i

(xi − xj)
. 2.14

We can now use Proposition 2.1 together with 2.12 to derive that the inner sum vanishes for
r < βn reducing 2.14 to

〈
xα , φβ(x)

〉
= (−1)βn(−1)βn

n∑
i=1

xαn+βn

i∏n
j=1

j �=i

(xi − xj)
=

n∑
i=1

xn−1
i∏n

j=1

j �=i

(xi − xj)
= 1

proving the first case of 2.3 and completing the induction argument. We must still show
that the induction can be started. We can do this by showing that 2.3 is true for n = 2. In
this case we have only two subtriangular vectors, namely

(0, 0) and (0, 1)

So the two possibilities for xα are
1 and x2 .

On the other hand 2.2 gives
φ0,0 = 1 and φ0,1 = −x1

Using 2.10 we see that 〈
1 , 1

〉
=

〈
x2 , φ0,1

〉
= 0

and 〈
x2 , 1

〉
=

x2 − x1

x2 − x1
= 1 and

〈
1 , φ0,1

〉
= −x1 − x2

x2 − x1
= 1 .

Thus 2.3 holds true in this case and our argument is complete.
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3. Expansions in Q[x1,x2, . . . ,xn]
Let Pn denote the module of polynomials in x1, x2, . . . , xn with integer coefficients and

Λn denote the submodule of symmetric polynomials in Pn. In symbols

Pn = N[x1, x2, . . . , xn]

Λn = N[x1, x2, . . . , xn]Sn

From the fundamental Theorem of the Theory of Symmetric Functions we derive that every
polynomial P ∈ Λn has a unique expansion of the form

P =
∑
p≥0

cp ep1
1 [Xn]ep2

2 [Xn] · · · epn
n [Xn]

with coefficients cp ∈ N. Theorem 2.1 allows us to extend this result to Pn in a rather
remarkable way. To be precise we shall show here as a first application of our pebbles’
magics that

Theorem 3.1
Every polynomial P ∈ Pn has a unique expansion of the form

P =
∑
α≤δ

∑
p≥0

cα,p xα ep1
1 [Xn]ep2

2 [Xn] · · · epn
n [Xn] (with cα,p ∈ N) 3.1

where α ≤ δ means that 0 ≤ αi ≤ i − 1 for i = 1, 2, . . . , n and p ≥ 0 means that pi ≥ 0 for
i = 1, 2, . . . , n . In other words we may write

P =
∑
α≤δ

Aα[Xn]xα 3.2

with the coefficients Aα[Xn] uniquely determined elements of Λn. In fact they may be simply
computed from the formula

Aα[Xn] =
〈
P , φδ−α

〉
3.3

Proof
The existence and uniqueness of the expansion in 3.1 for every P ∈ Q[x1, x2, . . . , xn] is

equivalent to the statement that the collection of polynomials

Cn =
{

xαep1
1 [Xn]ep2

2 [Xn] · · · epn
n [Xn] : α ≤ δ & p ≥ 0

}
3.4

is a basis for Q[x1, x2, . . . , xn]. However, to show that it is a basis we need only show indepen-
dence. Indeed, it is easily seen that

∑
P∈Cn

qdegree(P ) =
∏n

i=1(1 + q + · · · + qi−1)
(1 − q)(1 − q2) · · · (1 − qn)

=
1

(1 − q)n
. 3.5
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This means that the number of elements of Cn of any given degree is the same as the number
of monomials in x1, x2, . . . , xn of that same degree. This may also be rewritten as

∑
P∈Cn

qdegree(P ) =
∑
d≥0

qd dimHd

(
Q[x1, x2, . . . , xn]

)
. 3.5

where Hd

(
Q[x1, x2, . . . , xn]

)
denotes the subspace of homogeneous elements of degree d in

Q[x1, x2, . . . , xn]. So Cn has the correct number of elements in each subspace Hd

(
Q[x1, x2, . . . , xn]

)
,

which means that if they are independent they must also span the subspace. This given,
assume if possible that we have a collection of symmetric polynomials {Aα[Xn]}α≤δ such that

0 =
∑
α≤δ

xαAα[Xn] . 3.6

Now from the formula in 2.10 it immediately follows that if A is symmetric then

〈
Af , g

〉
=

〈
f , Ag

〉
= A

〈
f , g

〉
.

Thus taking the scalar product of 3.6 by φβ and using formula 2.3 we derive that

0 =
∑
α≤δ

Aα

〈
xα , φβ

〉
= Aδ−β ( for all β ≤ δ )

This proves independence. So the expansions in 3.1 do exist and are unique for every
P ∈ Q[x1, x2, . . . , xn].

Formula 3.3 is proved in exactly the same way. Indeed if

P =
∑
α≤δ

Aα[Xn]xα

then taking the scalar product by φβ gives

〈
P , φβ

〉
=

∑
α≤δ

Aα

〈
xα , φβ

〉
= Aδ−β .

Finally note that, given 2.3, the definitions in 2.1 and 2.2 immediately imply that if P ∈ Pn

then
〈
P , φβ

〉
∈ Λn. This completes our proof.
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Remark 3.1
We should mention that a similar result may also be obtained for the collection

{φδ−α}α≤δ. In fact, from 3.2 and 3.3 with P = φδ−β we derive that

φδ−β =
∑
α≤δ

〈
φδ−β , φδ−α

〉
xα .

Taking the scalar product of both sides by xγ gives

〈
xγ , φδ−β

〉
=

∑
α≤δ

〈
φδ−β , φδ−α

〉 〈
xγ , xα

〉
.

Since both matrices ‖
〈
φδ−β , φδ−α

〉
‖ and ‖

〈
xγ , xα

〉
‖ have entries in Λn from formula 2.3 we

derive that their determinants must be ±1. This implies that they both have inverses with
entries in Λn. In particular we must have the expansions

xα =
∑
β≤δ

φδ−β uβ,α[Xn]

with uβ,α[Xn] ∈ Λn. Using this in 3.2 we derive that every polynomial P ∈ Pn may be expanded
in the form

P =
∑
β≤δ

φδ−β Bβ [Xn] 3.7

with Bβ [Xn] ∈ Λn. This given, the equations in 2.3 yield that

Bβ [Xn] =
〈
P , xβ

〉
. 3.8

This shows that also the expansion in 3.7 is unique.

Remark 3.2
In contemporary jargon Theorem 3.1 proves that Pn is a free Λn-module of rank n! with

basis {xα : α ≤ δ }. The beauty of the pebble’s magic is that it yields a purely combinatorial
way of proving an explicit formula for coefficients in the resulting expansions.

Let us recall that two bases {ai}n
i=1 and {βi}n

i=1 are said to be “dual” with respect
to a given scalar product “( , )” if ‖(ai , bj)‖n

i,j=1 is the identity matrix. For such pairs the
expression

n∑
i=1

ai ⊗ bi

is usually called the “Reproducing Kernel”. Theorem 2.1 essentially states that the bases
{xα}α≤δ and {φδ−α}α≤δ are dual with respect to the scalar product “

〈
,

〉
”. Thus a reproducing

kernel for our scalar product is given by the expression

∆n(x, y) =
∑
α≤δ

xαφδ−α(y) . 3.9
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We are thus led to the following beautiful identities.

Theorem 3.2
∆(x, y) =

∏
n≥i>j≥1

(xi − yj) . 3.10

Moreover for every polynomial P ∈ Pn we have

P (x) =
〈
P (y) , ∆(x, y)

〉
y

∣∣∣
yi→xi

3.11

as well as
P (y) =

〈
P (x) , ∆(x, y)

〉
x

∣∣∣
xi→yi

3.12

where “
〈

,
〉

y
” and “

〈
,

〉
x
” represent taking the scalar product with respect to the y and

x-variables respectively.
Proof

Note that

∏
n≥i>j≥1

(xi − yj) =
n∏

i=2

(xi − y1)(xi − y2) · · · (xi − yi−1)

=
n∏

i=2

( i−1∑
αi=0

xαi
i (−1)i−1−αiei−1−αi

[Yi−1]
)

.

(by 2.2) =
∑
α≤δ

xα φδ−α(y)

This proves 3.10.
Next we note that combining 3.2 and 3.3 we derive that every P ∈ Pn has an expansion

of the form
P (x) =

∑
α≤δ

aα(x)
〈
P (y) , φδ−α(y)

〉
y

∣∣∣
yi→xi

and from 3.9 we derive that this is just another way of writing 3.11. Similarly combining 3.7
and 3.8 we derive the expansion

P (y) =
∑
β≤δ

φδ−β(y)
〈
P (x) , xβ〉x

∣∣∣
xi→yi

and this is another way of writing 3.12.

Remark 3.3
It develops that, for a given index set Ξn of cardinalty n! we may have a pair of bases

{aα(x)}α∈Ξn and {bα(x)}α∈Ξn ,

dual with respect to the scalar product “
〈

,
〉
” for which the corresponding reproducing kernel∑

α∈Ξn

aα[x1, x2, . . . , xn] bα[y1, y2, . . . , yn]
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does not evaluate to ∆n(x, y). This is in stark contrast with what happens for standard
scalar products, where the reproducing kernel is unique. The basic reason for this is that our
scalar product may take “non scalar” values. This circumstance invalidates the customary
uniqueness proof. An example in point is obtained when we take Ξn = Sn and for α ∈ Sn we
let aα(x) be the so called “descent monomial”:

mα(x) =
∏

αi>αi+1

xα1xα2 · · ·xαi

In fact, it was shown in [1] that for every P ∈ Q[x1, x2, . . . , xn] we have a unique expansion of
the form

P (x) =
∑

α∈Sn

Aα(x) mα(x)

with the coefficients Aα(x)in Λn. Thus also {mα(x)}α∈Sn is a Λn-module basis for Pn. It can
be shown that the Gramm matrix of {mα(x)}α∈Sn with respect to “

〈
,

〉
” is uni-triangular

under suitable total orders of Sn and thus may be inverted to yield a polynomial dual basis
{dα(x)}α∈Sn . However, note that for n = 3 we obtain

m123(x) = 1 , m132(x) = x1x3 , m213(x) = x2 , m231(x) = x2x3 , m312(x) = x3 , m321(x) = x2
3x2 ,

and it is easily seen that there are no choices of {dα}α∈S3 giving∑
α∈S3

mα(x) dα(y) = (x2 − y1)(x3 − y1)(x3 − y2) .

We must mention that this particular observation is due to F. Bergeron and C. Reutenauer.
(†). It should be of interest to find an explicit formula for the reproducing kernel of the
descent basis and its dual.

The above example notwithstanding, we can nevertheless obtain a uniqueness result
even for the scalar product “

〈
,

〉
”. To be precise we have

Theorem 3.3
Let Ξn be an index set of cardinalty n! and let

{aα(x)}α∈Ξn
, {bα(x)}α∈Ξn

3.13

be two collections of polynomials in Pn satisfying for α, β ∈ Ξn the duality condition

〈
aα , bβ

〉
=

{
1 if α = β
0 if α �= β

3.14

Moreover assume that for some integers {cε,α}ε≤δ ,α∈Ξn we have the expansions

aα(x) =
∑
ε≤δ

xεcε,α (∀α ∈ Ξn ) 3.15

(†) Personal communication
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then the collections in 3.13 are both Λn-module bases for Pn and

∑
α∈Ξn

aα[x1, x2, . . . , xn]bα[y1, y2, . . . , yn] =
∏

n≥i>j≥1

(xi − yj) . 3.16

Proof
Taking the scalar product of 3.15 with bβ(x) gives

〈
aα , bβ

〉
=

∑
ε≤δ

〈
xε , bβ

〉
cε,α .

Thus 3.14 implies that the matrix ‖cε,α‖ε �=δ,α∈Ξn
has determinant ±1, and is therefore invertible

over the integers. Denoting by dε,α the entries of its inverse we obtain the expansions

xε =
∑

α∈Ξn

aα(x) dε,α (∀ ε ≤ δ ) . 3.17

Using this in 3.9 we obtain

∆n(x, y) =
∑
ε≤δ

( ∑
α∈Ξn

aα(x) dε,α

)
φδ−ε(y)

=
∑

α∈Ξn

aα(x)
( ∑

ε≤δ

dε,αφδ−ε(y)
) 3.18

Taking the
〈

,
〉

x
scalar product of both sides by bβ(y), using 3.12 on the left hand side and

3.14 on the right hand side we obtain that

bβ(y) =
∑
ε≤δ

dε,αφδ−ε(y)

Substituting this back into 3.18 and using 3.10 gives 3.16. But now 3.16 allows us to we
rewrite 3.11 and 3.12 respectively in the form

P (x) =
∑
α≤δ

aα(x)
〈
P (y) , bα(y)

〉
y

∣∣∣
yi→xi

and P (x) =
∑
β≤δ

bβ(y)
〈
P (x) , aβ(x)

〉
x

∣∣∣
xi→yi

This shows that {aα(x)}α∈Ξn
and {bα(x)}α∈Ξn

are Λn-bases for Pn because the unicity in these
expansions follows immediately from the identities in 3.14.

Lascoux-Schützenberger in [2] (see also [3]) introduced the scalar product
〈

,
〉

as
a natural ingredient in the study of “Schubert Polynomials”. In fact, they proved that
these polynomials are essentially the self dual basis for this scalar product. What we have
established in these note allows us to derive their result with very little more effort. It is
therefore worthwhile that this further consequence of pebble magics should also be included.
To this end we need to recall some definitions. The basic ingredients in this context are the
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“divided difference” operators δi of Lascoux-Schützenberger. These are defined by setting
for every polynomial P = P (x1, x2, . . . , xn)

δiP =
1

xi − xi+1
(P − siP ) (for i = 1, 2, . . . n − 1) 3.19

where si denotes the simple transposition

si = (i, i + 1) .

We recall that (i, i+1) acts on a polynomial in x1, x2, . . . , xn by interchanging xi and xi+1. Note
that for any monomial xp = xp1

1 xp2
2 · · ·xpn

n we have

δix
p = xp1

1 xp2
2 · · ·xpi−1

i−1 (
xpi

i − xpi

i+1

xi − xi+1
)xpi+2

i+2 · · ·xpn
n

=
pi−1∑
j=0

xp1
1 xp2

2 · · ·xpi−1
i−1 xpi−1−j

i xj
i+1x

pi+2
i+2 · · ·xpn

n

3.20

We see from this identity that δi sends any polynomial into a polynomial that is symmetric
in xi, xi+1. Moreover if P is symmetric in xi, xi+1, then P − siP = 0 and 3.19 then gives δiP = 0.
In particular we deduce that

δ2
i = 0 3.21

Note that δi has a Leibnitz formula. Indeed note that the definition in 3.16 gives

δiPQ =
(P − siP )Q
xi − xi+1

+ (siP )
(Q − siQ)
xi − xi+1

.

Since siδiQ = δiQ, this may be rewritten as

δiPQ = (δiP )Q + si(PδiQ) , 3.22

Another important identity satisfied by the difference operators δi is the “Coxeter relation”

δi δi+1δi = δi+1δi δi+1 . 3.23

We recall that a factorization of a permutation σ into a product of simple reflections

σ = si1si2 · · · sik
3.24

is called “reduced” if the number of factors is as small as possible. In other words 3.24 is
reduced if and only if k is equal to the number of inversions of σ. The latter is usually called
the “‘length” of σ and is denoted l(σ).

We may now define a difference operator “δσ” by setting

δσ = δi1δi2 · · · δik
. 3.25
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In fact it follows from 3.23 that the expression on the right hand side of 3.25 depends only
on σ and not on the particular factorization that is used, as long as it is reduced. We should
point out that it follows from 3.21 that the product on the right hand side of 3.25 will vanish
if 3.24 is not reduced.

It will be convenient to denote by σ(n) the top permutation of Sn. That is

σ(n) =
[

1 2 3 · · · n − 1 n
n n − 1 n − 2 · · · 2 1

]

This given, the “Schubert polynomial” SHσ(x) is simply defined by setting

SHσ(x) = SHσ(x1, x2, . . . , xn) = δσ−1σ(n)xn−1
1 xn−2

2 · · ·xn−1 3.26

It follows from this definition (together with 3.21 and 3.26) that we have

δαSHβ(x) =

{SHβα−1(x) if l(βα−1) = l(β) − l(α) ,

0 otherwise .
3.27

The relation between the Schubert polynomials and the scalar product
〈

,
〉

stems from the
following two important properties

Proposition 3.1
For any two polynomials P, Q we have

a)
〈
si P , Q

〉
= −

〈
P, siQ

〉
.

b)
〈
δiP , Q

〉
=

〈
P , δiQ

〉
,

3.28

Proof
From 2.10 it follows that the scalar product may also be defined by setting

〈
P , Q

〉
=

1∏
n≥ i >j≥1(xi − xj)

An PQ , 3.29

where for a polynomial P we set

An P =
∑

α∈Sn

sign(σ)σ P .

It is easily seen that for any i = 1, . . . n − 1 we have

An = −Ansi .

Thus
An(siP )Q = −An PsiQ .

Dividing by
∏

n≥ i >j≥1(xi − xj) gives 3.28 a).
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To prove 3.28 b) note that if P is symmetric in xi, xi+1 then AnP = An siP = −AnP ,
and this forces AnP = 0. In particular we must also have

Anδi(PQ) = 0 .

But now from 3.22 we get

0 = Anδi(PQ) = An(δiP )Q + An si(PδiQ) = An(δiP )Q − An PδiQ

dividing by
∏

n≥ i >j≥1(xi − xj) and using 3.29 gives 3.28 b). This completes our proof.

An immediate consequence of this proposition is the following beatiful result of
Lascoux-Schützenberger:

Theorem 3.4
For α, β ∈ Sn we have

〈
σ(n)SHα , SHβσ(n)

〉
=




(−1)(
n
2)sign(α) if α = β

0 otherwise

3.30

Proof
Recalling that we have set δ = (0, 1, 2, . . . , n − 1) , we may simply write

xn−1
1 xn−2

2 · · ·xn−1 = σ(n)xδ .

This given, we have

〈
σ(n)SHα , SHβσ(n)

〉
=

〈
σ(n)δα−1σ(n)σ(n)xδ , SHβσ(n)

〉
3.31

Now it is easily verified that we have the relation

σ(n)δi σ(n) = −δn−i

and this implies that
σ(n)δσ σ(n) = sign(σ)δσ(n)σ σ(n)

Taking account that sign
(
α−1σ(n)

)
= (−1)(

n
2)sign(α) we derive that

σ(n)δα−1σ(n)σ(n) = (−1)(
n
2)sign(α) δσ(n)α−1 .

Substituting this in 3.31 gives, using 3.28 b)

〈
σ(n)SHα , SHβσ(n)

〉
= (−1)(

n
2)sign(α)

〈
δσ(n)α−1 xδ , SHβσ(n)

〉
= (−1)(

n
2)sign(α)

〈
xδ , δα σ(n) SHβσ(n)

〉 3.32
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But now, 3.27 gives

δα σ(n) SHβσ(n) =

{SHβα−1 if l(βα−1) = l(β σ(n)) − l(α σ(n)),

0 otherwise.

Since l(α σ(n)) =
(
n
2

)
− l(α) and l(β σ(n)) =

(
n
2

)
− l(β), 3.32 reduces to

〈
σ(n)SHα , SHβσ(n)

〉
= sign(α)




(−1)(
n
2)

〈
xδ , SHβα−1

〉
if l(βα−1) = l(α) − l(β),

0 otherwise.

3.33

Finally note that from 3.20 and the definition in 3.26 it follows that the polynomial SHβα−1

is necessarily of the form
SHβα−1 =

∑
p≤σ(n)δ

cpx
p 3.34

where the symbol “p ≤ σ(n)δ” is to express that the sum is over exponent vectors p =
(p1, p2, . . . , pn) with

p1 ≤ n − 1 , p2 ≤ n − 2, . . . , pn−1 ≤ 1 , pn = 0 . 3.35

Taking this into account we get, using 3.29

〈
xδ , SHβα−1

〉
=

1∏
n≥ i >j≥1(xi − xj)

∑
p≤σ(n)δ

cp Anxδ+p .

Now the term Anxδ+p necesserily vanishes unless the components of δ + p are all distinct. On
the other hand, the inequalities in 3.35 yield that all the compents of δ + p are necessarly
≤ n − 1, thus if they are distinct they can only be a rearrangement of the components of
δ. But that is only possible when p = 0, forcing SHβα−1 to be constant. Since the degree of
SHβα−1 , in 3.33, is necessarily l(α)− l(β) this can only happen when β = α. So, in view of 3.33
to prove 3.30 we are left to show that

〈
xδ , SHid

〉
= 1

Since it is easily seen from 3.29 that

〈
xδ , 1

〉
= 1

we are reduced to verify that
SHid = 1 . 3.36

This is easily shown by induction on n. Indeed, by definition we have

SHid = δσ(n)xn−1
1 xn−2

2 · · ·xn−1

and since we may write
δσ(n) = δ1δ2 · · · δn−1δσ(n−1)
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we have, using the inductive hypothesis

δσ(n)xn−1
1 xn−2

2 · · ·xn−1 = δ1δ2 · · · δn−1δσ(n−1)xn−1
1 xn−2

2 · · ·xn−1

= δ1δ2 · · · δn−1x1x2 · · ·xn−1 δσ(n−1)xn−2
1 xn−3

2 · · ·xn−2

= δ1δ2 · · · δn−1x1x2 · · ·xn−1

= 1

This proves 3.35 and completes our proof.

We are finally in a position to state and prove the following remarkable identity.

Theorem 3.5 ∑
α∈Sn

SHα(x)SHασ(n)(y) =
∏

2≤i+j≤n

(xi + yj) 3.36

Proof
It follows from 3.30 that the collections

{
(−1)(

n
2)σ(n)SHα

}
σ∈Sn

and
{
sign(α)SHασ(n)

}
σ∈Sn

are dual with respect to the scalar product
〈

,
〉
. From 3.34 and 3.35 we derive that the

polynomial σ(n)SHα(x) has an expansion of the forrm

σ(n)SHα(x) =
∑
ε≤δ

cε xε

Thus we may apply Theorem 3.3 and obtain the identity

∑
α∈Sn

(−1)(
n
2)σ(n)SHα(x) sign(α)SHασ(n)(y) =

∏
n≥i>j≥1

(xi − yj) 3.37

Since the definition in 3.26 yields that the polynomial SHασ(n) is homogeneous of degree
l(ασ(n)) = l(

(
n
2

)
−α) we see that making the replacements yi→− yi and xi→xn+1−i changes 3.37

into 3.36 completing the proof of the Theorem.
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