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Abstract

These notes cover the contents of a series of lectures in a Topics in
Algebraic Combinatorics course given at UCSD in Winter 2001. The initial
effort was prompted by a desire to understand the connections between the
theory of reduced decompositions started by the pioneering paper [| of R.
Stanley and the theory of balanced tabloids studied by C. Green et al. [] ]
However soon it appeared quite clear that a deeper understanding of the sub-
ject requires a parallel understanding of the Lascoux-Schiitzenberger theory of
Schubert polynomials. These notes should offer a glimpse of the fascinating
combinatorial connections between these theories. The presentation is gener-
ally self contained. The notes culminate with what should be a fairly lucid and
illuminating proof of the Schur positivity of the Stanley symmetric functions.
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Introduction

In 1982 R. Stanley initiated the study of reduced decompositions of elements of S,,.
Central to his work was a the introduction of a family of symmetric functions indexed by
permutations. He conjectured these functions to be Schur positive and proved a number of
their interesting properties including the enumeration of certain classes of reduced decom-
positions. Over the years that followed several works have appeared with different proofs
of the Stanley conjecture by various methods which range from the purely combinatorial
to the purely algebraic. Circa 1982 in a completely independent development Lascoux and
Schiitzenberger founded the Theory of Schubert polynomials. Central to their study were
some combinatorial consequences of a Pieri-like result for Schubert polynomials which they
called “Monk’s rule”. This led to the definition of a tree associated to every permutation
o € S,. Unbeknown to them at the time and to many even at the present time, the LS tree of
a permutation is, in a sense that can be made precise, a purely combinatorial version of the
Stanley symmetric function. Using this tree and several combinatorial properties of reduced
decompositions, the Schur positivity of the Stanley symmetric function follows in a remark-
ably illuminating manner. In these notes we present the contents of a series of lectures in
a Topics in Algebraic Combinatorics Course given at UCSD in Winter 2001. The material
by no means covers all the aspects of the fascinating subject of reduced decompositions that
have been developed over the last two decades. The choice of topics, limited by the time
available, follows the taste of the author and what appeared to be a natural path through a
luscious forest of remarkable combinatorial discoveries. We strived throughout to make our
presentation as self-contained as possible. Some of the later proofs that appeared in the lit-
erature after the original papers are so elegant and simple that we were forced to reproduced
them here almost verbatim. We claim no credit here for any of the results presented. This
in only an expository work. Our main effort has been concentrated into providing a novel
and illuminating way to develop the material. Our original stimulus for choosing this topic
came from several exciting exchanges with Kevin Kadel a visitor at UCSD for the academic
year 2000-2001. We also benefitted immensely from some of the insights he provided us in
the study and developments connecting reduced decompositions to balanced tabloids.
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The Saga of Reduced Factorizations
of
Elements of the Symmetric Group

by
A. M. Garsia

1. Reduced Factorizations

1.1 Notation
It is customary to interpret a permutation o € S,, as a bijection of {1,2,...,n} onto itself and we

<1 2 3 ... n)
g = s
g1 02 O3 oo Op

meaning that o; is the image of i under o. In this vein to compute the product # x o we proceed from right
to left and obtain

123...n_123...n><123...n
901 902 (9[,3 9% - 91 (92 93 Gn g1 0O 03 ... Op

Keeping this in mind, it will be convenient and economical with space to omit the first line and simply write

often write it in the form

g = 010203 -0p
viewing o as a word in the letters 1,2,3,...,n. Here and after we let s; (for 1 < i < n — 1) represent the
simple transposition
o (12 o i i+l o
si—(z,z—i-l)—(l 9 i irl i .. n) 1.1.1

Note that multiplication of o on the right by s; results in the interchange of the elements o;,0;41. Thus in
our shorthand we may write

010204103 " 0Op = 0102 0i0i41° " 0Opn X 5 .
Let us recall that the number of inversions of ¢ is given by the sum
inv(sig) = Z x(o; > 0j) .
1<i<j<n
It is clear that right multiplication of ¢ by any simple transposition increases the number of inversions by
oneif o; < 0,41 and decreases itby one if o; > 0;41. Let us recall that an index ¢ such that o; > 0, is called
a “descent” of o and correspondingly
Do) = {1<i<n-—-1:0;>0i41}

is usually referred to as the “descent set” of o. This given, if we want to express an element o as a product
of simple reflections the number of factors required should be at the very least inv(o). For this reason, inv (o)
is often referred to as the “length” and briefly also denoted by I(c). Note that it is always possible (in fact in
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many ways) to express o as a product of /() simple transpositions. To do this we simply start with o = o(°)

and construct a sequence of permutations 35621784
T S (5 SN C) I () IR 35621748 | .

35261748
with o) = (") x s; and where i is only chosen by the requirement that i be 35261478 | °
in the descent set of o™, that is o) > ag_?l . Since this requirement assures that 35216478 ;
I(c D)) = 1(0(") — 1 the sequence will stop after exactly /(o) steps with o((?) = :;g: g:;g 1
123---n, (the identity permutation). In the display on the right we illustrate such 23514678 | °
a sequence for the permutation o = 35621784. Here the labels on the right of the 23154678 | °
dividing line give the indices i for which the correspondind s; was chosen. It should 21354678 i
be apparent from this example that each time we have a variety of choices, (one for 21345678 | |

12345678

each element of the descent set of the current permutation).

Factorizations of a permutation o as a product of /(o) reflections are called “reduced” and the
word in the letters 1,2, ...,n — 1 giving the successive indices of the factors is called the “reduced word ”
corresponding to the factorization. Thus for the factorization above

35621784 = 518545283555152545653S7 1.1.2

the corresponding reduced word is 14235124637

Factorizations into simple reflections whether reduced or not are best studied by means of a line
diagram which exhibits the trajectories of each of the labels 1,2, ..., n as we proceed in our construction of
the target permutation. In the display below we illustrate the diagram corresponding to the factorization

illustrated above.
2 {(2) (2)

() ) ()
3 3) 3

g
)
2/

® ® :

—& Q@ @

oee e 1.1.3

& O—® @

(AD)—()—3)

O—O—® D
O—0—00—0—~00—0 @
O—EmO—C0C0—0Em0—0—0© O—®

A close examination of this display reveals one fundamental property of diagrams corresponding
to reduced factorizations:

for any pair of indices 1 <i < j <n: thei-line and j-line cross at most once.
The reason for this is quite simple: once we interchange ¢ and j, doing it again would decrease the number
of inversions, and we never do that to get a reduced factorization.
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We should mention that there is a systematic way of getting a reduced factorization for any permu-
tation o = 0103 - - - 0y, Starting from the identity permutation, we make first the interchanges that bring o,
to first position, then those that bring o2 to second position, then those that bring o3 to third position and
so on until we reach o. This is best understood by an example. In the next display we have illustrated this
process applied to o = 452163.

O—O—Q@ O—O@O—C0O—0——~0O
O—@ & O—OD. O—06
A & ©® & & O O
T BO—~0 5 O—F@ O 114
6——CE——0 —@—0O@—=C

(A )} )—7)
O—CE—0O—C—"O—C—C0C—C B

We thus obtain the factorization 452163 = s352515453528355. It is easily seen that, in general, the resulting
factorization will be of the form

n—1

o = (saisai,lsai,2-~-si+1si) 1.1.5
1

.
I

with a; > i — 1 (note that a; = ¢ — 1 must be included for the cases when the the corresponding factor
should be taken equal to 1 (i.e. missing). Here and after these factorizations will be called “canonical”’. A
moment’s reflection should reveal that these observations yield the following basic identity

Theorem 1.1.1

n—1
Z o = (1+si+si+1si +si+gsi+1si—|—~~—|—sn,1'~si+gsi+1si) 1.1.6
TESn i=1
Proof
It should be understood that the factors in the right hand side of 1.1.6 are to be taken from left to
right as i goes from 1 to n — 1. This given, interpreting the left hand side as an element of the group algebra
of S, then the identity simply asserts that each ¢ € S, has a factorization of the form given in 1.1.5.

The following basic identities will play a fundamental role in the sequel, they are usually referred
to as the “Coxeter Relations”.

Proposition 1.1.1

1) s%:id V 1<i<n-1,

2) Si Si+1Si = Si+1 Si Si+1 vV 1 < ) <n-— 1 s 1.1.7
3) S; S5 = 8584 Zf ‘Z—j‘ZQ
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Proof
The first and last follow immediately from the definitions of the s;. The middle one just expresses
the fact that the permutation

o (12 i i+l 42 oom
T\ 2 it2 ikl 0 om

has two reduced decompositions. We should also point out that the right hand side of 1.1.7 2) is in fact
the canonical decomposition of 6;. A visual understanding of this relation may also be provided by the
following display

This is but an instance of the more general result which may be stated as follows
Theorem 1.1.2

We may pass from any reduced factorization to any other of a given permutation o
by a sequence of applications of identities 1.1.7 2) & 3). The inclusion of 1.1.7 1) is only
necessary to pass from a non-reduced factorization of o to a reduced one.

Proof
It is sufficient to show that we can pass from any factorization of ¢ to a canonical one. To this end
our first step is to show that we may pass from any factorization which does not contain s1, sz, ...,s;-1 to
one which contains at most one occurrence of s;. We can prove this by descent induction on i. Clearly the
assertion is trivial for s = n — 1. So let us assume that it is true for i + 1,7 +2,...,n — 1 and let W be a
factorization which contains no occurrences of s, s2, ..., 8;_1- Suppose W contains two occurrences of s;
and let us write it in the form
W = Wis;Wos; W3 1.1.8

with no occurrences of s1, s, . . ., s; in Wa. So by induction we change W to a expression W3 which contains
no occurrences of s;, 1 or one of the form

!/
W2 = W21 Si+1W22

with Wa; and Wa, not containing any occurrences of s1, s, . .., s;11. In the first case, by successive uses of
the Coxeter relations we can carry out the three transitions

W:W1$iW25iW3 — W]SiWQISZ‘W3 i WlsiSiWéWP, — W1W2/W3 .

In fact, the second transition only needs successive uses of 1.1.7 3). Clearly, this case only occurs when W is
not reduced.
In the other case, using the Coxeter relations we first carry out the transition

W = Wis;Was;W3 — Wi s; Way si41 Waos; W .
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Since W5, and Wy, have only occurrences of s; with j > i + 1, by successive uses of 1.1.7 3) we can then
carry out the transition

Wi si Wor sip1 Waz s; W — Wi War s; 8541 8 Waa W3
and finally a use of 1.1.7 2) completes the sequence
W =WisiWasiWs — Wisi Wai i1 Waosi Wy —

— WiWaisisip1 s Waa W3 — Wi War sita1 8, 8i41 Waa W3
reducing by one the number of occurrence of s; in W. Proceeding in this manner we can arrive at a point
where either there is only one s; left or none at all. This completes our induction. This given, starting from
any factorization W, by means of the Coxeter relations we can eliminate altogether all the occurrences of s;

or carry out the transition
w — Wl S1 W2

with W, and W5 containing no occurrences of s;. By a further sequence of steps we can carry out one of the
two transitions

W1 S1 Wg —_— W11 S9 W12 S1 W2 or W1 S1 W2 I Wll S1 W2

with no occurrences of s; or sp in Wiy or Wi. In each case successive uses of 1.1.7 3) will complete the
succession of transitions

W — Wisi Wy — WiisoWiasi Wao — Wigsas1 WiaWa

or
W — W151W2 — W{$1W2 — 81W1/W2 .

Since there are no other occurrences of s; in either case and no ocurrences of s; or sy in Wy, in the first
case, we see that the pattern typical of a canonical factorization is beginning to emerge. Indeed the next
step is to work on Wy; and obtain one of the transitions W11 — Wi11 s3Wi12 or Wiy — s3Wip2 withno
occurrennces of 51, s9, 53 in Wi12. This gives the transitions

W — W11 S2 81 W12W2 I W11183W1128281W12W2 — W111W112838281 W12W2

or
W — W115281W12W2 — 53W1128251W12W2 — 835251W112W12W2.

We need not say any more here. The reader should have no difficulty understanding how this process
can be continued to yield in the end a canonical decomposition of the permutation o corresponding to the
factorization W. To clear up any remaining uncertainties it may be appropriate to carry out the all the steps
necessary in a particular instance. A good case in point is the factorization in 1.1.2. In the display below
the labels on the right of the vertical line indicate which of the Coxeter relations are used in that particular
transition the boxes appear as soon as one of the descent strings typical of canonical factorizations is formed.

NN
—_ == A
[Alwowwowow
Pl ww wwww
N WNWWN

i
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The main goal of these notes is to present some of the main results obtained in the description and
enumeration of all reduced decompositions of any given permutation. Nevertheless, we should note at this
point that, at least for small n, these reduced words can be constructed by computer in a relatively simple
manner. This construction is based on the following identity.

Theorem 1.1.3
If for a given o € S,,, we denote by “RED(c)” the collection of all words corresponding
to reduced factorizations of o then

Yoow o= Y > Wi 1.1.9

wERED (o) i€D(o) w ERED(0s;)

Proof

It might be good to start by explaining the notation used in 1.1.9. To begin with the left hand side
should be interpreted as the formal sum of all the elements of R(c). Thus to prove 1.1.9 we only have to
show that each summand occurring in the left hand side occurs once and only once on the right hand side.
Finally, we should note that the symbol “w’i” simply means the word obtained by appending the letter ¢
to the word w’. Now note that if W = W’s; is a reduced factorization of o then we must necessarily have
o; > 0,41 and W’ will necessarily be a reduced factorization of o’ = o's; . Thisisbecause W' is a factorization
of ¢’ and the number of its factors is I(c) — 1 = I(¢”). Now if w is the word corresponding to W and w’ is
the word corresponding to W’ we have w = w’i. This given we see that all w € RED(o0) do occur in the
right hand side and they occur only once for the simple reason that each sum 3~ /c ppp(,s,) w'é consists

"y
7

of distinct words and different values of yield different sums of words.

It will be instructive at this point to show how this identity can be translated into a MAPLE program.
However, before implementing 1.1 we need a three auxiliary procedures “sigact”, “preds”, “cocat”. The
first has 2 input variables, an index ¢ and a permutation o . Then sigact returns the permutation ¢’ = os;.
The procedure preds takes a permutation o as input and returns all the “predecessors” of o, that is the
collection

PRED(o) = {0’ : o'=0s; & 0> 0441} 1.1.10

Finally, cocat takes two input variables, an index s and a list of words L. Its output is the list of all words
obtained by appending the index s to each word of L. These three procedures are given below

preds:=proc(sig)

local n,out,i;
N o n:=nops(sig); cocat:=proc(s,L
sigact:=proc(i,sig) out:=NULL; tooal cur iy
Ioc_al j,out,. L for i from 1 to n-1 do out:=NULL;
°Ut-=£%‘*[?1$59J;${E1é;;()s’igm if sig[i]>sig[i+1] then for win L do
LRy == ’ out:=out,[i,sigact(i,sig)]; = .
j=i+2..nops(sig))]; fi: [i.sigact(i.sig)] OU(t)d .OUL[OP(W),S],
end: Od; out;’
[out]; end:

end
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This given, the following procedure with input a permutation o returns all the words corresponding to
reduced factorizations of o. It can be easily checked that it simply expresses in MAPLE almost verbatim the

identity in 1.1.10.
REDS:=proc(sig)
local prevs,out,i,s,m,tau,te,med;
prevs:=preds(sig);
if prevs=[] then
out:=[[]];
else
te:=NULL;
m:=nops(prevs);
for i from 1 to m do
s:=prevsli][1];
tau:=prevsl[i][2];
med:=cocat(s,REDS(tau));
te:=te,med;

Now a call of REDS([4, 3, 2,1]) yielded 16 reduced words as listed below.

123121 213231 312132 213213
121321 123212 132132 232123
212321 312312 321232 323123
231231 132312 231213 321323

1.1.11

We need to introduce a combinatorial structure which will play a crucial role in our further developments.
Given a permutation ¢ = 010303 - - - 0, We associate to it an n x n diagram with entries “ ()", “X” or “e”,
as follows. In column j and row o; we place an X. This done, in all the positions west or below this X we
place an “e”. Finally when all the X’s and the e ’s have been placed we fill the remaining positions with
O'’s. The resulting figure will be referred to here and after as the “Circle Diagram” of the permutation o.

The display below gives the circle diagram of the permutation ¢ = 48652371.

Z

X
N/
X

>
\ )\ [ ] [ ] [ ]
rPY
AN A A o X[ ]
X [ ] [ ] [ ] [ ] [ ] [ ] [ ] 1112
VN 1.
[ ] \)\)X [ ] [ ] [ ] [ ]

<
\ ) [ ] [ ] [ ] X [ ]

.f\x [ ] [ ] [ ] [ ] [ ]

o N o o A~ W DN
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Remark 1.2.1

We should note that each of the circles correspond to an inversion of o. Indeed, from our construction
of circle diagrams we will have a “()” in position (i, j) if and only if the “X” in column j occurs below (i, 5)
and the “X” in row i occurs to the right of (4, j). This is equivalent to saying that o; > i and j' = o; ' > j,
Thus this “()” corresponds to the inversion o; > 0.

1.2 The matrix approach
Note that the rearrangement

X = (x17-'1/'2,$3,$4,x5,x671‘7,$8) XI = (./L'47x8,x6,$5,1'2,1'371'7,331)

may simply be obtained by matrix multiplication. In fact, if we must have X’ = XM (interpreting X and
X' as row vectors), then we are forced to take

1.2.1

SO OO~ O OO
— OO OO o oo
[=Nel o NoeNeNo Nl
SO O OO OO
S oo oo o+ OoO
S oo oo OO
O OO oo
S OO OO OO

We clearly see that the positions of the ones in this matrix corresponds precisely to the positions of the X's
in the circle diagram of 48652371. More generally, the transition

X = (21,%2,%3,...,%n) —> X' = (Toy,Toy, Togs--sTo,)

can obtained be obtained by right multiplication of X by the matrix

M(o) = |x(i=a))l|;;_,
We usually refer to M (o) as the “permutation matrix” corresponding to o. Note then that the permutation
matrix corresponding to the simple transposition s; = (i,7 + 1) of S,, may be schematically depicted as the
n X n matrix i

M(S,‘) _ 10

In other words, M(s;) has entries equal to one in positions (i, + 1), (¢ + 1,i) and (j,7) forj =1,...,i —1
and j =i+ 1,...,n, and all the remaining entries equal to zero.
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This enables us to view the line diagrams in 1.1.3 and 1.1.4 in a completely different light Indeed,
note that we may write the i, j-entry of the multiplication of k-+1 matrices A") = ||a(r) 7=, (r=1,...,k+1)
in the form

AN ), = 3SR
i1=112=143=1 =1

This expression has a very useful visualization. We depict a sequence of k + 2 equally spaced columns, with
nodes labelled 1,2,...,n and view the sequence of indices i—iy—iz— - - - —ip—J as a path successively
hitting the labels i, i1, i2, . . . , i, j as indicated below for the case n = 6, k = 4 and the sequence 3,5,2,1,4,2.
We also assign to the edge joining label i of column 7 to label j of column r + 1 the “weight” a; 'J) and,
correspondingly assign to any path a weight equal to the product of the weights of its edges. This given,
we can then interpret the right hand side of 1.2.2 as the sum of the weights of all the paths joining label i of

column 1 to label j of column k + 2.

21, 4)
2 2 2 2 \Bu 2
(5)
(2) 12
3 38,/ 3 3 3 3
(1)
a35
4 4 4 4 4
5 5 5 5 5
6 5 6 6 5 6

We shall here and after briefly refer to these displays as “multiplication diagrams”. Clearly, the sum on
the right hand side of 1.2.2 need only be carried out over the paths of weight # 0. This given, to further
simplify these diagrams, we shall only depict edges i—j of weight a;; # 0. In this manner the multiplication
diagram of M (s1)M (s2)M (s1) reduces to

We can thus visualize the identity

0 1
1 0 1.2.3
0 0
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by computing each of the 9 i, j-entries in the product as a sum of weights of paths. Zero i, j-entries corre-
sponding to the cases when there is no path joining i to j. Of course in this extremely simple case for any
pair 4, j either there is no path or there is only one of weight 1. This accounts for the right hand side of 1.2.3.
Although we may not see it from this example, we will soon appreciate how powerful this imagery can be
in understanding certain matrix identities. At any rate, we can now visualize the displays in 1.1.3 and 1.1.4
as instances of multiplication diagrams. In this manner we can use the display in 1.1.3 to obtain a visual
understanding of the identity

M (s1)M (s4)M (52) M (53)M (85)M (51)M (52)M (54) M (56) M (53) M (s7) =

_o o0 oo oo

oo oo~ OO
S OO OO OO
SO OOO OO
=l eoleoBolNoNeol =
(=l elololoNoNol S
O OO O oo
oo o~ O OO

It develops that Kassel, Lascoux and Reutenauer [] discovered that by adding a single non-zero entry in
each of the matrices M (s;) we can have the resulting product retain full information as to each of its factors
and the order in which they occur. To be precise these aulthors let P;(x) (for a fixed n) be the n x n matrix

P,(X) — 10

This given, it is easy to see that in the 3 x 3 case the product P, (z)P;(y)P;(z) may be represented by the
multiplication diagram

1 xXx-1 —1 —z-1
2 2 —y-2 2
3 —3 3——3
from which we derive that
y+xz x 1
Py (z)P(y)Pi(z) = z 10 1.2.4
1 0 0

Here the y + zz entry accounts for the fact that there are two paths joining 1 to 1. Namely, 1 -1—1—1 and
1—2—2—1 of weights “zz” and “y” respectively.
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Likewise from the diagram

1 —1-¥Y-1 —1
2 —x-2 2—-z-2
3 3——3 3
we derive that
y z 1
Py(z)Pi(y)Pe(2) = z 1 0 1.2.5
1 0 0
At this point it will be useful to note, for future reference, that combining 1.2.5 and 1.2.4 we obtain
Pi(2)Py(y)Pi(2) = Pa(2)Pi(y + 22)Pa(x)
Similarly, in the n x n case, we derive that
Pi(2)Piy1(y)Pi(2) = Pip1(2)Pi(y+ 22)Piy1(x) (fori=1,2,...,n—1) 1.2.6
More generally, for a given reduced word w = ajagas - - - a; Kassel et al. do setin []
P,(z1,22,23,...,21) = Py (21)Pa,(x2)Pag(x3) - Py, (1) . 1.2.7

Our goal here is to fully understand the structure of this matrix. We shall begin by showing that
in some cases its entries can be written down without any calculation. To be precise we have the following
remarkable fact.

Theorem 1.2.1 (Kassell, et al.)

If w is the word of the canonical factorization of a permutation o, then the matrix
Py (1, 29,73, ...,1;) 1S simply obtained from the circle diagram of o by replacing every “X” by
al, every “o” by 0 and the “O’s” by the variables xy,xs,x3,...,x; successively up the columns
starting from the left most column and proceeding to the right.
Proof

It will be good to start with a particular case. For instance, for the canonical factorization of o =
452163, illustrated in 1.1.4, this construction yields

4 5 2 1 58 3
Y
1 )\)x ol o
N
2 )X ofl off o r3 xg x7 1 0 O
3 ¥ ) ole ) Ty Ty 1 0O 0 O
N\ /] N/ T T 0 0 =z 1
4 o|lo|ofof]loe| — P32143235(£L'1,1'2,...,(E8): 11 04 0 0 08 0 1.2.8
5]e X o|eoflof e 0 1 0O 0 0 0
6 TI'. el Xl - 00 0 0 1 0
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To visualize the mechanism that produces this result we resort to the multiplication diagram corre-
sponding to the product that yields Ps2143235(21, 22, . .., 23). Now it is not difficult to see that this diagram
can be simply obtained by adding edges with weights x1, z2, x5, 24, z5, x6, x7, x5 to the display in 1.1.4, as
indicated below

To calculate the 3, 2-entry in Psa143235(%1, 22, . . ., Z,) using this diagram we locate all the paths that join 3
to 2. We see that there is only one such path. This is obtained by following the 3-line until it meets the
edge labled z, then traverse this edge and then follow the 5-line untill the end. This gives that the 3, 2-
entry is 4. Now we should clearly see why the entries in positions (3,1), (2,1) and (1, 1) turn out to be
x1, X2, x5 respectively. This is simply because as we bring 4 to first position by the transpositions ss, s2, 51,
in the product diagram corresponding to Ps(x1)P2(z2) Py (z3) the horizontal edges with weights x1, z2, 23
open up three paths respectively joining 3 to 1, 2 to 1 and 1 to 1. Similarly in the portion of the diagram
corresponding to the factors Py(z4) Ps(z5) P2(z6) the horizontal edges with weights x4, 25, 26 open up three
paths respectively joining 3 to 2, 2 to 2 and 1 to 2. That accounts for z4, x5, z¢ landing in positions (3, 2),
(2,2), (1,2), of the resulting matrix. Similar reasoning accounts for the positions of z7 and zs. To establish
the result in the general case, we have three crucial observations:

First, we note that because in a canonical factorization, we bring the elements 01,02, 03 . .. to their
positions successively one at the time, as we bring o; to the j'" in steps k, k + 1,k + 2,...,k + r the edges
with weights z1, Zx41, Ti42, . . ., Ty, are all above the o;-line. This given, when a path in the multiplication
diagram traverses one of these edges it will then be forced to follow the o;-line to its end and therefore it
will never be able to traverse any other z-weighted edge. This shows that for any pair (i, j) there is no path
joining i to j, or a single path. In the latter case the path starts with the i-line and either it never traverses
one of the z-weighted edges thereby following the i-line all the way to the end (here i = ¢; and the i, j-entry
is “1”) or it traverses an z-weighted edge and then it must continue along the i’ = ¢ '-line all the way to
the end (see figure below)

If the crossing occurs at step k then the weight of the edge is z, and the 4, j-entry will be .
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Second, we note that in the latter case, 0, = i (see figure above) with j' > j and o; = ¢ > i imply
that the 4, j-position is precisely a “()”-position in the circle diagram of o.

Finally, if the weights of horizontal z-labelled edges that touch the o j-line are successively z;, z;+1, . . .
then these weights will necessarily land in the “(O”-positions of the j* column of the resulting matrix. This
completes our proof.

Remark 1.2.2

We have shown above that if the k' transposition in our reduced expression interchanges i with
i’ = 0; then the variable z;, will appear in the i, j-entry of the resulting matrix. If we review the argument we
can easily see that this particular conclusion did not use the fact that there we were dealing with a canonical
factorization. However, in the general case, as we shall see, there will also be other paths joining i to j and
they will contribute further terms to the 4, j-entry of the resulting matrix. Keeping in mind this fact we can
prove the following remarkable property of the matrices P, (z1, z2, ..., x;).

Theorem 1.2.2 (Kassel, et al.)
Let o be a permutation of length | and let J = (z;x; : 1 < i < j <) be the ideal

in the polynomial ring Q[z1,xs,...,2;] generated by the products z;z;. Then for any w €
RED(o) the matrix P,(zi,x,...,7;) modulo J may be obtained from the circle diagram of
o by replacing every “X” by a 1, every “” by 0 and the “0O’s” by a permutation of the
variables xi,xs,x3,...,2;. More precisely, if w = a1, as,...,a; then the “0” in position (i,j) is
to be replaced by zy, if the transposition s,, interchanges i with o;.

Proof

Recall that we can pass from w to the canonical factorization w, of o by a succession of applications
of the relations 2) and 3) of 1.1.7. Now from 1.2.6 we deduce that

Pi(z)Pis1(y)Pi(2) = Pi(2)Pisa(y)Pi(z) (mod J) fori=1,...,1 1.2.9

and we clearly have
P.(e)Py(y) = P(u)Pilx) for|j—i] >2 . 12,10

Thus if we use the same relations that bring us from w to w, to the product
Pu(w1, 32, .., 31) = Pa, (21) Pay (22) Pay (23) - -+ Py (21)
we see that the relations in 1.2.9 and 1.2.10 will yield us an identity of the form
Py(z1,22,...,21) 2 Py, (zo,, Toy,,...,x9,) (mod J)

with 61,605, ...,6;, a permutation of 1,2,...,n. This given, our assertions follow from Theorem 1.2.1 and
Remark 1.2.1.

It will be worthwhile to illustrate this argument by working on a specific example. For this we take
o = 615243 and the word w = 453243251 € RED(o). In the display below we give the sequence of steps

s Lidr
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that transform 453243251 into the canonical factorization 543215435 of o. On the right of the vertical line we
have indicated the transformation we carried out from one step to the next.

R0 R0 RO R R BB BRI | -
R R0 Bixg B0 Rlxg Bxg B BQRM | s 4oe0
LX) R0 B R ROY BRI ROGROG | ) s
I2(X1) Fé,(xz) F3>(X3) F;(X5) %(X7) B(XG) F:;(XA) I?(Xi?) I?%(Xa) 31 >13
RX)R0Q By Rixg Rix) Bixg Fixg Bx)R(xg | 1.2.11
I2()(1) F;,(Xz) IZ(X7) F3)(X5) a(xg F2>(X6) P1(X5) B(X“) F;(XE) 3421 -> 3214
ROIR) RO B0 Blxg ROQROG BRI
RO () RX)R(xg Pixg F(xg Fxy B(x)R(xg 5321 -> 3215
E(X7) a(xz) '3(’@ 'Z(XG) P1(xg) Iz(x1) IZ(XS) lg(X4) If.,(xs)

This shows that modulo the ideal J = (z;z; : 1 <i < j < 9) we have

Pis3243251(%1, T2, T3, T4, Ts, T, T7, Ts, Tg) = Psasarsass (27, T2, Ts, Te, Tg, T1, T3, T4, Ts, ) b1z

Since s58453525155545385 1S the canonical factorization of o = 615243 we can follow the recipe given by
Theorem 1.2.1 and obtain

g 1 0 0 0 O
Te 0 Ty 0 0 0
Py53243251(T1, T2, T3, T4, T5, T6, T7, T3, Tg) = 25 0 w3 O a1 1.2.13
b) b) b b ) b) b) b xQ 0 :L,l 0 1 0 .
zz 0 1 0 0 O
1 0 0 0 0 O

Remark 1.2.3

We should note that the effect of working
in the quotient ring Q[z1, z2, ..., 2;]/J is to kill
all contributions to the matrix Py, (z1,%2,. .., ;)
coming from paths that traverse more than one of
the z-weighted edges. In fact we can easily see
from the adjoining product diagram that the if we
do not kill all monomials of degree 2 the resulting

matrix is
T9 1 0 0 0 O
z6+xazy 0 x4 O 0O O
rs+axzry 0 xz3 0 xg 1
Pys3043051 (21,22, ..., T9) = xz N xix: 0 x? 0 18 h
Ty 0 1 0 0 O
1 0O 0 0 0 O



Topics in Algebraic Combinatorics LECTURE NOTES may 3, 2001 15

Our next goal is to show that we can produce equivalences such as in 1.2.12 by working directly
with the final matrices, rather than by acting on the factors. To state and prove this result we need to make

some definitions and establish some auxiliary propositions. To begin let us denote by PJ (z1, 22, ..., 7))
the matrix we obtain when we compute the entries of P, (x1,22,...,2;) mod J. We shall also refer to
P7(x1,23,...,1;) as the “linear part” of P, (zy,xa,...,x;). For given indices j; < jo < -+ < jx, letus
denote by P [j1, ja, - - - , ji] the k x k submatrix of P (21, z2, . .., z;) contained in columns ji, ja, . . ., jr and
TOWS 0j,,0j,,--.,0;,. Note thatif k = 3 and 0, > 0, > 0}, then the submatrix P [j1, ja, j3] will be of the
form
y z 1
Pl j2ygs) = & 1 0
1 0 O
This given, we shall call a “3-Coxeter transition for k” in P (z1, s, ...,7;) a replacement of the form
The1 Thpy2 1 Tr41 T 1
T 1 0 — Tpeo 10 1.2.14
1 0 0 1 0 O

More precisely, such a transition consists in locating three indices j; < jo» < js such that the submatrix
P41, j2, ja] is of one of the forms given in 1.2.14. This done, the 3-Coxeter transition consists in replacing
one form by the other form in P (z1, 2, ..., x;).

In the same vein, a “2-Coxeter transition on k” is the exchange of z; and x;;1 when

zr and xk41 are not in the same row or column.

Thus this Coxeter transition carries out one of the following 4 possible exchanges in the matrix P (21, z2, . .., 2;):
S S —— — X E—

¥x | ¥rT | | e | X«

| |

R e G T S T
Proposition 1.2.1

Let w=a1,a9,---a; be a reduced word and let
ar =1 , Q1 =1%t+1, aggo=1.

Let w' = d},d},---a} be the same as w except in positions k,k + 1,k + 2 where we have

ay=i+1 , ay =i, ap,=1i+1
Then the matrix P/ (x1,zq,...,2;) is simply obtained from PJ(xy,x,...,7;) by making a
3-Coxeter transition on k.
Proof
We have

Py(w1,29,... 1) = Po, (1) Pi(wr) Py (1) Pi(Tpa2) -+ Pay (1) -
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Under this assumption, the portion of the diagram that contains the edges of weights zy, z4+1 and x4 2 will
necessarily be of the form given below with the z, x4 1 and xj12 edges atheights i, i + 1 and i respectively.

Indeed, if it is i1-line and the i»-line that cross at thew k" step, and if it is the i3-line that the 4;-line crosses
at the k + 1° step then the iy and i3 lines will necessarily cross at the k + 2"¢ step. Since, in the line diagram
of a reduced decomposition, any two labelled lines cross only once, we will have i; < iy < i3 and the i3, is
and 7; lines must respectively end up at levels j; < j, < js as indicated in the figure. Of course this means
that o, =13, 05, =iz and 0j, = iy

Using this diagram and the recipe given by Theorem 1.2.3, we can easily derive that the submatrix
PJ 41, ja, j3] must be precisely as given below

Tp+1 T 1
PIlj1,jo,gs) = |ar2 1 0] . 1.2.16
1 0 O

Note next that if the portion of the product diagram of P, (x1)P,,(z2) - - P,, () given above, is replaced
by the portion given below
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what we get is precisely the multiplication diagram we can use to compute the matrix
Py(1,22,...,m1) = Py (1) Pipa(2r) Pi(Tpt1) Pip1 (Thg2) - Poy (1) -
On the other hand, the relation in 1.2.7 (modulo 7) gives
Pi1 () P (k1) Pip1(2p42) = Pi(@ps2) Pipr (@p) Pi(ze)  (mod J)

This means that we also have

P$($1,$2,~~~,$l) = Py (1) Pi(xpg2)Pig1 (@) Pi(xg) - - - Py, (z1) = PJ (21, Tht2, Tht1, Thy - - 1)

In other words P{Z, (z1,2,...,7) is obtained from P (z1, s, ...,x;) by interchanging x;, with z;>. How-
ever, in view of 1.2.16 this is precisely a 3-Coxeter transition on k.

It is important to know at this point how the matrix P (1,22, ..., ;) changes as we increase or
decrease the number of factors. It develops that these changes can be carried out by a very simple recipe.
More precisely we have

Proposition 1.2.2
Let w = ajas---ay € RED(0), and let o; < 041 so that w' = ajaz---ayj € RED(o x s;),
then the transition

Pg(xl,mg,...,xk) — Pj(xl,ﬂczwuﬂkﬂ)
is simply obtained by interchanging columns j and j+1 of PJ (x1,xa,...,z;) and then changing
the (o;,j)-entry of the resulting matrix to “vj41”.

Proof

For convenience let M,, and M,,, denote the multiplications diagrams corresponding

~
1
i

to w and w’ and let M, /,, denote the the last two columns we have to add to M, to get M.
Since by our assumptions we have

Pw/(l‘l,l‘g,. - ,J}k+1) = Pw(.lfl,l‘g,...,mk) X Pj(l‘k+1) s

-
1
U

13019

(%)
1
i

the diagram M., /,, will necessarily be as depicted in the the adjacent figure. We have also set
there i = o; and i’ = 0;41. Now note that, when s # j or s # j + 1, to compute an r, s entry in

the matrix P,/ (21,22, ..., xr41) we simply follow the same paths as for the computation of the
r, s entry of P, (1,2, ..., x;) up to the first column of M, /,, and then proceed to the second

1
\

column of M, /,, traversing the horizontal edge at level s. This yields that the s'* columns of

F
—
i
v

Py (z1,29,...,25) and Py(z1,22,..., ;) are identical. Similarly we see that, to compute an

r, j+1-entry of P, (21,22, ..., zx), we must follow a path of M,, that goes from r to level j and 42 >

then drop down to level j + 1 by following the last step of the i-line in M, ,,,. This causes the

DR

j+1% column of P, (1, w2, ..., 2)41) to be identical with the j** column of P (21, w2, . . ., xy).

04

To compute the r, j-entry of PLZ (1,22, ...,2r+1) we have two sets of paths. Those which in
M., go from r to level j and continue in M., ,, horizontally by traversing the x; ,,-weighted
edge (see figure), and those which in M,, go from r to level j 4+ 1 and then climb up to level j

by following the last step of the i'-line in M, /. .

x
=
)
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However from the first set of paths only the i-line survives in computation mod 7. The reason
for this is,except for the i-line, all the other paths have contributed an z-entry in P (21, xa, ..., zx) and the
continuation across the the z1-weighted edge will make their weight a product of 2’s and therefore equal
to zero mod J. On the other hand the i-line in M,, followed by the x;-weighted edge will contribute an
x+1 to the ¢, j-entry of qu, (z1,22,...,%k+1). Now a path in M,, from second set that goes from an r # i to
level j + 1, yields the r, j + 1-entry in P (z1, 2, . .., 2;) and will cause this entry to move to the r, j position
in PJ,(21,22,..., k1) as it climbs to level j in M, ,, -

We have now accounted for all but the 4, j-entry in P (x, 2, ..., 2511). The possibility remains
that 2441 may not be the only term there because of some path from second set that went from i to level
j+1in M,,. However note that since ¢; = i there is no “(O” or “X” in position ¢, j 4 1 in the circle diagram
of o so the i, j-entry in P, (1, z2,. .., 2) is necessarily zero and therefore there is no path in M,, that joins
ito j + 1. Thus the i, j-entry of P, (1,2, ..., z,41) must be 25 precisely as asserted.

In the display below we illustrate the sequence of transitions corresponding to the reduced word
w = 24534231 € RED(516324).

10 0 0 0O 1 0 00 0 O 1 0 0 0 00 1 0 0 0 O
01 00 0O0 0z 1. 0 0 O 0Oz 1 0 0 O 0O 0z 1 0 O
0 01 00O o 0 1 00 0O L 0 1 0 0 0O s 0 1 0 0 O
0 001 0O 0 0 01 00 0 0 0 =22 1 O 0 0 0 =z z3
0 000 1O 0 0 0 0 1 0 0 0 0 1 0O 0 0 0 1 0
0 000 01 0 0 0 0 01 0 0 0 0 01 0 0 0 0 1
1 0 0 0 0 O 1 0 0 0 0 0 1 0 0 0 0 0
0 Tr1 X4 1 0 0 0 1 X4 T 1 0 0 Ty X1 Ty 1 0
4l 0 1 0 0 0 O L 0 1 0 0 0O P 00 z¢ 1 0 0 O 1.2.17
0 0 T2 0 I3 1 0 0 To I3 0 1 0 i) 0 I3 0 1
0 0 1 0 0 O 0 0 1 0 00 0o 1 0 0 0O
0O 0 0 0 1 O 0O 0 0 1 0 O 0O 0 0 1 00
1 0 0 0 0 0 zg 1 0 0 0 O
0 Ty T5 T 1 0 T4 0 Irs T 1 0
_3 0 e X7 1 0 0 1o T 0 T7 1 0 0
0 Ty X3 0 0 1 xTo 0 xIs 0 0 1
0o 1 0 0 0 O 1 0 0 0 0O
0O 0 1 0 0O 0 01 0 00

Since each of these matrix transitions can be reversed, an immediate corollary of Proposition 1.2.3 is that the
word w can be reconstructed from P (x1, 22, ..., 2;). To do this we simply carry out the illustrated process
in reverse. In particular we obtain thus a proof that the matrix P, (x1, z2, ..., ;) is completely determined
by its linear part. Now it develops that there is an even simpler way, in fact a recipe, for recovering w from
P7(z1,x2,...,1;). This result can be stated as follows.

w

OO = OO O
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Theorem 1.2.3 (C. Greene et Al [])
Let w = ajay---a;, and for each k € [1,1] let ¢, denote the number of z, with s > k
that are directly NORTH or SOUTH of z;, in P7(zy,2,...,1;) and let r,, be the number of z,
with s > k that are directly WEST. This given, if x;, is in column j, of PJ (zy,zs,...,2;) we
necessarily have
ar = Jg+cx—rk 1.2.18

Proof

It follows from Proposition 1.2.2 and it is easy to see from the process in 1.2.17 that if a;, = j then x,
lands in column j at the moment it is inserted. However, as the process of construction of P/ (x1, 2, ..., x;)
continues, its column changes. Nevertheless we can easily keep track of what happens. To begin we see that
every time an z; with s > k gets inserted in the column of z;, the column number of x; decreases by one.
On the other hand note that if an z; with s > k gets inserted in the row of z, this will necessarily take place
EAST of z, because to the right of z, we place a 1 and there is nothing but zeros in P7 (x1, 2, ..., x;) to the
right of any 1’s. Now the only time when such an z passes to the WEST of z;, is when z is immediately to
the right of z;, and their columns are interchanged. This causes the column number of z, to increase by one
at that time. Putting all this together we derive that when the transition process terminates we will find z;,
in column j;, with

Je=ak+ 71k —Cp -
This proves 1.2.18.

Proposition 1.2.3
Let w =ay,as,---a; be a reduced word and let

ap =r and ax1=s Wwith|r—s|>2. 1.2.19

Let w' = a},d},---a) be the same as w except in positions k,k + 1 where we have

a,=s and ap,=r 1.2.20
Then the matrix PJ(xy,xs,...,7;) Is simply obtained from PJ(xy,zs,...,7;) by making a
2-Coxeter transition on k.
Proof

Let M{" for a moment denote the matrix obtained after / steps in the construction process that
yields P (z1, 7, ..., 7). Likewise let ML(U};L be the matrix obtained after h steps in the construction process
that yields P{Z (x1,22,...,2;). This given, from Proposition 1.2.2 and 1.2.19 it follows that z; and .1 will
respectively be in columns r and s of Ml(ukﬂ). It is also clear that z 1 is not inserted in the same row as xj,
because immediately to the right of z, in M{ thereisa 1.

Now note that since the two columns involved in the insertion of =) do not overlap with the two
columns involved in the insertion of xj1 we can easily see that M/ gfﬂ) will necessarily be identical with
MY except that the positions of 2 and a4, are interchanged. Consequently, during the remaining part
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of the insertion processes yielding P (zy, 22, ...,2;) and P/ (x1,zs,...,2;) we shall have that MM and
M gf) will remain related by a 2-Coxeter transition and it will be so the end as well proving our assertion.

We are now finally in a position to establish the following basic result.

Theorem 1.2.3

For any two reduced words w, and w, of a permutation o of length | we can find a
sequence of Coxeter transitions that transform Py (z1,xs,...,;) into P (z1,2a,...,21).
Proof

By Theorem 1.1.2 we can pass from w; to ws by a sequence of applications of identities 1.1.17 2) and
3). But now from Propositions 1.1.2 and 1.1.3 we derive that 1.1.17 2) will cause a 3-Coxeter transition on
the corresponding matrix and 1.1.17 3) will cause a 2-Coxeter transition. Thus the theorem is an immediate
consequence of Theorem 1.1.2 and Propositions 1.1.2 and 1.1.3.

2. Balanced Labeled Circle Diagrams

2.1 From matrices to tabloids

The matrix approach of Kassel et. al. has naturally brought us to the general notion of Balanced
Labeled Circle Diagram introduced in [] and []. Although it will be good to keep in mind the mechanisms
that produce the matrices P (x1, 22, ..., z;) it will be more convenient to carry out all our combinatorial
constructions and manipulations directly on these tabloids. Roughly speaking, these tabloids are obtained
by filling the circles in the diagram of o with the labels 1,2,. .., so that “k” is in the same position as “x;"”
isin P7 (z1,29,...,17).

w

To be precise, in view of Theorem 1.2.2, we have the following
Definition 2.1

Given a permutation o of length I, here and after we associate to each word w =
araz---a; € RED(o) the tabloid T(w) obtained by placing “k” in the “O” that is in position
(i,7) if and only if the transposition s,, interchanges i with o;.

Now it develops that these tabloids have a very curious characterization. To state it we need some
notation and further definitions. To begin, it will be convenient to let “C'D(0)” denote the circle diagram of a
permutation o. If o has length [ then CD(c) has [ circles and a filling of these circles with the labels 1,2, ...,
will be called an “injective” labeling of C'D(c) or briefly an “injective tabloid”. The label in position
(i,7) in the resulting tabloid T will be denoted T;;. We shall of course use matrix convention to denote
location and thus ¢ increases as we go SOUTH and j increases as we go EAST. As we did for matrices, if T
is an injective labeling of C'D(c), we shall denote by T'(j1, j2, - - -, jx) the subdiagram of T that is contained
in columns j1, jo, . .., jr and rows 0j,,0;j,, ..., 0. We shall also denote by T}5(j1, j2, - - - , jx) the entry that
is in the r*" row and s** column of T'(j1, ja, . . . , jx)-

For a given cell (i, j) € CD(o) the collection of cells that are directly EAST of (¢, j) is called the
“arm” of (i, j). Likewise the collection of cells that are directly SOUTH of (i, j) is called the “leg” of (i, 7).
The collection consisting of the cell (i, j) together with its arm and leg is usually referred to as the “hook”
of (i, ), it will be denoted by “H;;”. A hook H;; of an injective tableau T is said to be “balanced” if and
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only if the number of labels in the arm of (i, j) that are smaller than Tj; is equal to the number of labels in
the leg that are bigger than 7;,. In particular we see that if the labels in H;; are sorted in increasing order
then placed back in H;; starting from the bottom of the leg then NORTH up to (¢, j) then finally EAST along
the arm, T;; will necessarily land right back in its cell. We say that T itself is “balanced” if all its hooks are
balanced.

The notions of “arm”, ‘leg”, “hook” and “balanced hook” and “balanced tabloid” are easily
extended to subdiagrams 7T'(j1, j2,...,jk). For instance we let the arm of T s(j1,j2,- .-, jr) be the col-
lection of cells of T'(j1,j2,---,jx) that are EAST of T, (j1, j2, - -.,jk). The remaining notions are analo-
gously defined. In particular, we let H,5(j1, jo, - . ., jr) denote the hook of T, (41, jo, . - ., jr). To be precise,
H,s(j1,jo2, - -, jr) consists of T} 4(j1, ja, - - ., jr) together with its arm and leg in T'(j1, jo, ..., jx). Likewise
we say that T'(j1, jo, . . -, ji) is balanced if all the hooks H,4(j1, jo, - . ., jk) are balanced.

It goes without saying that all the results we have established for the matrices P7 (1,22, ..., 7;)
can be transfered to the tabloids 7'(w). We shall use this fact here and after without necessarily spelling out
in detail how this transfer should be carried out, since it only amounts to making the replacements

“ b2 “ » wn”? “ ” w1 “ ”
T — ® , 0" — “eo7 | 17 — “X7 |

In particular the 3-Coxeter and 2-Coxeter transitions of section 1.2 now become as indicated below. Namely,
3-Coxeter transitions are simply interchanges in T" of 3 x 3-subdiagrams 7'(j1, jo, j3) of the form:

feedX JX
QX[ ¢| <> [gX] *

N A

Xiel- Xiel- 2.1.1

while 2-Coxeter transitions are substitutions of the form
@“‘1 @—— ——® —©

@ ——— 2.1.2

In the same vein Theorem 1.2.3 may now be stated as

Theorem 2.1.1
For any two reduced words w,,w; € RED(c) we can find a sequence of Coxeter transi-
tions which transform T(w) into T (ws).

The notion of balanced tabloid arised quite early [] in the study of reduced words. The work of
Kassel et. al. shows that it has a natural algebraic setting which beutifully explains its origin. We derive it
here as a corollary of Theorem 2.1.1.

Proposition 2.1.1
The tabloids T(w) are all balanced.
Proof
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A view of the displays in 2.1.1 and 2.1.2 should make it clear that applying a 2 or 3-Coxeter transition
on a balanced tabloid does not destroy balance. At any rate, note that in the case of the 3-Coxeter transition
which goes from left to right in 2.1.1 we see that we are increasing by one the number of entries in the arm
of k + 1 that are less than k£ + 1 but at the same time we are increasing by one the number of entries in the
leg of k + 1 that are larger than k + 1. Going from right to left in 2.1.1 reverses this process and cannot affect
balance of the hook of k + 1. All the other hooks H;; contain only k, k + 1 or k + 1, k + 2 and their balance is
trivially not affected by either of the two changes in 2.1.1. Likewise, the balance of a hook is not affected by
any of the two transition in the first part of 2.1.2, for in this case no hook contains both k and k£ + 1. As for
the transitions in the second part of 2.1.2, note thatif T}; # k,k + 1 then T;; > kif and only if 7;; > k+ 1 and
the balance of H;; cannot be affected by this transition. Similarly, if T;; = k or T;; = k + 1 then replacing k
by k + 1 or viceversa cannot affect the balance of H;;.

To conclude, note that the tabloid 7'(w,) of any canonical factorization w, is necessarily balanced
since, by the way T'(w,) is constructed (cf. Theorem 1.2.1), all the labels in the arm of a hook H; ; are larger
than 7;; and all the labels in the leg are smaller. Now when w and w, are reduced words of the same
permutation, by Theorem 2.1.1, we can pass from T'(w,) to T'(w) by a sequence of Coxeter transitions. Since
when w, is canonical T'(w,) is balanced, T'(w) must be balanced as well since, as we have seen, all these
transitions preserve balance.

We should note that Proposition 1.2.2 yields us an algorithm for constructing our tabloids 7'(w)
without resorting to multiplication diagrams. In fact, Proposition 1.2.2, converted to tabloids, may be
restated as

Proposition 2.1.2
Let w = ajas---ap € RED(0), and let o; < 0,41 so that w' = ajaz---arj € RED(c x s;),
then the transition
T(w) — T(w')

is simply obtained by interchanging columns j and j + 1 of T(w) and then changing the
(0;,7)-entry of the resulting tabloid to “k+1".

This result as an immediate converse which may be stated as follows

Proposition 2.1.3
Let w =ajaz---ayj € RED(o), and let o; > 041 so that w' = ajas---ax, € RED(o x s;),
then the transition
T(w) — T(w')
is simply obtained by interchanging columns j and j+1 of T(w) and then changing the “k+1”
tO a ££.77.

At this point it is good to have a visual image of these two transformations. For convenience let
“construct” and “deconstruct” denote the transformations described in Propositions 1.1.2 and 2.1.3. More
precisely when w € RED(0) and 0; < 041 then

construct[T'(w),j] = T(wj)
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and when w = ajas - - - ag41 € RED(0) then
deconstruct|[T(aras - - ap+1)] = (T(araz---ax), j).

This given we can schematically represent Propositions 2.12 and 2.1.3 by the following displays.

+1 i+ i+1 [

J v v iU ViU ulv
construct X — ) X deconstruct Ex — <[+

[ ] ° ° °

[ ] [ ] [ ] [ ]

v wle wie o|w

[ ] [ ) [ ) [ )

[ ] [ ) [ ) [ )
Remark 2.1.1

We should note that to apply construct we need to give j and then k is the largest entry in T'(w).
To apply deconstruct we locate the largest entry, say it is k + 1 and it lies in the j* column. This given we
operate as indicated in the figure and return the resulting tabloid along with the index “j” .

Now we see that to construct a tabloid T'(ajas - --a;) we only need to carry ! applications of
construct. More precisely, we recursively set

T(ajaz---axy1) = construct [T(alaz e ay), ak+1] (fork=1,2,...,1-1)

with the initial step
T(a;) = construct|[T,]

where T, is the tabloid that corresponds to the identity permutation. In the following display we have
carried out this algorithm for w = 42132.

Xleje || Xle|oefe|e X|oe|ole|e
ox‘ooo ofX|o oo oOXoo
oflofX|ofjo| —> (oo | X]|ojo| — |0 [ X]|o]|e |
eflefe | X]|e ooo@)x ooo@X
ofoflo|e ofle|o|X]e o oo fX]e

3IX|e|e|e 3X|o[e|e 5 o e

8.)(.. 20®X0 2@0 o

— [ X[|ofoe|e]|e] — |[X[|o|o]ofe| — | X]|o]|eo|o]e

ooo@)x oo@ox o@oox

ejefe |X]e ofle |X[e|e o X|[® ||

For a moment let us say that a injective labeling T of the circle diagram C'D(0) is “constructible”
if and only if T' = T'(a1as - - - a;) for some aqas - --a; € RED(0).
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We have the following remarkable fact.

Theorem 2.1.2

An injective labeling of the circle diagram of a permutation is constructible if and
only if it is balanced.
Proof

In view of Proposition 2.1.1, we need only prove that every balanced tabloid is constructible. Let
then 7" be a balanced labelling of the circle diagram of o and let N be the largest label in T'. Suppose further
that N = T;;. We claim that in position (i, j + 1) there necessarily is an X. To see this, note that if this were
not so then the j** and j + 1%¢ columns of T would have one of the following forms:

j j+1 j l+1
@x XXX
. i > 00
i > (\) - or
.
. -
. Xleoeoeo
. fa3
s .
. [ ]
[ ]

Indeed, if the X in column j + 1 were above the " row then immediately to the left of it there would have
to be a circle because there is no “X” to kill that cell from the left or above. Now the label in that circle is
necessarily a number a < N but that would cause the hook of a to be unbalanced since there is a label bigger
than a SOUTH of a and no label less than a EAST. In fact no label at all EAST of a because of that adjacent
X. This eliminates the first alternative. In case the X in column j + 1 is below the i*" row then there would
have to be a circle in column j + 1 immediately to the right of NV because there is no “X” to kill that cell
from the left or from above. Now again in that circle there would have be a label b < N, but then the hook
of N is unbalanced be cause there is a label smaller than N EAST and no label bigger than N SOUTH. This
eliminates the second possibility. This forces the j" and j + 1% columns to be of the following form

j j+1

(Y@ 2.1.3

A

\x.ooo

v
[Z

where we claim that every label b above N, in the j*" column, has necessarily an adjacent label a < b in the

j + 1% column. Clearly, there must be a circle adjacent to b in the j 4 1°¢ column because there is no “X” to
kill that cell from the left or from above. To show that in that circle there is a label a less than b we proceed
by contraddiction. Suppose that the situation is as indicated in 2.1.3 with a > b, and that pair is the lowest
we can find. Let then p be the number of labels, SOUTH of b, that are larger than b. We have p > 1 because
N > b. But then, since T is balanced, there must also be p labels by, by, . .., b, all less than b in the arm of b.
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Now, since a > b all these labels are less than a as well. But then again, since T is
balanced, there must be at least p labels uy, us, . . ., u, larger than a in the leg of a. However all
these labels must fall in circles of column j + 1 that are between the a and the X. Moreover,
the presence of these circles in column j + 1 forces circles adjacent to them in column j. Let
w1, Wa, . . ., wy, be the labels that fall in these circles, (indexed so that w, is to the left of u,.). Since b < a
we chose band a to form the lowest pair b < a, we musthave w, > u, > a > b(forr =1,2,...,p).
In summary, these two columns would the be as depicted in the adjacent figure. But this cannot
be since we now see p + 1 labels greater than b in the leg of b, contrary to our initial choice of
p. We have now proved that T is the form given in 2.1.3 where every pair of adjacent circles
above the pair N, X contain labels b, a with b > a. We claim that if we apply deconstruct to T’
the resulting tabloid 7" will be again a balanced injective labelling of C'D(c). Indeed a look at
the picture below should make it clear that the only hooks whose collections of labels have been
affected in a significant way are those of a and b. Now a only gains a label greater than it to the
right, this does not affect its rank among the labels in his hook, so its hook remains balanced. As
for b we see that it looses N > b in its leg but at the same time it looses a < b in its arm. These N

T 417

w1 > U1

wo > U2
wp>Up

losses compensate each other and thus leave the hook of b still balanced.

i+ i+

e o 0 0 o < -

on
(D)

O
S

(N\

deconstruct i» ()

X

LN X ] : i-> [ XN X ]

ecee0oe (X
xxxx

We can see now how the proof can be completed. To begin the result s trivially true for the circle diagram
of the identity since there are no circles at all to fill. So we assume by induction on the number of circles, that all
balanced labelings of C'D(c¢) that have less circles than T" are constructible. Now we see from the figure above
that 7" is, in fact, a labelling of the circle diagram of the permutation o x s;. The inductive hypothesis gives that
T' is constructible. This given, we must have that 7" = T'(a1, az, - - a;—1) with aq, a2, a1 € RED(o x s;) and
a fortiori ay, as,---a;—1 j € RED(0). Since

construct (T,j) = T’

We deduce that
T = T(ai,az, - -a) (with a; = j)

This shows that T is constructible, completing the induction and the proof.

It develops that constructibility, (and now in particular balance) forces a whole family of restrictions on
the labeling.
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Definition 2.1.2

Let T be an injective labelling of the circle diagram of a permutation. We shall say that
T is “k-balanced” if and only if all of its k x k-subtabloids are balanced.
Now we have the following remarkable result.

Proposition 2.1.4

Every constructible tabloid is 3-balanced. In other words each of its 3 x 3 subtabloids must
have one of the following forms with a < b < c:

hY 5
\b)\a) x
(c)x] e

X
.
()
X
X
.
Q

214

.
X
.
(=)
X
X
[ ]

[ ]
(=)
.
X

fb\f )
o
\a/ X

X|e®

)
X
.
.
X
.
)
X
X

Proof

Let T = T(w) with w = ajas---a; € RED(o) and let M(ajaz - - - a;) be the multiplication diagram for
the matrix

Py(x1,22,...,21) = Po,(x1)Pay(z2) - Py (z1)

Let1 <i < j <k <! begivenindices and let

Now there are 6 possibilities.

r<s<t , s<r<t, r<t<s , t<r<s, s<t<r , t<s<r ,

In the first case the r, s and ¢-lines do not cross in M(ajas - - - a;). In the second case the s-line and r-line cross and
in the third case it is the the ¢-line and s-line that cross. Assuming that these crossings occur at time a, we have
schematically represented below, what these conditions imply on M(ajas - - - a;) and the subdiagram 7'(i, j, k):

[ ——i s i f——
S—| r | t J
t —k t —k s><k

Y v J
. X
X )

X[eo]e O X[eo]e
° ) X ° ° Ca) x
° oo |X ° °
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In the fourth and fifth case there are two crossings. Assuming that the first crossing occurs at time a and the
second at time b > a, the fact that any two lines cross only once forces the line diagrams and implications depicted

below: _
; S |

t . [ fa\(b)x b . (b)x °

r o i => [X][e]° t ~a i =D (a) o [ X

s K o [IX]| e r k Xlo|e

In fact, for instance, when when ¢ < r < s we clearly see from the figure that the s and r lines must cross an
even number of times and thus in a line diagram they can only cross 0 times. This given the ¢ and r lines will
necessarily be the first pair to cross.

Finally, when t > s > r, the ¢t and r lines must cross, and if the time they cross is b, there still remains
two possibilities. Indeed the geometry of these line diagrams requires the s line to go either over or under the
b-crossing (see figure below). In the first case the ¢ and s line crossing occurs first and the s and r lines cross last.
In the second case the order is reversed. This accounts for the diagrams and implications depicted below.

t a c i fb\fa)x t i i (b\(CDX
S i > OKE s e R¢ | =D (a) X o
K X|eo|e ] K Xleo]e

This establishes our result.

Now it develops that Proposition 2.1.4 can be reversed.

Proposition 2.1.5

Every 3-balanced injective tabloid is balanced, therefore constructible.
Proof

Let T be given and 3-balanced injective labeling of CD(c) and let b = T};. To show that the hook Hy; is
balanced we need to show that there is a one to one correspondence between the labels “a” EAST of b that are
less than b and the labels”c”, SOUTH of b, that are larger than b. Now, this correspondence is simply obtained
from the highest pattern in 2.1.4. To be precise, let a < b be in position (¢, j), with j > i and let the “X” in row ¢
be in column % > j. This given, from the list in 2.1.4 we deduce that the subdiagram 7'(i, j, k) can only be of the

form .
i j k
mA
t \b)\ajx
~ )
) \C)X o
F(X|el|e

with ¢ = oy, s = 0; and r = o;. This shows that if b = T}, then the label ¢ > b in the leg of b that corresponds to a
label a < b in position (¢, j) will be found in position (¢, ). This completes the argument.

What now follows by putting together all the results of this section is truly remarkable.
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Theorem 2.1.3
For an injective labeling T of the circle diagram of a permutation o of length I the following
conditions are equivelent
(i) T is balanced,
(ii) T is constructible,
(iii) T is 3-balanced,
(iv) T is k-balanced for some k = 4,5,... 1,
(v) For some k =4,5,...,1 all the k x k subtabloids of T are constructible.
Proof
We have the following sequence of implications

Indeed if T'is balanced then it is constructible by Theorem 2.1.2. If itis constructible it is 3-balanced by Proposition
2.1.4. If it is 3-balanced all the k& x k subtabloids are necessarily also balanced by Proposition 2.1.5 and so they
are salso constructible by Theorem 2.1.2. But then all the 3 x 3 subtabloids will be balanced by Proposition 2.1.4
and then Proposition 2.1.5 yields that 7" must be balanced.

Remark 2.1.2

We should note that saying “all the k x k subtabloids of T are constructible” is an abuse of
terminology. What we really should say that if we take a k x k subtabloid T'(j1, j2, . . ., jx) with labels a; < as <
-+ - < a,, and respectively, replace these labelsby 1,2, ..., m the resulting tabloid 7" (j1, ja, - - . , ji) is constructible.
For later purposes it will be good to formalize this operation, refering to it as “downscaling” and set

T'(j1,ja,- .., jx) = downscale (T(jl,jg,...,jk)). 2.1.5

It follows then from Theorem 2.1.3 that if we want to have the list of all possible tabloids 7” that may be obtained by
downscaling a subtabloid T'(j1, j2, - - - , jx) we simply list all tabloids T, corresponding to reduced decompositions
of permutations in .S.
We should also keep in mind that we denote by M(aq,as,---,a;) the diagram corresponding to the
product
Pay (21) Pay (22) - -+ Pay (1)

We will also informally refer to M(aq, as, - -+, a;) as the “line diagram for w”.
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2.2 Descents and Kevin Kadel’s ZIGZAGs
We define the “Descent Set” of a word w = ajas - - - a; and denote it “D(w)” the set

Dw) = {1<k<l:ar>ar} 2.2.1

Kevin Kadel discovered a remarkably simple way to recover D(w) directly from the tabloid 7'(w). To state it we
need some notation. Note first that, if the labels & and k& + 1 are not in the same row or column of the tabloid
T'(w), then the 2 x 2 subtabloid of T'(w) containing the labels k, k 4+ 1 may have one of the following forms.

AN Z] AN AN Z] AN Z] AN Z]
¥

/
! ; : : ; 2.2.2
S

7 T
H '
‘ ' ' H i 1 '
N/ N/ N/ N/

N N N N N 3
, ’ 2.9.
H ]
1

or

and, of course, also those that are be obtained from them by interchanging & and k + 1. Kadell [] associates to
each of these subtabloids a “ZIGZAG” path, whose midcorners are labelled by k, k + 1, oriented so that k comes
before k + 1. The following display depicts the ZIGZAGs associated to the tabloids in 2.2.2 and 2.2.3.

224
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2.2.5
This given, Kadell’s result may be stated as follows

Theorem 2.2.1
Let o be of length | and w = ajas---a; € RED(c), then a given k is in the descent set D(w)
if and only if one of the following three conditions are satified

(1) k and k + 1 are in the same column of T(w).

(2) k and k + 1 are not in the same row or column of T(w), k is in a lower row than
k+1 and the corners of their ZIZAG contain no other labels.

(3) k and k + 1 are not in the same row or column of T(w) and the labels encountered
in their ZIGZAG are in increasing order.

Proof

We should note that (3) simply means that the ZIGZAG of k and k + 1 is given by one of the patterns in
in 2.2.4 and 2.2.5 with a < k and b > k + 1. We shall first establish the result under the assumption that £ + 1
is the largest label. More precisely we work with c—o*+1) =5, s,, - -- Sapy, and w—ajas - - - ap41. This given,

k+1

letting 7 = a;, and s = aj1, the last two columns of the line diagram M (w**+1) can be schematically represented

by one of the four cases depicted below

0—0—0 0—0—0 0—0—0

o—0——0 o—0—O0 o—0—0

Iy o—0—0 I o0—0—O0 o—0—0

k i K8 iy 0—0—0

iy g 0—0—0
iy 0—0—0 iy 0—0—0 Koo
A—» o—-o0-o B-» o—o—o C— ol
iy S I3 i ¥ i3 i i3

i iq o—0—0

i, 0—0—0 iy 0—0—0 i 0—0—0

0—0—0 0—0—0 0—0—0

0—0—0 0—0—0 0—0—0

0—0—0 0—0—0 0—0—0

o—0—-0 o—0—0 o—0—-0

Fig 2.2.5

Cases A and B occur when |rr — s| > 1, cases C' and D when |r — s| = 1. Moreover

(ac) Cases A and C occur when k is not a descent, that is we have a;, < agy1 (ie. 7 < s).

(bc) Cases B and D occur when k is a descent, that is we have a;, > apyq (ie. 7> s).

The indices i1, 42, i3, %4 and j1, jo, j3, j4 are determined as follows
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(1) In cases A:

(kD) - (kD) (k1) - (k+1)
zl—crjz y ZQ—O'jl , Z3_Uj4 s Z4—O'j3 s 296
a=r, Ja=r+l ., jzs=s, Jja=s+1
(2) In cases B:
S (k) (k1) (k1) (k+1)
=0y, » 12 =04, )y 13 =04, )y 4 =04, ’ 296
Jji=s , Jjo=s+1 , js=r | Ja=r+1
(3) In case C we have s = r + 2 and
kD) (kD) - (kD)
Z‘l - ajS ? ?2 - ajl ? Z?’- - sz ’ 297
ji=r , Je=r+1, jz=r+2.
(4) In case D we have
. k41 k1 k+1
21:U§2+), 2:03('3+)’ 3:U§1+)’ 2.2.8
Jji=r , Je=r+1, j3=s.

It develops that, in case C the labels k and k + 1 are in the same row of the tabloid T'(a1as - - - ax+1) and in case D
they are in the same column. This is in complete agreement with with assertion (1) of the Theorem.

To prove this note first that, in case C, if w continue the iy, i2 and i3 lines all the way to the beginning
of the diagram M (ajasz - - - ax+1) the i;-line cannot intersect either of the iy and i3 lines but the i; and i3 lines
can intersect. Now using the assignements in 2.2.7 we can schematically represent these two possibilities by the

i1 i1 i1 j1
k

. . . K .

12 + l2 13 a “ P

i I3 i I3

form which we derive the following two possibile forms for the the subtabloid T, +1) (j1, j2, j3) in case C':

following diagrams

v 2 I3 h a3
S s
1 ket X (k) X
i, i, [a)
.zXOO .z\a)XO
3] o X | X]|e]e

Likewise from the assignments in 2.28 we derive that case D the portion of M(ajas - - - ap+1) consisting of the iy,
i and i3 lines can be schematically represented by one of the following two diagrams

i iq i2 iy

i2 Kk iz i1 ig
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consequently, in this case we get the following two possibile forms for the the subtabloid T, +1) (j1, j2, j3):

4 Jp
@+)X °
A
e [X
X[o|eo

)

=

X1 :)

We show next that in the Cases A and B the labels k and k + 1 are at the corners of a rectangle with the
cooresponding ZIGZAG meeting its labels in increasing order in Case B and in disorder in Case A. Note that
since the word corresponding to Case A can be obtained from the word corresponding to Case B by interchanging
the last two letters, we derive that the tabloid T'(ajas - - - ag+1) corresponding to case A can be obtained from that
corresponding to Case B by a 2-Coxeter transition. This implies that the ZIGZAGs occurring in case A can be
obtained from those occurring in case B by interchanging k and & + 1. Therefore it will be sufficient to show that,
in Case B the ZIGZAGs meet their labels in increasing order. It will then follow that, in Case B, the ZIGZAGs
meet their labels in disorder as asserted.

We can deal with case B as we did for Cases C' and D. We start by noting that, as we follow the i1, is, i3
and i4 lines from the last three columns of the diagram M (ayas - - - ax+1), all the way back to the beginning, there
cannot be any further intersections between the i; and i lines nor between the i3 and i4 lines. This implies that
the indices i1, 9, i3, i4 may be governed only by the following six sets of inequalities:

1)i1<i2<i3<i4 2)i1<i3<i2<i4 3)i1<i3<i4<i2

4)i3<i1<12<7;4 5)i3<i1<i4<i2 6)i3<’i4<i1<i2

In the two following displays we have schematically represented each ensuing diagram and the corresponding
form of the subtabloid T, «+1(j1, j2. j3, j4). Here we have omitted filling the circles that are not corners of the
ZIGZAG of k and k + 1. We should note that the label “a”, of course, will always be less that k since the
corresponding intersection occurs before time k.

1 1

k+1 K+1 k+1
~0 |4 ~0 11 ~) |1
| b g PR J2
a a
i , i k . . k :
3 v I3 2 9 ls3. 4 W I3
Iq s i
i g ig i g Fig 2.2.9
j1 iz j3 lg j1 j2 j3 j4 Jq j2 j3 Ia
Iy (@X oo i *‘BX ofe i {*’jix oo
PN e NS N
|.2)(o o e i \a)o\k)x !3\a)o\k)x
|300<K)X b (X|efe|e |4()0X0
ig|e|e|X]|e® ig|e e [X]e® iy [X]e|o]e
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Fig. 2.2.10

We have thus established the result in the case that £ + 1 is the highest label. To complete the proof we
need only check what happens as we continue the diagram 7'(ajas - - - ax41) so as to obtain the final diagram
T(aras - - ag+1ak42 - - - a;). To begin with we note that in applying “construct” a “e”
labelled “O” if it lies below an “X”. This means that the first subtabloid T\,,(+1)(j1, j2, j3, ja) in 2.2.9 namely

Iy Ja i3 g

1@)x

i, [X

is|e

1)
k
\ A

X

al®

X
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Iy a3 g

¥ . Y )
K] X

4
LA X]

Y
A

X|o]e

X[C

can never be changed to a

will never acquire a labelled circle below % + 1 in the row of k. Moreover if it acquires a circle in the row of
k 4+ 1 above k it will necessarily be with a label b > k + 1 yielding a ZIGZAG with increasing labels. Likewise,
in all remaining cases of Figures 2.2.9 and 2.2.10, any labelled circle added to a further corner of the ZIGZAG
will also come with a label b > k + 1. Finally it is easily seen that the transformations which T, (j1, j2, j3. ja)
undergoes as m increases to [ under successive applications of “construct” cannot change an ordered ZIGZAG
to a disordered one for the simple reason that the label a < k will always remain before k and the label b > &k + 1
will always remain after k£ + 1 in the ZIGZAG ordering. This completes our argument.
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2.3 Special Circle Diagrams

In this section we introduce several important classes of permutations and derive some useful properties
of their circle diagrams. Before we can proceed we need to make a few definitions. To begin, for a given o € S,,
wesetforl <:<n-1

01(0') = {j>i:0'j<0'i}. 2.3.1

The sequence of subsets
Clo) = [Ci(9),Ca(0),...,Cnal0)], 232

will be referred to as the “code sequence” of o. Setting
ci(o) = #{j>i:0;<0} = |Ci(0)], 2.3.3

the vector

will be called the “code” of the permutation o.

Note that we have
cifo)<n—i (fori=1,...,n), 2.34

this is because there are i “X” ’s in the first i columns of CD(c) that leaves at most n — i cells in the i*" column
where we can put a circle. It is also easily seen that every vector ¢ = (1, o, . .., ¢,) with non-negative integer
components satisfying the inequalities in 2.3.4 is the code of a permutation o € S,,. Indeed, the circle diagram
CD(0), and therefore o itself are easily reconstructed form ¢(c). We start by placing an “O” " in each of the first
¢ cells of the first column of C'D(o) followed by an “X” in the ¢; + 15 cell. Then, having placed all the “X” ’s,
the “O” ’s and the “e” ’s in the first i — 1 columns, we fill the i*" column by first placing the “e” ’s in each cell that
is killed by an “X” to its WEST, then place the “O” ’s in the first ¢; available cells followed by an “X” in the next
available cell. Of course here “available cell” means a cell that has not been killed by a previous “X”. Note that
after we filled the n — 1°* column, the n'" column will automatically get an “X” in the only remaining available
cell. In the display below we illustrate this construction process when the given codeis ¢ = (2,4, 3,0, 1, 0) yielding

the permutation o = 365142.

Let v be a two-line array
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with j1 < ja < j3--+ < ji and a1, a2, as, ..., a; distinct integers. For a giveni = 1,2,...,k let r;() denote the
“rank” of a; intheset {a1, as, as, ..., a}. Thatiswesetr;(y) = m+1if and only if precisely m of ay, az, as, . . ., ay
are less than a;. This given, we shall say that 7y downscales” to the permutation

1
v = [7“1(7) ro(v) T3(y) - m(v)} 235

Let o € S, and let § € Sy, for some 2 < k < n, we shall say that o is “#-avoiding” if we cannot find
indices 1 < j; < j2 < -+ < ji < nsuch that the two-line array

_[jl jo g e jk]
051 Ojy Ojg =0 Ojy

downscales to 6.

Remark 2.3.1
It is not difficult to see that a permutation o is #-avoiding if and only if there are no subdiagrams of the
circle diagram of o which are identical to the circle diagram of 6.

We now have the following remarkable result
Theorem 2.3.1
If a permutation o is 321-avoiding then
(i) When we remove from CD(o) all the rows and columns that contain no circles, the
circles in the resulting diagram fill the cells of a French skew Ferrers diagram D.
(ii) For every w € RED(s) the balanced filling T, of CD(o) can be obtained from a
corresponding standard filling r,, of D.
(iii) The descent sets of w and ,, are identical.
Proof
A French skew diagram D is characterized by the following property

(i1,51), (i2,j2) € D with iy <io & j1 <jo —  (i1,42),(i2,51) € D

Thus to prove the first assertion we need only show that no 2 x 2 subdiagram of C'D(c0) can have any of the
following forms

;| ) Y )

N/ N\, N AN
8 Y ) )
N/ N A/ N/

where a shade in a cell signifies absence of a circle. To begin with, it is easily seen that the first two cases can
never occur for a 2 x 2 subdiagram of a circle diagram. To eliminate the third case let it be possible that the 2 x 2
subdiagram of C'D(c) contained in rows iy, i2 and columns j1, jo has any of the two forms below

N 2
< MY
\A® (X 2.3.6
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7z

Now in the first case the “o” must be due to an “X” either to the left or above. However, this “X” together with
the “X”’s in column j; and row #; yield us one of the two configurations below

;) Y ) N

N/ \/X N/ N/ X

f\x. X
\_ ®

X X

which yield a 321-pattern that o is supposed to avoid. Likewise for the second case in 2.3.6 the “X"’s in column
j1 and row i yield us again a 321 pattern. In either case we reach a contraddiction. This proves (i).
As for (ii) note that, since o is 321-avoiding, the two tabloids below

N R
(b fa )X (b fc ) X
> 7S

(C)]X|* (ajXxje
x ol e x ®o|e

cannot occur as 3 x 3 subtabloids of T,,. Thus from Propostion 2.1.4 we derive that the only remaining possibilities
for a 3 x 3 subtabloid of T, are

X|elel {a)X[e] [X]e (a o X| f(o)X|e
o[ X[e o o [a)Xx X|ele| [a)e]|X

N/
o|le|X oo |X o (X o|X]|e X|e|eo

with a < b. This means that for any pair of labels appearing in the same row of T, the one to the left is smaller
that the one to the right and for any pair of labels that are in the same column the one below is smaller than the
one above. This shows that this filling can be obtained from (or gives rise to) a standard filling 7, of D.

To prove (1ii) recall that k is called a “descent” of a french standard tableau if and only if k + 1 is
NORTH-WEST of k. This given, we see that if k and k + 1 are in the same row in T, then k + 1 is to the right &
and therefore k is not in the descent set of 7,,. If k and k + 1 are in the same column of T}, then k£ + 1 is above
k and therefore k is in the descent set of 7,,. Finally, if k and k& + 1 are not in the same row or column and there
are no other labels in the in the ZIGZAG of k and k + 1 then from (2) of Theorem 2.2.1 we get that we have a
descent at k for w if and only if k£ + 1 is NORTHWEST of k in T,,. This makes k also a descent of 7,,. Likewise, if
the ZIGZAG of k and k + 1 as some other labels then from (3) of Theorem 2.2.1 we get that k is a descent of w if
and only if the labels in the ZIGZAG of k and k + 1 are in increasing order. But that again can happen if and only
if k + 1is NORTHWEST of k in T),. In any case we see that the assertion in (iii) is an immediate consequence of
Kadel’s Theorem 2.2.1. This completes our proof.

Definition 2.3.1
The decreasing rearrangement of the code of a permutation o (with all the zero’s omitted)
will be here and after called the “shape of ¢” and will be denoted (o).
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The following is an important property of the shape.
Proposition 2.3.1
For any permutation o we have

Mo) < N(e™) 2.3.7

where “<” represents the dominance partial order. Moreover, equality here holds if and only if
the code sequence C(o) is totally ordered by set inclusion.

Proof
Leto = 0102+ 0, and let M = [[m, ;||}';—, with
. = { 1 if there is a circle in CD(o) in position (¢, j)
I’J 0 otherwise
It is easily derived from the definition in 2.3.3 that the column sums of M are ¢ (o), c2(0), ..., ¢, (o) and the row
sums are c¢1 (071, ca(0™ ), ..., cn(07h). Let ju, jo, - . ., jn be a permutation that rearranges c1(0), c2(0), ..., cn(0o)

in decreasing order so that
Ci (U)a Cja (U)v s Gy (U)

except for some terminal zeros gives (o). Clearly, the matrix

mij, Mig, .- Mg,
Ao | e m2a e ms,;,)
Mnj Mngy -+ 3 Mng,
has the same row sums as M and moreover, for every k = 1,2, ..., n, the number of 1’s in the first £ columns of

M’ is given by

C1 (o) + Cj2 () +-+ Cin (o)
Note next that if, in each row of M’, we push all the 1’s to the left until they are “bumper to bumper” and likewise
push all the zeros to the right, then the number of 1’s in the first & column of the resulting matrix will be given

by the expression
(oY Nk+ea(oHAE+ - Fep(o”HAK

where for convenience we set a A b = min(a, b). This is simply due to the fact that in row i of M’ there are ¢; (o~ 1)
1’s altogether and we can’t fit more than % in the first £ columns of any row. Consequently we must have

ci(0)+cjy(o)+ - +ej (o) < (e )Ak+caloHYAk+ +en(o) Ak 2.3.8

Note further thatif © = (p1, pt2, - - . , ) is any partition and p = (u}, pb, . .., pl,,/) is its conjugate we necessarily
have for any k < m/
P NE+p ANk+- -+ um Nk = /1'/1+M12+"'+,U;g

Thus if k is less than the number of parts in both A(¢) and X (0~!) we may rewrite 2.3.8 as

M(0) +Xa(0) + -+ Xe(0) < Mo+ A0 )+ + A (07 h).
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This shows that A(0) is dominated by (6~ !). To prove the last assertion, note that equality in 2.3.8 for all k can
only hold true if and only if none of the 1’s have moved. Let us take a moment to find out when can this happen.
Note first that the way we constructed M’ it follows that the 1’s in the 7" column of M are in the rows indexed
by the elements of C; (o) (1). This given, we claim that no motion of 1’s forces the set inclusions

Cj,(0) 2 Cjy(0) 2---2Cj, (o) . 2.3.9

Indeed if any of these containements did not hold then there would be a 1 to the right of a 0 in M’ and that 1
would move. This show that equality in 2.3.7 implies that the components of the code sequence C(c) are totally
ordered by inclusion. Conversely, if this holds true, then the permutation jijs - - - j,, that yields ¢;, (o) > ¢j, (o) >
- > ¢j, (o) > will necessarily produce 2.39 as well, and under these conditions there would be no possible
movement of 1’s, forcing equality in 2.38 for all k and equality in 2.3.7 as well. This completes our proof.

Remark 2.3.2

We should point out that if the sets C; (o) are not totally ordered by inclusion if and only if there are a pair
of indices r < s for which both containements C,. () C Cs(0) and Cs(0) C C, (o) simultaneously fail. However
this will happen if and only if in the columns r and s the circle diagram C'D(o) contains a 2 x 2 subdiagram of
the form

)

N
N/
®
N/ 2.3.10

"1

note further that locating the two “X"’s that cause these “e” and the “X”’s to the right and below the second
“O"” we will necessarily find in CD(o) a 4 x 4 subdiagram of the form

\)X"

Xlojeo|e
[ ]

8
.\)X

*IX]e 2.3.11

This given, we arrive at the conclusion that equality holds in 2.37 if and only if C'D(o) contains no such 4 x 4
subdiagrams. Finally we should add that what we did with C(c) we could just as well have done with C(c71).
Thus we see that the esclusion of 4 x 4 subdiagrams of the form in 2.3.11 is also equivalent to C(c~!) being totally
ordered by inclusion. Adding the notion of pattern avoidance to all this we may schematically represent the

(1) see definition 2.3.1



Topics in Algebraic Combinatorics LECTURE NOTES may 3, 2001 39

contents of this remark by the following diagram of equivalences.

Mo)=N (c™7)

C (0) Totally ordered

by inclusion

C(0=1)Totally ordered 9319

by inclusion

&
| X| 2

O 2143-avoiding

This brings us to another remarkable class of permutations:

Definition 2.3.2

We say that o is “Vexillary” if and only if it satisfies any of the equivalent conditions
displayed in 2.3.12.

We should note that this terminology is due to Lascoux-Schiitzenberger who apparently used the prefix
“Vexill” to express the presence of the “flag” of subsets we see in 2.3.9.

Remark 2.3.3

Note that if a permutation ¢ has a 2143 subpattern then it has also a 132 subpattern. Moreover between
the “2” and the “1” o will necessary have a have a descent and likewise between the “4” and the “3” it will have
another descent. This brings us two important subclasses of Vexillary permutations that play a crucial role in the
study of reduced decompositions.

Definition 2.3.3
A 132-avoiding permutation will be called “Dominant ”
Definition 2.3.4
A permutation with only one descent will be called “Grassmanian”

These two classes of permutations have further useful characterizations.

Proposition 2.3.2
For a permutation o € S,, the following conditions are equivalent
(i) o is dominant
(ii) The circles in CD(o) fill an english Ferrers diagram.
(iii) The code sequence C(o) is decreasing.
(iv) The code of o is weakly decreasing.
Proof
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Note that from the definitions in 2.3.1 and 2.3.3 we derive that (i7) is equivalent to the condition
Ci(o) = {1,2,---,¢i(0)} with ¢;(0) > ¢i11(0) for i=1,2,...,n—1 2.3.13
Thus (i¢) implies
Ci1(0) 2C2(0) 2C5(0) 2 -+ 2 Cp1(0) .

Consequently (ii)—(4ii)— (iv). We next prove (iv)—(ii) by showing that the condition

ci(0) > ¢ip1(o) for i=1,2,...,n—1 2.3.14

"0

implies 2.3.13. We proceed by induction on “i”. Clearly, in any case we have
01(0') = {15 27 ) Cl(O')} .

Now note that if C;(c) = {1,2,---,¢;(0)} then all the “X” ’s in the first ¢;(c) rows of C'D(o) must be in columns
i+ 1,i4+2,---,n. Thus C;11(0) = {1,2,---,k} if the “X” in column i + 1 is in a row k < ¢;(0). But then
|Cit1(0)| = cit1(0) < ¢i(o) forces k = ¢;11(0) and completes the induction. Thus (i), (iii) and (iv) are
equivalent. To complete the argument we show that 132-avoiding is equivalent to (i¢). To this end note that
an english Ferrers diagram \ is characterized by the property that all cells NORTH or WEST of a cell of \ are
in A. Now if one of these conditions fails for C'D(0) it necessarily follows that C'D(o) must contain one of the
subpatterns below

[
) .f\
N/ N/

However, if we add the “X” that causes the “o” and add the “X” ’s that are in the column and row of the “O”

we see that CD(o would necessarily contain one of the patterns below
X| e X
) ><
Y
X LR

forcing o to have a 132 subpattern. Conversely, we easily see that the presence of a “132” in o would prevent the
circles of C'D((o) to form a Ferrers’ diagram. In summary we see that “not (¢)” is equivalent to “not (i:)”’. This
proves that (i), (i),(i%4) and (iv) are equivalent as asserted.

Proposition 2.3.3
For a permutation o € S,, the following conditions are equivalent
(i) o is Grassmanian with descent at r
(i) c1(0) <ea(0) <---<e¢p(o) >0and ¢;(o) =0foralli > r.
Proof
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Note that for any permutation o we have

a) Ci(O') > Ci+1(a) <~ o; > Oi+1
2.3.15
b) ci(o) <cipilo) = 0i<oip

The reason for this is simple. If o; > 0,41, then all the o, less than ¢, to the right of o, are also less than o;.
Accounting for o, itself, this gives ¢;(0) > 1+ ¢;41(0). Conversely, if 0; < 0,41, then all the o less than o; that
are to the right of o; must also be to the right of ;1. Thus, in this case, we must have ¢;1(0) > ¢;(o) . This
given, we see that the condition

01<09< - <0p>0p41 and  opp1 < Opga < <0y
is equivalent to
c1(o0) <ex(o) <+ <¢(0) >0 and  ¢ry1(0) = cryo(o) = =cp(0) =0.

This proves the proposition.

Remark 2.3.4

Note that if a permutation o has a 321-subpattern, then it must have at least 2 descents. Indeed, o will
necessarily have descents between the “3” and the “2” and between the “2” and the “1”. Thus we see that
Grassmanian permutations are also 321-avoiding.

This observation yields us a beautiful corollary of Theorem 2.3.1. It may be stated as follows.

Theorem 2.3.2
If o is Grassmanian of shape \ then
(i) For every w € RED(o) the balanced filling T,, of CD(c) can be obtained from a
corresponding standard filling 7, of the Ferrers diagram of \'.
(ii)) Under this correspondence the descent sets D(w) and D(r,) are reversed. That is
we have D(w) =n — D(7y).
Proof
From Remark 2.3.4 and (i) of Theorem 2.3.1 it follows that the circles of C(c) fill the cells of a French
skew diagram D. However, since o is also vexillary from (iz) of Proposition 2.3.3 we derive that its code sequence
is an increasing sequence of subsets. This forces D to be a “reversed” Ferrers diagram. More precisely, if
A(o) = (A1, Az, ..., Ag) then the columns of D will have lengths A, Ay—1,..., A1, and its rows will have lengths
oG N, with XM= (M, A, ..., \),) the conjugate of A(o). This means that if we rotate D 180 degrees, we
will obtain precisely the Ferrers diagram of the partition \'. In particular, this rotation gives a correspondence
between the standard fillins of D and the standard fillings of the Ferrers diagram of \’. To do this we only need
to replace, after rotation, each label k by its complement n + 1 — k. This given, for w € RED(o), let T}, be the
corresponding standard labeling of C'D(o), 7, be the induced standard labeling of D and finally let 7,, be the
standard labeling of the Ferrers diagram of )\’ that we obtain by rotating and complementing 7,,. It is easily seen
that under the mapping 7, — 7,, an element ¢ of D(r,,) is sent onto the element n — ¢ of D(7),). Thus Part (i)
of this theorem follows from (i) and (i7¢) of Theorem 2.3.1.
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From Theorems 2.3.1 and 2.3.4 we may derive two remarkable identities which essentially go back to R.
Stanley’s original paper. To state them we need to introduce some notation. To begin with, it will be convenient
to use compositions to represent descent sets. More precisely, given a subset

S:{1§i1<i2<~-~<z’k<n} - [1,n]

we set
p(S/I’L) = [il 5 ig—il 5 7;3—i27 ey Z'k_iszl 5 n—ik] 2.3.16

Note that from this notation not only we can recover S but also the interval [1, n] we are considering S a subset
of. This given, for any word w = ajas - - - ; we shall here and after set

p(w) = p(D(w),n) 2.3.17

For instance for
w = 23453624 € RED([1,5,3,6,4,7,2])

we have
D(w) = {4,6} C[1,8]
Thus
pw) = [4,2,2].
In the same vein for a standard labeling 7 of a french or english skew or straight Ferrers diagram on 1,2,...,n
we set
p(r) = p(D(7),n). 2.3.18
For instance for the french standard tableau
4 8
T =3 5 7
1 26

the underlined elements are its “descents” thus
p(r) = [2,1,3,1,1]

Using this notation we can represent collection of “descent” sets by formal sums of variables indexed by compo-
sitions. More precisely we set for a given o € S,

Eo) = ). Tpw 2.3.19

For example we have
RED([3,4,2,1) = {[1,2,3,1,2]7 1,2,1,3,2],,[2,1,2,3,2], [2,3,1,2,3] , [2,1,3,2,3]}

from which we deduce that
=([4,3,1,2]) = w32 + z221 + T131 + Tog + T122 2.3.20
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In the same vein, for a french or english straight or skew Ferrers diagram D we set

S(D) = > ay 2.3.21
T€ST(D)

where this summation is over all standard labelings of D.
For instance, the standard tableaux of shape (3, 2) with descents underlined are

2 4 2 5 3 4 3 5 45
1357 1347 125 1247 123"
and this gives
2([3,2]) = w122+ 2131 + T23 + Taz + T32 -
The fact that we get the same expression here as in in 2.3.20 is not an accident. Indeed, it is a particular case of
the main result proved by Stanley’s in []. We can show now that it is a consequence of Theorem 2.3.2.

In fact, Theorems 2.3.1 and 2.3.2 yield us the following two general results.
Theorem 2.3.3
(1) If o is 321-avoiding with associated french skew diagram D then

2(0) = %(D), 2.3.22

(2) If o is Grassmanian of shape A\ and we let \ also denote the Ferrers diagram of
shape )\ then
Z(o) = 2. 2.3.23

Proof
The identity in 2.3.22 is simply another way of stating part (iii) of Theorem 2.3.1. Now from part (i7) of
Theorem 2.3.2 we derive that if ¢ is Grassmanian then
E(U) = Z (Ep* ()
TEST(N)

where, for a composition p = (p1,pa,...,p.) we set p* denotes the reversed composition p* = (p,...,p2,p1).
But then 2.3.23 follows from the fact that for any Ferrers diagram we have

Z Lp=(r) = Z Lp(r) -
TEST(N) TEST(N)
It turns out that Grassmanian permutations are also closely related to dominant permutations. More

precisely we have

Proposition 2.3.4
Let o = 0109 ---0,, be Grassmanian with descent at r, and shape A = (A, \,...,\,) then

o = 0,001 “ 0107410742 Op 2.3.24

is dominant of shape
p=M+r—Lx+r—2,... N\ +7r—r) 2.3.25
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Proof
If
01<03< < 0.>0,41 and 0,31 <0pya< <0y

then the code of o is
c(o)=(01—1,00—2,...,0,.—1,0,0,...,0)

and
Mo)=(op—7,...,00— 2,01 —1).

On the other hand, we derive from 2.3.24 that

)\(U/):(O'T—l,...,ag—l,dl—1)

may 3, 2001
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2.3.26

2.3.27

and (iv) of Proposition 2.3.2 gives that ¢’ is dominant. The final assertion in 2.3.25 follows by comparing 2.3.26

and 2.3.27.

Now it develops that collections of Grassmanian permutations and in particular also collections vexillary

permutations can be used to encode certain characteristics of general permutations. This remarkable discovery

of Lascoux and Schiitzenberger will be the main topic of the next section.
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2.4 The Lascoux-Schiitzenberger tree of a general permutation.

Before we can proceed with the construction of this tree we need to review a few basic facts about the
so called “Bruhat” partial orders. To begin, let us use the symbol ¢;; to denote the transposition (i, j). Here
and after we shall use the symbol “t” to refer to a generic such transposition and reserve the letter s to refer to a
generic simple transpositions s; = (4,7 4 1). We also set

T=T,={tj :1<i<j<n} and S=8,={s;i=12,...,n—1} 2.4.1
Note that if
o' =oxt with teT 2.4.2
then
o =txo with t'eT 2.4.3

Indeed from 2.4.2 we derive that

t = oxtxo !
In other words, if 2.4.3 holds with ¢ = #;; then 2.4.3 holds with ¢’ = t,, ,,. Keeping this observation in mind we
set

a) o'=o0xt withteT
c—B—o' <— 2.4.4
b) U(o’) > 1(o)

Note that if t = t;; we see that b) simply says that o; < ;. Note further that when o; < o; we have
l(o")=1(o)+1 if and only if {oit1,0i42,...,0j-1} Noj,05] = 0 2.4.5

This is simply due to the fact that for any i < k < j such that oy, is in the interval [0;, 0] the number of inversions
of o increases by 2 as we transpose o; with o;. We shall refer to “o —B— ¢'” as a “Bruhat transition ” and
as a “simple Bruhat transition ” when 2.4.5 holds true. This given, the transitive closure of the relation
“o —B— o' ”, denoted “<p” is usually referred to as “Bruhat partial order of S,”.

Remark 2.4.1

We should note that the “weak Bruhat order”, denoted “<y " is similarly obtained. We call “weak
Bruhat” transitions interchanges of the form

a) o/=o0xs withseS
o-W—o' <— 2.4.6
b) (") > (o),

and then define “<y” be the transitive closure of weak Bruhat transitions. With this terminology the reduced
decompositions of a permutation o € S,, may be viewed as the maximal (unrefinable) chains joining the identity
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of S, to 0. The following display illustrates the difference betwee the weak and strong Bruhat orders of Ss.

321 321

123

The following is an important tool for working with Bruhat order.

Proposition 2.4.1 (EXCHANGE PROPERTY)
Let o a permutation of length | and suppose that

w=aias---a € RED(o") 2.4.7
let
I(o") < (o) with o = ot (r<s). 2.4.8
Then for some i =1,2,...,1 we have
a) o' = Sa,Sas " Sai_15aii1 " Sas and b) 0 =Sa,Sas " Sai_1Sais " Sailrs 2.4.9

In particular if I(¢') = I(c) — 1 then we also have

w' =ajas---a;_1a;41---a; € RED(0") 2.4.10

Proof

The assumption in 2.4.8 says that o, > o,. This together with 2.47 yields that in the line diagram
M(aias - - - ;) the o, and o lines cross precisely once. Assuming that this crossing occurs at time ¢ by the action
of s,,, then removing s,, and ¢, from the factorization

0 = Sa,8ay " Sa; " Saylrs 2.4.11

i

we simply obtain the factorization in 2.4.9 a) which will then achieve the same end result. Schematically we may
represent the passing from 2.4.11 to 2.4.9 a) as replacing the line diagram on the left by the one on the right in the
following display.
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Clearly 2.4.9 b) follows from 2.4.9 a) and 2.4.8. Finally, since the factorization in 2.4.9 a) has | — 1 factors, the
assertion in 2.4.10 will necessarily hold true when I(¢’) = I — 1. This completes our proof.

Remark 2.4.2
We should note that removing s,, from a factorization

0 = Sg,8a5 """ Sa; """

i

Sa

m

may be simply obtained upon multiplication of o on the right by the transposition

t = SamSam—1 """ Sair15a;Saiq1 7 Sam—15am

It will be convenient here and after to denote the omission of a factor by sourrounding it by square brackets. That
is we shall write

g = sa18a2'.'[saj:|'.'8am
for
0 = Sai1Saz " Sa;_1%ai41 """ Sam
As a corollary of Proposition 2.4.1 we obtain.
Proposition 2.4.2

If the permutation o has the factorization
0 = 84,54 """ Sa,, 2.4.12
Then indices 1 < i; < iy < --- < i <m can be selected so that
O = Sa;Sa, " Sa;, 2.4.13

Gives a reduced factorization of o.
Proof

If I(o0) = m then 2.4.12 is reduced and there is nothing to prove. If (o) < m then as we compute the
successive products

Say =7 Sa1Say 7 SaiSazSas

sooner or later we will have a drop in length. Letting j + 1 be the first time this happens we will have
1(Say5as8a5 -~ 8a;) =J and  1(Sa;84,5a5 " " Sa;4,) =7 — 1 .
From the exchange property we then deduce that for some 1 < i < j we will have the reduced factorization
SarSanSas* Sajer = SarSas- - [Sa] -+ Sa,
Continuing the successive multiplications

sa15a2 PN [Sai] PPN Saj — Sa15a2 cee [S(Li] “en Sajsaj+2 — Sa15a2 PPN [Sai] PPN Sajsaj+25aj+3 —5 e
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We may run into another drop in length. If this occurs at time k + 1, another application of the exchange property
will yield a reduced factorization of the form

Sa;Sas " Saryr = SarSaz [Sai] e [Saj+1] e [SGT} T Say

We can easily see that if we carry out this process to completion we will end up obtaining a reduced factorization
for o from an appropriate subword of a;as - - - a,, precisely as asserted.

The construction of the Lascoux-Schiitzenberger trees, here and after briefly referred to as “LS-trees”,
depends on performing certain “down-up” transitions of the form

c — u — o 2.4.14

where for some i < r < s we have

and b) 2.4.15

U =0 X tpg o =u Xt
a) {
W{u)=1(oc)—1 (o) =1l(u)+1

This given, for a fixed u € S,, and 1 < r < n we set

U(u,r) = {a€Sy:a=uxty & l(a)=1(u)+1 with s >r},

2.4.16
P(u,r) = {BeSy:B=uxty & I(B)=1(u)+1 withi<r}.
Now we have the following truly remarkable identity
Theorem 2.4.1
For every 1 < r < n for which both V(u,r) and ®(u,r) are not empty we have
Yo Ew = ) =B 2.4.17

a€V(u,r) BEP(u,r)

The proof of this result will be given in section x.y. In this section we shall start by showing that it
naturally leads to LS trees and then derive a number of its important consequences. To this end note that 2.4.17
takes a most interesting form when ¥ (u, ) or ®(u, ) contains a single element. The case when |¥(u,r)| = 1 can
be stated as follows.

Theorem 2.4.2

Let 0 = 0109---0, € S, and suppose that for a pair 1 < r < s <n the permutation u = ot,.

satisties

(1) U(u) =1(c) - 1.
(2) ¥(u,r) = {o}
(3) ®(u,r) # 0
Then
E(o)= Y  E(d) 2.4.18
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This identity suggests an algorithm for computing the polynomials Z(c). The idea is that recursive
applications of 2.4.18 should enable us to reduce =Z(o) to a sum of Z(¢’) which we already know. In view of
Theorem 2.3.3, we might hope that we can force all the ¢’’s occurring in the final sum to be Grassmanian or even
only 321-avoiding. It develops that Lascoux and Schiitzenberger in [] devised precisely such an algorithm for
the computation of Littlewood-Richardson coefficients. Curiously, their algorithm (in spite of their claims to the
contrary) is hopelessly inefficient as compared with well known methods. Nevertheless, unbeknown to them
at that time, and unbeknown to many even at this time, the “tree” resulting from their algorithm is precisely
what is needed for an efficient way to compute the polynomials Z(o) as well as proving some the fundamental
properties of the Stanley symmetric functions.

We shall see that conditions (1) and (2) of Theorem 2.4.2 are easily assured. The only thing that is needed
is a device for assuring condition (3). This is obtained by means of the following “shift” operation introduced
by Lascoux and Schiitzenberger. Using Macdonald’s notation this operation may be defined by setting for each
0 =0103- -0, €5, and and integer m > 0:

]2 3 - m 1+m 24+m -+ n+m
lm @0 = 123 - m og+m oa+m - op+m|’ 2.4.19

The relevancy of this operation for our purposes derives from the following simple fact:

Proposition 2.4.3
For all ¢ € S,, and m > 1 we have

21, ®0) = EZ(0) 2.4.20

Proof
Note that from 2.4.19 we deduce that

ajas---a; € RED(0) <= a;+mas+m---ai+m € RED(o). 2.4.21

Since shifting by a constant each letter of a word does not change its descent set, the identity in 2.4.20 follows
then immediately from the definition in 2.3.19.

The following result is basic in assuring that conditions (1) and (2) of Theorem 2.4.2. are satisfied.

Proposition 2.4.4
Let 0 = 0105 --- 0, and for a triplet 1 <i < r < s <n suppose that o; < 0, < 0,. Set u = o xt,
and o' = u x t;,.. Decompose the circle diagrams of ¢, u and ¢’ as indicated below

1 r S 1 r S 1 r S
A B C A B Cc A B C
Oj Oj Oj C >k
D E F D E F D E F
Os O—X Os X Os %
G H G H G H
O, > 2 O X Oy 4
L L L

CD(O) CD(u) cDE’) 2.4.22
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where a letter in a square represents the collection of “X” ’s in that open region. Then (a) ¥ (u,r) =
{o} and (b) o’ € ®(u,r) hold true if and only it D=0, G=0, H=0, L = 0.
Proof

To assure that o € ¥(u, r) we must have 2.4.15 a). This requires that o, < o, and

{or41,0042,...,05-1} N[op,05] =0, 2.4.23

because any element common to these two sets would produce two additional inversions in the transition u—o,
violating the second part of 2.4.15 a). Now it is easily seen that 2.4.23 simply means that there are no “X” ’s in the
open region denoted by G in CD(c), CD(u) and CD(c’). Similarly, to assure that ¢’ € ®(u,r) we need to have

{0’14,1,0'14,2,...,0'7,,1}0[01,03] :(Z) . 2.4.24

and this means that there are no “X” ’s in the open region denoted by D.

Note further that if we had some s’ > s with 0, < 0 < 0, then by taking the one with s minimal the
permutation u X ¢, would yield us another element of ¥(u, ). So to satisfy the uniqueness part of condition
(a) we must also require that there be no “X s in the open regions denoted by H. Likewise if we had an s’ with
r < s’ < sand oy > o, then by taking the one with s’ smallest the permutation u x ¢, would yield us another
element of ¥ (u, ). This accounts for the requirement L = () in CD(o), CD(u) and CD(¢’). This completes our
argument.

To complete the picture we need to find out for which permutations o = 01, 02 - - - 0, we can find at least
one triplet of indices 1 < ¢ < r < s < n for which the conditions of Proposition 2.4.4 are satisfied. Lascoux and
Schiitzenberger noted the following very simple solution to this problem.

Theorem 2.4.3

If we choose r to be the last descent of ¢ = o1,05---0, and let s > r be the largest index
such that o, < 0., then setting u = o x t., we shall have ¥(u,r) = {o} and there will be at least one
index i < r for which ¢' = u x t;, € ®(u,r) provided

min{o; : j<r} <o 2.4.25

Proof
To help visualizing these choices of r and s, in the figure below, we have schematically depicted the
behaviour of o after its last descent.

01 02"‘q.°°0r ;;;;;;;;;;;;; s+1

In other words we have assured the inequalities

Ort1 < Opg2 <+ <0521 < 05 < Op < 041 < Ogq2 < -+ < Oy, 2.4.26
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In the same vein the permutation u = o x t,., which here and after is denoted “u(c)”, may be depicted as indicated

below
On
.
..
Os+1
u(o‘): 01 02800 G 008 5 covrvrrrvrres Or

[ )
ory* 9.4.27

Now it is not difficult to see that the inequalities in 2.4.26 guarantee the conditions G = H = L = () for CD(0)
and C'D(u(o)) assuring that ¥(u(o),r) = {o}. Now, if the condition in 2.4.25 is satisfied then by chosing the
largest i < r for which o; < o5 we will have

{0it1,0i42,...,0r1} N [o5,04] = 0

assuring that o’ = u(o) X t; € ®(u(o),r). This completes our argument.

This result shows that when condition 2.4.25 is satisfied we are able to express =(o) as in 2.4.18 with
u = u(c). But what are we to do if
01,02,...,0p0_1 > Og 2.4.28

Lascoux and Schiitzenberger have a simple answer also in this case: They simply replace o by

1 2 3 ooon+1

I®o =1y 1416 140y - 140,

Indeed, since the last descent of 1 ® ¢ is now at r + 1 and
ul®o) = 1®u(o)
we can easily see that we have
l(lul®o)=l1®o)—1

as well as
V(u(l®o),r+1) = {1}

Now the inequalities in 2.4.28 can also be rewritten as
14+01,1402,....14+0,—1 > 140,

and these yield that the permutation
0/ = u(l ® 0) X t17r+1 2.4.29

belongs to the set
d(u(l®o),r+1).

Moreover, it is easy to see that ¢’ is the only element of this set. Thus we can apply Theorem 2.4.2 to this case
and derive from 2.4.18 that
E(0) = Ew(l®0o) X t1r41) 2.4.30
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We now have all the ingredients we need for the construction of the LS trees.

The Branching Process for o = 0102 - - - 0yt

Step 1: Locate the last descent of . If this occurs at r then let s be the largest index such
that s >r and o, < o, .
Step 2: Let wu=0 Xtpg=01,00...0p0_ 105041 Os_10pOsp1 - On.

Step 3: Case a) If ®(u,r) # 0 then the children of ¢ are the permutations o’ € ®(u,r).
Case b) If ®(u,r) = () then o has only one child, namely o' = u(1® ) X t; ;1.

Definition 2.4.1

The LS tree of a permutation o is the tree obtained by recursive calls of the branch-
ing process described above starting with o and stopping the recursion at every child that is
Grassmanian.

To show that this construction always yields a finite tree, Lascoux and Schiitzenbereger produce the
following beautiful estimate for the length of any downward path in the LS tree of a permutation.

Proposition 2.4.5
Let o be a permutation of length | and let d,(0) and d, (o) denote the first and last descents
of 0. Assume that for the following chain of permutations

o=V 5
we have
(a) Each is a child of the previous one,
(b) None of them is Grassmanian,
then
N <1 x (di(0) = do(0)) 2.4.33

Before we prove this result it will be good to experiment with the construction of a number of LS trees
and understand how simple the process really is.

To begin let us make more explicit our construction of the children of o. To this end note that in Case a)
the children of o are the permutations o’ = u X t;, for each i < r such that

op<os & {0i+170i+2>«-~,0r71}m[0i;Us] =0,

and when this holds

/
0 = 01,02 0j-1050i41 " -..0p_10;0p41 " 051070541 Op. 2.4.34

In Case b), the unique child ¢’ = u(1 ® o) x #1,,4+1 is none other than the permutation

' 1 2 3 .- r r+1 r+2 --. s s+1 s+2 ---n+1
o = 2.4.35
% ﬁ 2 . e 0'7‘_1 1 0'7,__"_1 PP Us—l ﬁ O's+1 .&
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with the understanding that z =z + 1.

For our first example we take the permutation o = 2671536, which has a simple but not entirely trivial
LS tree. In the figure below we depict this tree with a circle diagrams appended at each leaf.

2671534

Note then that multiple applications of the identities in 2.4.18 and 2.4.30 give us the relations
2(2671534) = S(2674135) + S(4671235)
=(2674135) = 2(3672145)
=(3672145) = =(24781356)

[1]

On the other hand since 24781346 and 4671235 are Grassmanian of shapes [4421] and [443], from Theorem 2.3.3
we derive that

2(24781356) = X([4322]) .,  E(4671235) = %([3332))

Combining all these identities we derive that

2(2671534) = %([4322]) + %([3332))

Thus, in particular it follows that the number reduced decompositions of 2671534 is equal to the number of
standard tableaux of shapes [4421] and [443].

We can easily see from this example that the relations in 2.4.18 and 2.4.30 combined with Theorem 2.3.3
yield us the following general result

Theorem 2.4.4

On the validity of Theorem 2.4.1 and Proposition 2.4.5, for any permutation o, we have
the expansion

2(o) = > (N (0") 2.4.36

o’€LeavesLS (o)

where the symbol “o’ € LeavesLS(c)” is to indicatee that the summation is over the leaves of the
LS tree of o
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We shall take as our next example the permutation o = 24156837. To follow step by step the operations
that yield the LS tree of this permutation, in the display below we have placed under each o the permutation
u(o) or u(1 ® o) as the case may be, and right below we display the offspring. The circled indices are those that
get transposed as we pass from a o to its corresponding (o). Finally under each Grassmanian leaf o’ we draw
the Ferrers diagram of the partition \'(¢”).

21156@30@
21150030
700)8
9‘6

NN
-
-

5
5

~ov
L
W w
a o
w w
w w
-
- -
aa
NN
© ®

S
<

~ov
Lo
w w
~N N
wow
w W
-
- -
o o
~~
© ™

OO 4

2351D1@8 3 312 G 8
2351183 12 G)7 8
55 7 > 5 5 7 5 57
23535@D7 823 23‘4739 345005 73 35 20X 78
235:3@0@7 83 23354739 345025 73 35 2(0@5 7 8
23467158910 234 7GXD6 89 10 215513789 216 57 8)
234768910 216 57 8 )

oD,
33

E:l:l:l 234531537091112 E:I 2335716480910

Thus from Theorem 2.4.4 we derive that
=(34156837) = 2([5,2]) + 2([5, 1, 1]) + 2([4, 3]) + 2([4, 2, 1]) 2.4.37

This example is particularly interesting since the permutation 34156837 is 321-avoiding with corresponding
diagram the French skew partition [5,5,2]/[4, 1]. Now it develops that the skew Schur function S5 5 o) /(4,1) has
the Schur function expansion

S15,5,21/[4,1] = S5,2] T S[5,1,1] + Spa,3) + 2,1 2.4.38

The fact that the right hand sides of 2.4.37 and 2.4.38 are essentially identical is not an accident. In fact it is only
an instance of the general fact discovered by Lascoux and Schiitzenberger that the LS tree can be used to compute
Littlewood-Richardson coefficients.

For the final example we have chosen o = 4321. Here, to save space, we have depicted the LS tree
horizontally. In particular the permutations must be read from top to bottom. We have depicted the circle
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diagrams of the starting and ending permutations.

5
Y Y 4 4 4 4 3 )\)Jx..
X 33 11 009 ] Xle |o |o |0 |®
X > 0O p OO . [LXJe[Xe
. A/
JX..@ 5 5 5 5 6 o|X|e|o|0®|@®
X|o |o |® 2 2 3 3 4 o |e olo|X
2
o |e |X|e 0 |®

We should notice two important facts. First we see here a case when each parent has a single child. This not an
accident. As we shall soon see this is always true for vexillary permutations. Secondly we might guess that for
the general reversing permutation

U(n) o 1 2 ---on—1 n
" In n—-1 -- 2 1]
which is dominant of shape [n —1,n—2,...,2, 1], the Grassmanian permutation which is the single leaf of its tree
has always an associated French skew diagram obtained as 180° rotation of of the diagram of [n—1,n—2,...,2,1].

We leave the proof of this to the reader and derive from Theorem 2.3.3 the following result which essentially goes
back to Richard Stanley.

Theorem 2.4.5
For the top permutation ¢ € S,, we have
Ee™) = S(n-1,n-2,...,2,1))
In particular the number of reduced decomposition of ¢ is equal to the number of standard
tableaux of “staircase” shape [n—1,n—2,...,2,1].

Our next task is the proof of Proposition 2.4.5. However before we do this we need some preliminary
observations and an auxiliary result. To begin, given a permutation o, it will be good to distinguish children
o’ resulting from Case a) of the branching process from those resulting from Case b). We shall call the former
“regular” children and the latter “lateral” children.

It will be good to order regular children o’ = u(o) X ;- according to increasing i. More generally, under
the hypotheses of Proposition 2.4.4 let

Du,r) = {uxty,, uxtiyr, -, uxty ,}
with iy < i < -+ < iy,. Thenitis easy to see that we must also have
Oiy > 04y >0+ > 04, 2.4.39
for otherwise the condition in 2.4.24
{0it1,0it2, -, 0r_1} N]os,05] = 0

assuring that o’ = u X t; € ®(u,r) would be violated. This given we see that i,, must be the last index i < r
such that o; < 0. Following Lascoux and Schiitzenberger we shall call u x t; . the “leader” of ®(u,r).
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Remark 2.4.3
For our later purposes it will be good to note that if ¢/ = u x t; , is the leader of ®(u, r) if and only if

Oi41,0441y+-+-,0p-1 > Og 2.4.40

The following two auxiliary results will provide us with the necessary ingredients for the proof of
Proposition 2.4.5.

Lemma 2.4.1
Let ¢ = 01050, and suppose that for a triplet 1 <i <r < s <n we have o; < 0, < 0,.
Suppose that for v = o x t., and o' = u x t;, we have

U(u,r)={c} , o € d(u,r). 2.4.41
Then
U(uto)={c"1} o tedwt o) 2.4.42
and
a) Mo) < A" by N™H <N 2.4.43

with equality in a) if and only if o' is the leader of ®(u,r) and equality in b) if and only if o'~' is
the leader of ®(u=1,0y).
Proof

From Proposition 2.4.4 we derive that the conditions in 2.4.41 hold if and only if the circle diagrams of
o, wand o’ are of the form given below.

1 r S 1 r S 1 r S
A|lB]|C A|lB |cC A|lB]|cC
Oj Oj X Oj C >
(|) E|F (I) E | F ¢ E | F
Os O Os Os >*
e ¢ |0 oo
Oy Oy Oy
¢ ¢ ¢
CD(O) CD(u) cbo’)

24.44

Since the empty sets are symmetrically located with respect to the main diagonal of these diagrams we derive
from Proposition 2.4.4 that the conditions in 2.4.41 and 2.4.42 are equivalent. Thus we only need to prove the
inequalities in 2.4.43. Letting a, b, ¢, e, f denote the cardinalty of the sets A, B, C, E, F we immediately deduce,
by counting the number of circles in columns 4, r and s of C'D(o) that

cilo)=a+b+c , c(o)=b+ct+e+f+1 , cs(0)=c+f. 2.4.45
Doing the same for C'D(o”’) we obtain

ci(oy=a+b+c+1l+e+f er(d)y=b+c |, cs(d)=c+ f. 2.4.46
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Since the changes needed to get CD(o¢”) from C'D(o) involve only columns 4, r and s we see that we have
cj(o) =¢j(o") forj#r,s
Now we need to distinguish two cases according as
a) a>e+f+1 or b) a<e+f+1.

In the first case ¢;(0) > ¢, (o) and 2.4.46 shows that to obtain the Ferrers diagram of A(¢”) from the Ferrers diagram
of (o) we simply transfer 1 + e + f cells from a smaller row to a larger row. In the second case ¢;(c0) < ¢, (o)
and to obtain the transition A(c)—\(c’) we need to transfer a cells again from a smaller row to a larger row. So

in either case the transfer will cause \(¢”) to be larger than A(o) in the dominance order. This proves a) of 2.4.43.

Now because of 2.4.2, we can apply this very same inequality to the triplet 01,41, 0’ and obtain

Mo hH <A@ ™Y). 2.4.47

This proves 2.4.43 b), since passing to conjugates reverses dominance.
Finally, from 2.4.45 and 2.4.46 we see that in any case we have

cr(o) > cr(0'). 2.4.48

Thus equality in 2.4.43 a) can only occur if and only if ¢, (¢) = ¢;(¢”) and ¢;(0) = ¢, (o). This shows that equality
holds if and only if « = 0. Now a look at the diagrams in 2.4.44 reveals that a = 0 occurs if and only if

oj >0, V i<j<r

But this is 2.4.40 which, from Remark 2.4.3, is precisely the condition that characterizes a leader of a collection
®(u,r). This given, note that since equality in in 2.4.43 b) holds if and only if we have equality in 2.4.47, we see
that the finall assertion simply follows by applyng what we have just shown to the triplet =%, u~1,o'~!. This
completes the proof.

Lemma 2.4.2
If ¢’ is a child of a non-Grassmanian o then

dl (J/) - do(al) < dl (J) - do(a) ) 2.4.49
and, in case of equality we then have
Cdy(07)(07) < €ay(0)(0) - 2.4.50

Proof
Since a lateral child of a permutation o is a regular child of 1 ® o, and we trivially have

a) d1(1®0):d1(0)+1
b) do(l1®0)=d,(0)+1
¢) cCa(10)(1®0) = c4(0)(0)
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we can easily see that we need only prove 2.4,49 and 2.4.50 for regular children. This given, let us assume that ¢’
is a regular child of 0. Now under this hypothesis we will actually show that

a) do(o) <d,(¢') and b) di(o’) <dyi(o). 2.4.51

To this end, recall that in this case we have u = u(c) = 0 x t,5, 0/ = u(0) X t; with r = dy (o) (the last descent)
and again1 <i <r < s <n with 0; < 05 < 0. In summary

O = 01°°°0i-1040;41" """ 0r—-10p0p41 """ 05-1050541 """ 0p
and
/
0 = 01'°°04-1050i41"""0r-10i0p41" " 05-1070541" " 0n
In particular
/ . .
oj=0; for j#i,r s .

Thus if d,(0) < i — 1 then d,(0) = d,(0) and similarly we will have d,(0) = d,(0’) if i < do(0) < r—1. If
do(0) =i — 1 we may have destroyed the descent at i — 1 by placing o, > o¢; in position i, giving d,(c”) > d,(0).
Otherwise we again have d,(0') = d,(0). If d,(0) = i then the inequalities

/! /
0, =05 >0;>0i4+1 = 0,41

give d,(0’) = i as well. But what if d,(c) > ¢ (thatis 0; < 0y41) and 0,41 < 05. Now this cannot happen for
otherwise the condition

{oiy1,0i42,...,001} N[o,06] = 0

assuring that o’ = u x t;, € ®(u, ) would be violated. Since by assumption o is not Grassmanian we must have
do(0) < r, thus we are only left to check what happens when d, (o) = r — 1. Thatisif o,_; > o,. However in this
case the inequalities o, > o > 0; guarantee that » — 1 remains a descent as we pass from ¢ to ¢’ completing the
proof of 2.4.51 a). To prove 2.4.51 b) note that the picture in 2.4.27 clearly shows that neither u(o) nor ¢’ have a
descent after position r. So we only need to check what happens at r itself. To this end note that since o]. = o; and
0,41 = or41 we see that we have d; (¢') = dy (o) only if the picture is as in 2.4.27 and 0; > 0,41. Forif o; < 0,44
or worse yet if o has no elements between positions r and s, (thatisif s =+ 1) then o, |, = 0, > 0, > 0; > 0.
destroys the descent at r and we will have d; (¢”) < d1(0).

Finally since the computations in the proof of Lemma 2.4.1 apply to the present case as well we see that
the inequality in 2.4.48 holds true here with = d; (¢). In other words we have in any case

Cdy (o) (0'/) < Cdy (o) (O’) .

However, this inequality reduces to 2.4.50 when d; (¢) = d;(¢’) and this certainly happens when 2.4.49 reduces
to an equality. In fact from 2.4.51 a) and b) we can see that 2.4.49 can be an equality only if we have both
di(¢") = di(o) and d,(0") = d,(0). This completes our proof.

We now have all the ingredients we need to carry out the final step in the definition of the LS tree.
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Proof of Proposition 2.4.5
Let us associate to the member ¢ of the chain

the point
PO = (g oy (0?), di(0®) —do(c1?)) .

Note that, since the components of the code of a permutation never exceed its length, and all the descen-
dants of a permutation have the same length we see that we must have

1< cg, oy (0?) <1 fori=1,2,...,N. 2.4.52
Note further that, since none of the o(¥ are Grassmanian, we necessarily have
1 <di(0W) —dy(c) fori=1,2,...,N. 2.4.53

Moreover, we can apply Lemma 2.4.2 to each transition o() —¢(*1) and, by successive applications of the
inequality in 2.49, derive that

di(cD) —dy(6D) < di(0) — do(0) fori=1,2,...,N. 2.4.54
Combining 2.4.52, 2.4.53 and 2.4.54 we obtain that each of the points P(*) lies in the rectangle
S(o)={(z,y) : 0<z <l & 1<y<di(o)—d,(o)}.

Since S(o) contains [ x (di (o) — d,(0)) lattice points, we see that to prove the inequality in 2.4.33 we need only
show that the points P(*) are all distinct. Actually we can do more than that. Indeed, note that from Lemma 2.4.2
we derive that either

di (D) — dy (6 < dy(0@) — dy(0P)

or
dy (0D —dy (o)) = dy (6) — dy (o)

but then 2.4.50 gives

Cdl(a(i+1))(0(i+1)) < Cdl(o(i))(o'(i)) .

Thus the point P(*) keeps moving to the left as it remains in any given row of S(o), This means that after at most
| steps we will necessarily have the inequality

dy (D)) — dy(6Y) < dy(6@) — dy(c)

which will cause P to skip to a lower row. In summary, we see that P(Y), asi = 1,2,..., N, skips from lattice
point to lattice point precisely in a strictly decreasing lexicographic manner and thus N cannot exceed the number
of lattice points in S(o).



Topics in Algebraic Combinatorics LECTURE NOTES may 3, 2001 60

The last result of this section is the following (anticipated) beautiful consequence of Theorem 2.4.4.
Theorem 2.4.6

If o is vexillary then its LS tree reduces to a chain of vexillary permutations ending with
a Grassmanian. In particular it follows that

E(o) = X(N(0) 2.4.55

Proof
Let o be any vexillary permutation and let its children be given by the collection

O(u,r) = {uxtil,r, UX Tigry ooy uxtimyr}

with r = dy(0) and 71 < i3 < -+ < i,,. Then we have seen (2.4.39) that we must also have
Ojy > Ojy > 0 > 04,

However our construction also requires that
op > 05 > 0y

and the elements o;,, 0;,,0,, 0, occur in o precisely in this order. This means that if £ > 2 then o would contain
a 2143 subpattern which is contrary to our assumption that o is vexillary. Thus vexillary permutations have only
one child, regular or lateral.

Now, recalling (see 2.3.12) that a vexillary permutation o is characterized by the equality A\(c) = X' (o7 1),
we derive from the inequalities in 1.4.43 that the child of a vexillary must also be vexillary and of the same shape
as well. This means that the Grassmanian leaf o’ of the LS tree of a vexillary o will necessarily also have shape
A(0). Thus the equality in 2.4.55 is simply another consequence of Theorem 2.3.3.

3. Symmetric Functions and Schubert Polynomials.

3.1 Stanley’s Theory of P-Partitions

In these note a partially ordered set (briefly a poset) is a pair {Q, <) consisting of a finite set Q and a
partial order “<" of the elements of . It will be convenient here and after to let n be the number of elements of
Q. For a given poset P = {Q, <) we let Fp denote the family of integer valued weakly increasing function of
P. In symbols

Fp = {f:Q=N:z=y = f(a)<fly)}.

The elements of Fp are usually referred to as “P-Partitions”. More generally, given an integral injective
labelling w of Q we let Fp , denote the subfamily consisting of those elements of Fp which strictly increase when
w decreases. In symbols

Fpw = {feyp:x{g&w:c>wyjf($)<f(y)}' 3.1.1
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The elements of Fp , are called “w-Compatible P-Partitions”.

It will be convenient sometimes to keep these families finite and restrict their elements to take only the
values 0,1,2,..., N, for some unspecified very large integer N. In this vein set

Fp(N) = {feFp :0<f<N} , Fpu(N) = {f€Fpo :0<f<N}. 3.1.2

This given , to each element f € Fp ,, we associate a monomial z(f) in the variables x1, x2, 3 . .. which
is to carry information as to the multiset of values taken by f. More precisely we set

o(f) = [[2re = sznm 3.1.3

reQ

where for i € N, the integer m;(f) denotes the number of times f takes the value i.
Extending an idea of MacMahon, Stanley obtained a number of identities concerning the generating
functions

Fp}w(l‘l,xg,...l‘]\]) = Z .’L‘(f) 3.1.4
fe}-'P,u(N)

The main goal of this section is the derivation of some of the identities that are pertinent to our study of reduced
decompositions.

The first step is to obtain an expression for Fp ,, that more closely reflects its dependence on the poset P
and its labeling w. The basicidea is to obtain a decomposition of each element f into a pair (o(f), p(f)) consisting
of a permutation o = 0103 - -0, and a composition p = (p1,p2,---,ps). To this end, let f € Fp (V) take the
values

V1 < v < e < U

and set
A = {x: fla)=wv}. 3.1.5
Since  has a n elements, there is no loss to assume that the given labeling w takes the values 1,2,...,n. For
simplicity it will also be convenient to denote the elements of 2 by their labels. This given, the permutation o (f)
is simply obtained by reading the elements of A, A,, ..., Aj successively. More precisely we set
U(f) = Tw A1 To A2 - T Ak 3.1.6

Where the symbol “7,, A;” denotes the word obtained by reading the elements of A; in increasing order. Now,
given that o = 0109 - - - 0, we simply set p(f) = (p1,ps2,...,pn) with

p1=f(o1) and p.= f(or) — flor—1) (forr=2,...,n). 3.1.7

This construction is best understood by an example. Let P be the poset depicted below with the partial order
indicated by the arrows and the labeling w indicated by the integers placed in the circles. We have also given an
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instance of a particular element f € Fp ,,(N) by placing its value above each of the circles.

3.1.8
In this case our definition gives
Ay ={5}, Ay ={2,6,7}, As ={3,4}, Ay ={1}. 3.1.9
thus 3.1.6 gives
o(f) = 5.267.34.1 3.1.10

Here we have indicated by dots the positions of the descents of the resulting permutation. Following 3.1.7 we
then obtain
p(f) = (1,2-1,2-2,2-2,3-2,4-3,5—-3)=(1,1,0,0,1,1,2) . 3.1.10

To state the basic result of the Stanley Theory pf P-partitions we need some notation. To begin,
given a poset P = (Q, <), the linear extensions of the partial order “<” will be briefly referred to as the
“Standard Orders of P”. If P has been given an injective labeling w by the numbers 1,2,...,n, then by
reading its labels according to standard orders of P we obtain a collection of permutations o € S,,. Here and after
we will call these permutations “w-Standard” and we will denote their collection by “ST,,(P)”. Finally, given a

permutation o = 7103 ... 0, a composition p = (p1,pa, ..., p,) will be called “o-compatible” if its components
satisfy the inequalities
Pry1 2> 1 ifo, > 004
>0 & for r=1,2,....,n—1 3.1.11
pri1 > 0 otherwise

Since this condition essentially says that p majorizes the descent set of ¢ translated by 1 we will briefly express it
by writing
“p>>1+4 D(a)”

We now have the following fundamental fact.
Theorem 3.1.1

Let P = (Q,<) be a poset with an injective labeling w by the integers 1,2,...,n. Then
the map f—(o(f),p(f)) defined by 3.1.6 and 3.1.7 is a bijection between the family Fp . and the
collection C(P,w) of pairs (o,p) where o is w-standard and p is o-compatible. In symbols

C(P,w) = {(a,p) o€ STL(P) & p>> 1+D(a)} 3.1.12

Proof
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For a given f € F,(P) leto(f) = 0102 - - 0,,. Identifying the elements of  with their labels 1,2,...,n,
to show that o(f) € ST,,(P) we need only verify that

Or =0 = r<s 3.1.13

Now recalling the construction that led to 3.1.6, we see that if f(0,) = f(o,) then the definition in 3.1.2 yields
that o, < 5. Moreover, o, and o, must lie in the same set A;. But then o, must come before o, giving r < s as
desired. If f(o,) # f(os) then o, < o, forces f(o,) < f(os) and this means that o, € A; and o5 € A; with i < j,
so we must again have r < s. This proves 3.1.13.

To show that p(f) satisfies 3.1.11 note that, by its very construction, the descents of the permutation o( f)
can only occur between two successive words “1,, 4;,” and “7,, A;11”. Butif o, € A; and 0,41 € A;41 then
f(o;) =v;and f(o41) = viy1 give pry1(f) = viy1 — v; > 1 as desired.

Now the map f— (o (f),p(f)) is clearly injective since we may simply recover f from the identity

floy)=pi+p2+--+pr 3.1.14

which reverses 3.1.7. To complete the proof we need only verify that this map is onto. Let then the pair
(0,p) € C(P,w) be given and let f be defined according to 3.1.14. We must show that f € F,(P) and that
(o(f),p(f)) = (o,p). To begin with, since o is a linear extension of P we have that o; < o; forces i < j and thus
the definition in 3.1.14 gives

floi) < f(o))

as desired. Moreover, note that if o; > o; then between i and j the permutation o will necessarily have a descent
and the o-compatibility of p will force

f(oj) = floi) =pj +pj—1+ - +Dpit1>0.

This shows that f € F,(P).
Finally, to construct the permutation o( f) according to the recipe in 3.1.6 we need to determine first the
sets A;. To this end let us decompose the permutation ¢ in the form

g = B]BQ"‘Bh

where the B; are the words obtained by cutting ¢ at its descents. Since these words are necessarily increasing,
we may view their collection as a partition of the set {1,2,...,n}. Note then that, having constructed the sets
A, for the f defined by 3.1.14, we see that if 0, € A;, then p,1 > 0 will cause 0,41 to be in A;;, and this forces
Ay, Ag, ..., Ay to be a partition of {1,2,...,n} which can be obtained by cutting the words B, into successive
segments. Putting it in another way, for some indices 1 < iy < iy < -+ < ip_1 < k we will have

By =T, A1 Tw A2 -+ Tu Ay,
By =10 Aiy11 Tw Aiyr2- - T Asy

Bn =T Aiy_1+1 Tw Aiyy_142- T Ag
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But this gives
J(f) :TwAlTwAQ"'TwAk = BIBZ"'Bh = O

as desired. This given the identity
p(f) =»
immediately follows from the definition of f in 3.1.14. This completes our proof.
Theorem 3.1.1 yields a beautiful expansion for the polynomials Fp .

Theorem 3.1.2

Fp,w(l‘l,ajg,...,l’]\[) = Z Z T3, LBy " T3, 3.1.15

0€ST,(P) 1<p1<B2<- <P <N
0i>0i11 = Bi<Bit1

Proof
Using the map f— (o(f),p(f)) from Theorem 3.1.1 and the definition in 3.1.3 we get that

Fp,w(l‘l,xg,...,x]v) = Z Lp1Tpi+ps * " Lpi+pat--+pn -
(o,p)EC(Pw)
However, 3.2.12 gives
Fp,(z1,22,...,N) = Z Z Tpy Tprtps *** Tpr+patetpn - 3.1.16

c€ST,(P) p>>14+D(0o)

Now p >> 1+ D(o) simply means that
Oi > 0iy1 = p1+ -+ pi<prt-+pin1

and so we see that 3.1.15 is simply another way of writing 3.1.16.

Remark 3.1.1
We should mention that the inner sum in 3.1.15 is one of Gessel’s “ Quasi-Symmetric” functions []. To
simplify some of our formulas, and to be consistent with the notation introduced in section 2.3, it will be good to
represent these polynomials by a symbol indexed by a “strict” composition. (F) To this end if p= (p1,D02,---,Pk)
and all p; > 1 then we shall write
PEN «—pitpet-tpr=n

To such a composition p we shall associate the subset S(p) C {1,2,...,n} defined by setting
S(p) = {p1,p1+p2,---,p1+p2+ -+ pr_1} 3.1.17

This given, for p = n we shall here and after set

Qp(z1,22,...,2N8) = Z T3, T, - X3, 3.1.18

1<B1<B2<-- <P <N
i€S(p) = Bi<Pi+1

(1) Thatis an integral vector with all components > 1
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Now, recalling the definition in 2.3.17 of the composition p(w) corresponding to the descent set of a word w, we
see that the identity in 3.1.15 may be simply written as

Fp ,(z1,22,...,ZN) = Z Qpo)(T1,22,...,7N) 3.1.19
oceST,,(P)

Remark 3.1.2

In view of the definition in 3.1.1, we see that for the example given in in 3.1.8 the labeling forces the
elements of Fp ,,(IV) to be strictly increasing as we go NORTH-WEST and weakly increasing as we go NORTH-
EAST. In particular, in this case, the family Fp ., can be identified with the collection of all column-strict tableaux
of shape (3,3,2). Recalling the definition of a Schur function Sy as a sum of monomials corresponding to
column-strict tableaux of shape A\ we see that in this case we have

Fp)w(afl,l‘g, e ,.’L‘N) = 53’3’2(.%'171‘2, e ,,CCN) .

Clearly this is not an accident but a particular case of a general method for obtaining expansions of Schur
functions in terms of quasi-symmetric functions. To state the result which follows, we need to make some
notational conventions. Given a French skew diagram D with n cells and a standard filling 7 of D we shall
denote by w(7) the permutation obtained by reading 7 from from left to right, by rows starting from the top row.
For instance if D = 5442/311 and

2 10
3 79
T = 1 4 8 3.1.20
5 6
then
w(7‘)=21037914856 3.1.21

Now we can construct from any skew diagram D a poset Pp by tilting the diagram 45° counterclockwise and
for two cells , y set < y if and only if we can go from x to y by a sequence of NORTH-WEST and NORTH-EAST
steps. In the display below we have illustrated the poset Pp corresponding to the shape D = 5442/311

Fig. 3.1.22

In this display the numbers in circles are obtained by labeling the cells of D with 1,2, ..., n = 10 from left to right
and from top to bottom. We shall here and after assume that the posets Pp are given an w labeling constructed
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in this manner. This will be referred as the “Natural Labeling of Pp”. It should then be noted that every
standard standard tableau 7 of shape D will then give raise to a linear extension of Pp. This should be quite
clear from Fig. 3.1.22 where we have placed above the circles the corresponding entries of the tableau 7 of 3.1.20.
This given, to each standard tableau of shape D there will correspond an element o(7) € ST,,(Pp) obtained by
reading the labels in the circles in the order given by the linear extension corresponding to 7. For instance in the
case illustrated in Fig 3.1.22 we obtain the permutation

8 9
o(r) = {6 3 5 3.1.23

We are now in a position to state and prove a basic expansion result for skew Schur functions.

Theorem 3.1.3
For any skew diagram D we have

Sp(x1,22,...,Tn) = Z Qpr) (21, 22,...,Ty) 3.1.24
TeST(D)

Proof

Let Pp be the poset corresponding to D and let w be the natural labeling of Pp, obtained by the construction
given above. We can easily see from the example displayed in 3.1.8 that the column strict tableaux of shape D
may be identified with the w-compatible Pp-partitions. It thus follows from Theorem 3.1.2 that

Sp(@1,22,...,2n) = Z Qp(o) (T1,T25 ..., Tn) -

c€ST,(Pp)

Now from what we have observed it follows that this identity can be rewritten as

SD($1,IL'2,...,$n) = Z QP(U(T))(xl,xQ,...,xn). 3.1.25
TeST (D)

However, a glimpse at Fig. 3.1.22 and the permutation in 3.1.23 should reveal that the descents of o(7) occur
precisely at the indices i of 7 where i + 1 is strongly NORTH and weakly WEST of i. But these are precisely the
descents of 7 itself. In other words by the notation we introduced in section 2.3 we have

Substituting this in 3.1.25 gives 3.1.24 as desired, completing the proof.

Given two words a = ajas - - - ap and b = by by - - - by, the collection of all words obtained by shuffling the
letters of a and b (as if they were card decks) is called the “shuffle of a and b” and is denoted

“a LU b

For instance if a = a;as and b = b1 b33 then

aUb = {ayagbibabs , arbrazbabs , a1bibzasbs , a1bibgbzaz , biajazbabs

biaibaashs , braibabzas , bibsajazbs , bibsaibzas , blbzb3a1a2}
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The following result shows the peculiar way by which quasisymmetric functions multiply.

Theorem 3.1.4
For a = ajay---a, €S, and 8 = p132--- By, € S, we have (for sufficiently large N)

Qp(a)(xl,xg,...,a:N)Qp(@)(xl,xg,...,xN): Z Qp(g)(xl,xg,...,a:]v) 3.1.26
cealll1R0
Proof
Let P, denote the ordinary chain
Prn=0{1,2,...,h},<).
and let us label the elements 1,2,...,h by ai, as,. .., a; respectively. Since Py, is linearly ordered the collection

STa(Pr) reduces to the single permutation «. Thus from 3.1.19 we derive that

Fp, o(21,%2,...,oN) = Qp@)(T1,22,...,2N). 3.1.27

Similarly, if P, = ({1,2,...,k}, <) and we label its elements (1, 3o, . . ., B, we get

Fpk,@(l‘l,l'g, ce ,,IN) = Qp(ﬁ)(l‘l,l'g, ce ,xN) . 3.1.28

Now let P = P}, U Py, be the poset consisting of the simple disjoint union of these two chains and let w be the
labeling of P obtained by giving the elements of Py, the labels a1, as, . .., ) and the elements of Py, the labels

h+pB1, h+02, ..., h+ k. 3.1.29

This given it is easy to see that every w-compatible P-partition f € Fp , is simply obtained by choosing a pair
f1 € Fp, o(N) and fo € Fp, g(N) and transplanting them onto the P;, and P, portions of P. In fact, the w-
compatibility of f; is trivial and that of f> follows from the fact that the labeling in 3.1.29 has the same descent
set as the labeling 51, B2, . . ., 8. Thus it follows that in this case

F’p’w(l'hl‘g, e ,(EN) = Qp(a)(ajl,xz, N 71‘]\]) Qp([j)(ajl,xg, N ,.’L‘N) . 3.1.30

Now it turns out that the desired identity in 3.1.26 is obtained by computing the same polynomial by means
of formula 3.1.19. In fact, it is easy to see that here the elements of ST,,(P) are none other than the shuffles of
ai, @, ..., o with the labels in 3.1.29. In our notation these are simply the permutations in

a Ull,®p

Thus in this case 3.1.19 may be rewritten as

Fpo(z1,22,...,2n) = > Quoylaraa,. . 2N).
cealll1Ri

This completes our argument.
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3.2. The Stanley Symmetric Function of a Permutation.

Early in the summer of 1982 Richard Stanley started an investigation aimed at the enumeration of reduced
decompositions. This was prompted by his discovery that data gathered in previous work [] showed that the
number of reduced decomposition of the the top element of S,, for n = 2,3,4,5,6 is equal to the number of
standard tableaux of corresponding staircase shape. Given his previous work, in particular formula 3.1.19, he
was led to the bold step of setting for any given o € S,, and N > [(0)

F,(x1,22,...,2N) = Z Qp(w) (1, T2, ..., TN) . 3.2.1
wERED (o)

Unbeknown to him at the time, he was essentially discovering a natural generalization of “Skew Schur Func-
tions”. Experimentations with examples that can be obtained by hand computations led him to conjecture that
F, is a Symmetric Function with a Schur Function expansion of the form

Fg(.ﬁl,xz,...,l‘]\/) = Z Cl)\(O')S)\(Jil,l‘g,...,J}N). 3.2.2
AeC(o)

with C(o0) a suitable collection of shapes and the ay (o) certain positive integers. His investigations led him to
a seminal publication [] where he presented a number of results supporting his conjectures. In particular he
proved the symmetry and showed the containement

Clo) C{A: Ao ) <A< N(0)}. 3.2.3
In particular he derived (see 2.3.12 and Theorem 3.2.3 below) that for ¢ vexillary
Fo(xl,l‘g, ceey .T,‘N) = SA/(U)(JH,JZQ, S ,JTN) . 3.2.4

This allowed him to completely settle the case of the top element of S,,. However he was not able to
prove Schur positivity (i.e. ax(o) > 0 in 3.2.2) nor identify the collection C(c). In subsequent years all of his
conjectures were proved and even some analogous results were established for other Coxeter groups, in a variety
of papers [[,[],[]. The methods used ranged from purely combinatorial, to representation theoretical and algebraic
geometrical. In reviewing this literature we discovered that a relatively simple and very accessible proof of the
Schur positivity of F, can be obtained by suitably combining a number of results from a variety of sources. To
be precise, note that as a corollary of Theorem 2.4.4 we obtain the following remarkably beautiful solution of the
Schur positivity problem for F,.

Theorem 3.2.1
On the validity of Theorem 2.4.1, for any permutation o we have

Fo(xy,29,...,2N) = Z Sx(ey (71,22, ..., TN) 3.2.5
o’€LeavesLS(o)

In particular, for the collection of shapes occurring in 3.2.2 we obtain that
Clo) = {A:A=X(o") for some o' € LeavesLS(c) } 3.2.6

Moreover, form 3.2.5 we derive that the multiplicities ax(c) have a very simple combinatorial
interpretation, namely
ax(o) = #{o' € LeavesLS(c) : N(o') =)} 3.2.7
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Proof
From the definitions of Z(c) and X(\) given in 2.3.19 we see that
Fo(z1,20,...,2,,) = ZE(o 3.2.8
( L2 ) ) Tp—Qp(21,22,...,T5)
Now using 2.4.36 we derive that
Fy(z1,20,...,2p) = Z E(/\’(U’)) . 3.2.9
o’€LeavesLS(o) Tp—=Qp(T1,22,1,2n)
Now note that from the definition in 2.3.21 and Theorem 3.1.3 we get that for any partition A we have
SA(xl,:vg,...,xn) = E(/\) 3.2.10
Tp—Qp(x1,22,...,%n)

This given we see that 3.2.5 follows from 3.2.9. This completes the proof since 3.2.6 Ind 3.2.7 are immediate
consequences of 3.2.5.

Remark 3.2.1
It should be noted that also the containement in 3.2.3 follows from Theorem 3.2.1. Indeed we see from
Lemma 2.4.1 that for every regular child ¢’ of a permutation o we have

o) Ao <N ) <N ™)

and since A\(o) = A(1 x o) we see that these inequalities must hold also for a lateral child. Applying them
recursively yields that they will have to hold as well for any leaf ¢’ of the LS tree of . Thus 3.2.3 follows from
3.2.6.

Our proof of Theorem 2.4.1, on which the validity of Theorem 3.2.1 depends, will be given in the next
section. It will be based on the Theory of Schubert polynomials together with some of the identities proved in [],
[l and []. In the remainder of this section we shall present some results and proofs given in [] and []. In particular
we shall include here the very beautiful argument given by Fomin and Stanley in [] proving the symmetry of F,.
Of course, also this symmetry is a consequence of 3.2.5. However, even though most of what we ever wanted to
show follows from Theorem 3.2.1, there are a number of beautiful arguments and results in this theory that are
worth relating. So it will be worthwhile to include some of them here, even at the expense of ending up with
more than one proof of the same result.

In [] Fomin and Stanley base their arguments on the so called “Nil-Coxeter ” algebra N'C,, . Using this
device they were not only able to prove the symmetry of F, but also could derive in a very efficient way some of
the basic properties of Schubert polynomials. This given it will be most appropriate to introduce it in this section.
The definition of NC,, is quite immediate. It is simply a K -algebra with generators

U, U2y v vy Up—1 , 3.2.11
together with an identity “1”, and relations
a) u?=0,

b) wiuj =uju; when |i—j]>1, 3.2.12

C) Ui U1 Ui = Ui+1 Uj Uj41 for 1<i<n—2.
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Here K needs only be the ring of polynomials with integer coefficients in the variables 21, 2o, . .. 2y, 2, y. We shall
see that such an algebra has a natural faithful representation in terms of the Lascoux-Schiitzenberger divided
difference operators §; introduced in the next section.

The relations in 3.2.12 assure that for any word w = ajas - - - a; we shall have

Ugy Ugy ** Ugy 0

if and only if w is a reduced word of some permutation 0. Moreover, using b) and ¢) we can show that if
w = ajay---a;and w’' = afal - - - a) are both reduced words for the same permutation o then we necessarily have

UgUgqy ** *Uq, = ua/lua/z-nua; .

This means that to any o € S,, we can associate a well defined element u, € NC, simply by setting for any
reduced word w = ajas---a; € RED(0)

Uy = UgUay " Uq, - 3.2.13
This given, Fomin and Stanley set
Ai(@) =1+ 2zup-1)1+zup—2) - 1+2xu;). 3.2.14
and obtain the following basic commutativity relations.
Proposition 3.2.1
Ai(z) Ai(y) = Ai(y) Ai(z) (fori=1,2,...,.n—1) 3.2.14
Proof
Note that for ¢ = n — 1 the identity in 3.2.14 reduces to
I4+zup—1)A+yun—1) = I+yup—1)1+zun_1). 3.2.15
This is trivially true since setting
hi(z) = (1 4+ zu;) 3.2.16
from a) of 3.2.12 we derive that
hi(@)hi(y) = hi(z+y) = hi(y)hi(z). 3.2.17

So the idea is to prove 3.2.14 by descent induction on i. Now the crucial identity here is a beautiful extension of
3.2.12 ¢), namely
hi(@)hig1(z +y)hi(y) = hixa(@hi(z +y)hipa(z) . 3.2.18

This can be easily verified by means of a) and ¢) of 3.2.12. Now, assume that we have shown

Aip1(2) Aigi(y) = At (y) Aiga(z) 3.2.19
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This given, we have

Ai(x)Ai(y) = Aip1(@)hi(@) Aivz(y)hiva(y)hi(y)
(using3.2.12b) ) = Aip1(z)Aipa(y)hi(x)hiz1(y)hi(y)
(using3.2.17) = Aiy1(2)Aira(y)hi(@)hiv1(y)hi(y — 2)hi(x)
(using3.2.18) = Aip1(2)Aisa(y)hit1(y — 2)hi(y)hipa (2)hi(z)
(using3.217) = Aip1(2)Aip1(9)hiv1(—2)hi(y)hiv1(@)hi(z)
(using3.219) = Aip1(y)Ais1(@)hig1(—2)hi(y)hivr (2)hi(z)
(using3.2.17) = Aip1(y)Aisz(@)hi(y)his1(z)hi(z)
(using 3.212b) ) = Aip1(9)hi(y)Aipa(@)hir(2)hi(z) = Ai(y)Ai(z)

completing the induction and the proof of the proposition.
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The relevance of these computations in our context stems from the following remarkable identities

Proposition 3.2.2
Given a permutation o = oy05-- -0, Set

with
ol = ’I”L+].*O'n+1_7; (fOIizl,?,...,n)

K2

Then for N > 1 =1(c) we have

Fou(z1,22,...,2pn) = Z Z Tp, 28,

araz-—-a;€RED(0) 1<31<B2<--<B <N
ai<aiy1 = Bi<Bit1

in particular
FU* (:)3171'2, N ,:En) = ./41(%1)441(%2) . '.A1(£L’N)

Uo

Proof

Note first that if we turn upside down the line diagram of a reduced decomposition a;as - - -
each label “i” by the label “n + 1 — i” the result will simply be the line diagram of n — a1n — as - - -

this replacement changes the target permutation o into o* we deduce that we have

aias---a; € RED(o) = n—an—as---n—a € RED(c

This means that if
w=aias---aq and w'=n—-an—az---n—aq

Then the descent sets of w and w* are complements of one another. In symbols

Dw*) = °D(w)={1,2,...,1—1} — D(w)

LB,

*).

3.2.20

3.2.21

3.2.22

3.2.23

a; and replace
n — a;. Since

3.2.24

3.2.25
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Now the definition in 3.2.1 may also be written as

Fg($1,$27...,$n): Z Z T, TPy T

ajaz-a€RED(0) 1<f1<f2<<HN
a;>a;+1 = Bi<fit1

In particular, using 3.2.24 we derive that for F,~ we have the expansion

Fg*(ml,xg,...,xn): Z Z T, LBy Ty

araz--ai€RED(o) 1<B1<B2 < <B<N
n—a;>n—a;t+1 = B3i<fit+1

and this is simply another way of writing 3.2.22.
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3.2.26

Finally, note that when we expand the product in the right hand side of 3.2.23, we obtain terms of the

form
LBy " LBy, UayUay ~ " Uq,,
Ue
with
Br< P < < B
satisfying

a; < Gjq1 — ﬂi < ﬁi—&-l .

This is because from the definition in 3.2.14 we get that two successive factors z,uq, and zg, , , uq,,, with ; =

Bi+1 = r coming form the same A, (z,) in 3.2.23 will necessarily also have a; > a;41.

Now because of 3.2.12 a) the only terms that survive are those for which m =1,

U, Ugy *** Ug, = Ug -
and

aias---a; € RED(o) .
Thus 3.2.23 follows from 3.2.22. This completes our argument.

As a corollary of Proposition 3.2.2 we obtain

Theorem 3.2.2

For any permutation o the Stanley polynomial F,(z1,zs,...,z,) IS a symmetric fumction

Of:cl,xQ,...,acn
Proof
From 3.2.23 we derive that

Fa(xl,l‘g, e ,l’n) = Al(l’l)Al(Ig) . '.Al(IN)

Ug*

o

Thus the assertion is a simple consequence of Proposition 3.2.1.

Stanley’s proof of the inclusion in 3.2.3 is based on the following two auxiliary results.

3.2.27
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Proposition 3.2.2

(o) C {/\ AC /\’(a)} 3.2.28
Proof

Since we have proved that F,, is symmetric we shall have an expansion of the form

Fy(z1,29,...,2n) = Zbﬂ(a) mu(x1, 2, ..., %) 3.2.29
m

where “m,,” denotes the monomial symmetric funtion corresponding to p and the b, (o) are suitable non-negative
integer coefficients. In view of the expansion in 3.2.26 we see that b, (o) > 0 if and only if at least one of the
summands in 3.2.26 yields the leading monomial of m,,. In other words, if b, () > 0 for

p=(p > pg > >pp>0) 1

then from some word w = ajas---a; € RED(c) we have

— M1 2 HE
Lpy LBy "Xy, = Ty Lo~ - Ty

with 31 < -+ < fyand §; < B;41 whena; > a;+1. Now this implies that the descents of w must be all contained
in the set

{oa, i +pa, g+ s, s g e )
Equivalently, we must have the inequalities
ap < ag < -0 < CLMI 5 am+1 < au1+2 << G’HI‘H‘Q g Tty au1+...+uk71+1 < a’ﬂl+"'+l‘kfl+2 << aq

To see what this tells us about the circle diagram of o we only need to have a look at the corresponding line
diagram M (ajas---a;). To this end we have depicted below the case w = 23456 - 2345 - 1234 - 123 - 12 and
M:(57474’372)/

1 10 14 17 5
2 11 15 18, 7
3 7 12 ¢ 5
4 8 13 1
5 9 1
6 3
7 2
Let us imagine that we break up the construction of our diagram into k stages containing p1, yz, . . . , i, Steps

respectively. In this case we obtain the successsion of diagrams
M(ay,as,...,a5)—=M(a1,az,...,a9)—M(ar,as,...,a13)—=M(a1,az,...,a16)—M(ay,as,...,a18)

Now recall that, according to definition, 2.1 an “x” at the k*" step contributes a circle labelled “k” in position (i, j)
of CD(o) if that “x” interchanges the i-line with the o;-line. In this particular example, the first stage creates
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5 labelled circles. Due to the fact that a; < az < -+ < a5 our definition implies that these circles will fall in 5
different columns. Proceeding with our construction, in the second stage we add 4 more circles some of which
could land in the same column as the ones created in the first stage, but due to the fact that ag < a7 < -+ < ag
they themselves will fall in 4 different columns. Similarly in the third stage we add 4 more circles in 4 different
columns. Here some of these circles could land in the same column as one or two circles created in the two
previous stages.

In the general case after r < k stages we will have created

p1+ pg 4+ g 3.2.30

labelled circles and, due to the fact that during each stage the a; increase the circles created within a stage will
land in separate columns. This causes circles appearing in the same column to come from different stages.
Consequently, after r stages there will be at most r circles in any given column. This means that if we push these
circles up along their column until they are tightly packed, they will necessarily fall in the first r lines of the circle
diagram. On the other hand, if, after we finish the construction, we tightly pack all the circles of C'D(0) in the
same manner, we see from the defintion 2.3.3 of the code of o, that the number of circles that will be packed in

the first » rows is given by the expression
n

Zci(a) AT,

i=1
where a A b = min(a,b). But since the shape (see definition 2.3.1) is only a rearrangement of the code we
necessarily have the equalities

n

7

cilo)Ar, = Z)\i(a)/\r = M)+ Xy(a)+ -+ (o) . 3.2.31

Since in the process of constructing the corresponding sequence of balanced tableaux
T(aras---ay,) — T(araz---ay,) — - — T(a1az-- - a;)

pairs of circles in different columns remain in different columns and pairs of cicles in the same column remain
in the same column, it follows that the circles counted by 3.2.30 will be a subset of those counted by 3.2.31, and
thus we must necessarily have

MI+M2++MT§/\/1(O')+/\/2(U)++>\;(0—)

In summary we have shown that
bu(o) >0 = u<N(o).

Thus the expansion in 3.2.29 may be rewritten as

Fy(z1,20,...,2,) = Z bu(o) mu(z1,22,...,2n). 3.2.32
u<N (o)
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Now recall from Symmetric Function Theory that the “monomial” and “Schur” bases are related by upper

unitriangular matrices. Thus we may write

mu(T1,%2,. .., Tn) = Z Sx(x1,22,. .., 2n) Hyy

A<p

Substituting this in 3.2.32 gives

Fa(xhxg,...,mn): Z bM(O') ZS)\<.’131,$2,...,$7L)H)\M.
)

PN (o A<p

:ZS)\(Cbl,xQ,...75L‘n) Z bH(O') HAM‘
A

AN (o)

This shows that the coefficients a, (o) in the expansion 3.2.2 satisfy

ZASHS)\’(O’) bu(a) HA/"" if)\g A/<U)’
ax(o) =

0 otherwise.
This proves 3.2.28 and completes our proof.

We now need two further properties of the permutation o*.

Proposition 3.2.3
For any permutation o we have for N > (o)

Mo*) = Mo

Fy(r1,29,...,2n) = wFee(x1,29,...,2,)

where w denotes the fundamental symmetric function involution.
Proof
Note that from 3.2.21 we get that the code of o* is given by the equalities

ci(o®) #{j>i n+1l—0oup15 > n+1—an+1_j}

#{j >0 Opy1—j > Ontli }
Now this may be rewritten as

Cn+1—i(0*) = #{n+17‘]>n+171 o5 > 07;}
= #{j<i 0 >0’i}.

This proves 3.2.34 since
#{j<i 10y >O'7;} = ¢i(o7h).

3.2.33

3.2.34

3.2.35
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To prove 3.2.35 note that from 3.2.25 and 3.2.1 it follows that we may write for I(c) = [

Foe(z1,22,...,0) = Z Qp( eD(w), ) (T1, T2, ..., Tp) .
weRED(o)

Now using 3.2.2 and 3.1.24 this may also be rewritten as
Fg*($1,$2,.-.,In) = Z ak(o—) Z Qp( CD(-,—)J)(zla‘TQ,le‘n) 3.2.36
NEC(0) TEST(N)
On the other hand, since transposing a standard tableau complements its descent set, again from 3.1.24 we obtain

that for any partition A - [ we have (for N > 1)

Z Qp( eD(r)) (1, T2,y Tn) = Sx(x1,m2,...,0,) = wWSN\(T1,72,...,75) .
TEST(N)

Substituting this in 3.2.36 gives 3.2.35 precisely as asserted.
We now have all we need to give Stanley’s proof of 3.2.3. More precisely he obtains.

Theorem 3.2.3
For any permutation o we have

Fy(z1,29,...,2p) = Z ax(o)Sx(z1,x2, ..., Tn) 3.2.37
Ao AN (o)
with
a) axe(c™H) =1 and b) aye(o)=1 3.2.38
Proof
Applying 3.2.28 to o* we can write
Fyu(z1,29,...,2n) = Z axo)SN(T1, 22, .., 2n),
AN (0%)
and from 3.2.35 we get that
Fy(z1,29,. .., Tpn) = Z Aoy (21, T2,y .o Tn) -
AN (0%)

Changing variable of summation from A to )\’ yields that this may also be rewritten as

Fg(xl,mg,...,acn) = Z aX(U*)SA(xl,xg,...,xn),
A <X (o*)

and using 3.2.34 together with the fact that conjugating reverses dominance we finally get that

Fg(l‘l,xg,...,l‘n) = Z a)\/(g*)S)\(.’L‘l,.TQ,...,.’L‘n).
A>A(o™1)
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Since Proposition 3.2.2 gives also

Fy(xy,x0,...,2,) = Z axo)Sn(T1, 22, ..., Tn)
A<N (o)

we see that 3.2.37 must necessarily hold true as well.

It is easily seen from the above argument that 3.2.38 a) for o implies 3.2.38 b) for o*. Thus we need to
establish only one of these equalities. We shall prove 3.2.38 b). To this end we must show that in the expansion
3.2.26 there is one and only way to obtain the equality

LT3y "X = xlli1 xgz T xllik s 3.2.39
when
wi =MN(o) (fori=1,2,...,k) 3.2.40

and k is the number of parts of \'(c). This implies that in the expansion 3.2.32 we must have by ;) = 1 and then
3.2.38 follows since H,,,, = 1in 3.2.33.

As we noted in the proof of Proposition 3.2.2, we may have the equality in 3.2.39 only if the associated
reduced word w = ajas - - - a; satisfies the inequalities

ar <ag <o <Ay Gpyr < Gupg2 < < Guygpn 5 s Qe A1 < G2 < < agp 3.2.41

To see that 3.2.40 and 3.2.41 determine the a; uniquely we need only make one fundamental observation. Namely
that in any column of a line diagram one “high” label gets interchanged with a “low” label.
Now if we construct the line diagram M (a1, as, - - -, a;) in stages

— M(ah ag, - - 7au1+"'+u7~71) - M(Cl1, Qaz, -+, alt1+"'+/w) —

forr =2,3,...,k, it follows that at the 7" stage exactly ., distinct high labels are interchanged with p,. low labels
(not necessarily distinct). We claim that the requirements in 3.2.40 and 3.2.41 force the high labels involved at the
rth stage to be the collection

Ms, (o) ={o; : ci(o) >}, 3.2.42

consisting of the entries of o that have atleast » smaller labels to their right. The reason for this is best understood
by working on an example. Note that for o = 72381645 we have the following circle diagram

7 2 3816 45
1 )ij...
2 X|o|o|o|o|o]e
3 o |X o|lojo]|e
4 oor\or))(o
5&0[]0\30X
6L |o|of Jo[X|o]e
7(X|o|o|o|(o|o|o|e®
8lo|e|o[X|o|o]|0|0
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For convenience we have placed the entries of o on top of their columns. From this it is easy to see that we have
Msy ={2,3,6,7,8}, Msy=1{6,7,8}, M>3=1{7,8}, Mss={7,8}, M>5={7}, Mss= {7}

Note also that in this case
No) =(6,4,2,1,1) , XN(o)=(5,3,2,2,1,1) and I(c)=14.

Since in general

N(@) = S x((0)=7)

we see that the successive sizes of the collections M~ ,.(c) give the components of \'(c). Now in this case for the
word w = ajas - - - a1y € RED(0) to produce the monomial

_ 5.3.2.2 11
T, T3y " TPy, = T]ToT3TYT5Tg 3.2.43
we must have

g <ag<az<ag<as, ag<ay<ag, ag<ayp, ail <aiz,

Thus at the end of the first stage, 5 high labels will be involved. Each these labels will then have at least one
smaller label to their right in the target permutation. But there are altogether only 5 such labels in our o and they
are precisely 2, 3,6, 7, 8. So the high labels involved in the first stage must be the elements of M>1(¢). Similarly,
the second stage must involve 3 high labels. Moreover, these labels must be a subset of the previous ones for
otherwise there would be more than 5 entries of o with at least one smaller element on their right. This means
that each of the high labels involved in the second stage will have at least 2 smaller labels to their right in the
target permutation. But o has only 3 entries with this property and they are 6,7,8. Thus again we see that the
high labels involved in the second stage must be the elements of M>2 (o). This reasonning forces the high labels
involved in each stage to be a subset of the high labels involved in the previous stage. This forces the high labels
involved in the 7" stage to be the elements of M-,.(o) precisely as asserted. It is easy to see that this argument,
in full generality yields that there can be one and only one word w € RED(o) yielding the monomial in 3.2.39
when ;1 = X (o). This completes our proof.

For sake of completeness we include below the line diagram of the word that produces the monomial in
3.2.43 for the permuation 72681645

We terminate this section with a result that can be used to compute the Schur function expansion of the
product of two or more Stanley symmetric functions.
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Theorem 3.2.4
For o = ajan---ap € Sy, and 8= 162 B € S, we have

FaXFg = Fa®5 3.2.44

with
Oz®ﬂ:Oé1042-'-Ozh(h—‘rﬁl)(h—‘rﬁg)'-'(h—f—ﬁk) 3.2.45

Proof
Note that from3.2.45 we derive that we can obtain the reduced words of a ® 3 by taking pairs u, v with
u € RED(a) and v € RED() and then shuffling v with A + v. In symbols

RED(e®B) = | U wuu+o).

wERED(a) vE RED(3)

Thus the definition in 3.2.1 gives

Fagp = 3 > > Qpw) - 3.2.45

w€ERED(a) vE RED() weu LLI (h+v)

The last summation should remind us of the expression occurring in 3.1.26. It develops that we can still use
Theorem 3.2.4 here even though we are shuffling pairs of words rather than pairs of permutations. Briefly, the
idea s to replace v and v by permutationsof 1, 2, ..., l(«) and 1, 2, . . ., [(8) respectively by the standard procedure
that preserves descents and then apply formula 3.1.26 to the resulting pair. In this manner we derive that

Y Q) = Qpw) X Qi)

weu L (h+v)

Substituting this into 3.2.45 gives

Fagp = 2 X QuxQow = (X @w)x( X Qw)

uERED (o) veRED(3) u€ERED(a) vERED(3)
and thus 3.2.44 follows from the definition in 3.2.1.

Remark 3.2.2

Note that by taking « and  both Grassmanian we can use Theorem 3.2.4 in conjunction with Theorem
2.4.4 to obtain the Schur function expansion of the product of Sy (4) by Sy/(3). On the basis of this fact Stanley
observed in [] that there could not be a rule simpler that that of Littlewood-Richardson to compute the Schur
function expansion of an arbitrary F,. We believe however that the LR tree construction is conceptionally
and algorithmically simpler (although not necessarily more efficient) than the LR-rule. What appears to have
escaped from Stanley’s reasoning is that the computation of product of Schur functions within the family of
Stanley symmetric functions should in fact be easier since it may go through inductive steps involving a wider
collection of functions. Indeed, the variety of possible circle diagrams is considerably wider than that of skew
diagrams since all of the latter can be already be obtained from a circle diagrams of 321-avoiding permutations.
What s also rather curious is that Lascoux and Schiitzenberger in [| herald their tree algorithm as an improvement
(in efficiency) over the LR rule (which is quite untrue) and fail to notice that it is more elementary (see []) and
that it applies to a wider class of symmetric functions, namely the Stanley symmetric functions.
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3.3. Divided Differences and Schubert Polynomials.

We shall deal here with a family of divided difference operators §; (fori=1,2,3,...) acting on poly-
nomials (or formal power series ) in the variables z1, z2, x3, . ... The definition of §; is quite simple. Namely we
set

572 = 5mi:ri+1a 3.3.1

where for any polynomial P in the variables z,y

P - P
by Playy) = LW =Pl 2) 3.3.2
r—y
Note that we may also write this in the form
1
Opy = 1—s, 3.3.3
y Ty ( Szy)

where s, is the operator that interchanges z and y. In particular we have

1
o = — (1 — si) 3.3.4
Tj — Ti41

where s; = s;,,,, interchanges z; and z;41.
Since ¢; acts only on the variables z;, 2,11 to compute its action we only need to know the following
identity

Proposition 3.3.1

-1 —r—1 B
ol T el b abal ifa >
Siatal,, = <=0 ifa=»b 3.3.5
b—1 b—r—1 b—1 :
x?mi+1+-~-+x?+rxi+lr +oe o ag, ifb>a

Proof

If @ > b we may write

a b b..a a—b a—b
a b Ti%Tipr T TiTipr bTi T i
0i T{ Ty = = (@wip) —————
Ti — Ti41 Ti — Ti41
Thus
a_b _ b a—b—1 a—b—r—1_r a—b—1
di wixi = (Ti%ip1) (% + -t T+ )

This proves the first identity in 3.3.5. The third identity follows in a similar way. The second one is trivial.
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Proposition 3.3.2
These operators satisfy the following version of the ”Leibnitz rule: ”

a) 6i(fg) = (6if)g + (sif)dig

In particular for f homogeneous of degree 1 we get

k
b) 5a16a2" ak fg :Z 6aisai+1"'3akf) 5a1"'[6a,;}"'5akg+(3a13a2"‘3a;€f) 5a16a2"‘6a;€g 3.3.6
i=1

where [6,,] indicates omission of the factor “5,,”.

Proof
From 3.3.5 we derive that
5:(79) = ——— ((1=500)g + (/) (1 —s)a).

T — Ti41

and this is another way of writing 3.3.6. This proves 3.3.6 a) and the case k¥ = 1 of 3.3.6 b). Proceeding by
induction on k assume 3.3.6 b) true for k. This given note that from 3.3.6 a) we get that

5a15a2 T 6ak+1 (f g) = 5(115(12 Tt 5ak ((6ak+1 f) g+ (Sal«,+1 f) 5¢lk,+1g) =
k

= (5ak+1f) 50 az " akg + Z 5a1507+1 c Say (S(lk+1f)) 5(11 e [5111,] e 5ak5ak+1g

+ (Sn,lsaz © Say, (Sak+1 f)) 5a16a2 e 6ak 5(Lk+1g
This completes the induction and the proof of case b).

Most importantly we also have the so-called “Nil Coxeter” relations:

Proposition 3.3.3
i) 6;0,=0 (Vi>1)
ZZ) (57; 6i+1§i = (52‘+1 (Si 5i+1 337
i) 6;0;=0;0 (¥ ]i—j|>2)

Proof

It follows immediately from the definition in 3.3.4 that §; kills every symmetric function of z;, z;41. Thus,
since in each of the three cases in 3.3.5 the result is symmetric, we derive that

SFatal,, = 0.
This proves 3.3.7 7). The identity in 3.3.7 i4i) is trivial since when |i — j| > 2 the two operators ¢; and §; act on
disjoint sets of indices. The identity in 3.3.5 ii) is proved by noticing that repeated uses of 3.3.4 give

1
010201 = 090100 = 3.
10201 20102 (@1 — 22) (21 — 23) (72 — 23) J; sign(o)o 3.3.8




Topics in Algebraic Combinatorics LECTURE NOTES may 3, 2001 82

It follows from 3.3.7 4) that for w = ajas - - - a; we shall have
a1 0ay ** 0ay #0

if and only if w is a reduced word of some permutation . Moreover, using i) and iii) of 3.3.7 we can show that
if w=ajas---aq; and w’ = a}a- - a] are both reduced words for the same permutation o then we necessarily
have

00,00y 0a

1

= 0a,0ay """ Oa; -
This means that to any o € S,, we can associate a well defined divided difference operator d,, simply by setting
for any reduced word w = a1az - --a; € RED(0)

Sy = OayOay-0a -

Here and after the symbol o™ will denote the top permutation of s,,. That is

(n) _ 1 ) e n
o [n o 1]. 3.3.9

Remarkably, the operator corresponding to the top element is a version of complete “symmetrization”. More
precisely we have the following general form of 3.3.8.

Proposition 3.3.4

1
Jpy = sign(o) o 3.3.10
hcicjen(@i = 25) ags:n

Proof
The canonical factorization of ¢(™) and 3.3.4 gives

n—1 n—1
1 1 1
Og(n) = H Op—10p—2-0; = H ﬁ(l —Sp1)—————— (1 —sp—9) - ————(1 —s;) 3.3.11
i=1 i=1 - "

n—1 ) Tp—2 — Tp-1 Ty — Ti+1

where the factors are to be taken from left to right. This given we see that 0, is of the form

Optn) = Zaa(x)a 3.3.12

ocES,

with the coefficients a, (x) rational functions of 1, za, . . ., z,. Now note that since the product
n—1
6; I 6u-16u—2---5i
i=1

has (3) + 1 factors, it does not correspond to any reduced factorization. Consequently we must have

0j0gmy = 0. (forj=1,2,...,n—1).
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In view of 3.3.4 this may also be written as
Opy = 85050 (forj=1,2,...,n—1).
It thus follows that we must also have
Ogn) = Q@ Op(m) (Va € S,)

Using 3.3.12 this becomes

Z (vas(z)) o = Z aq(x)o.

oESy o€Sn
Equating coefficients of o 3 we get
aag(r) = aap(x)

This means that we only need to compute one of these coefficients. Now we see from 3.3.11 that

n—1 1 1 1

(n) — - = (= - - (- e (g,
ton (@) = [ o o) o o) o o)

n—1 n—1

n 1 1
= (—1)(2)( ) H Sn—1Sp—2"""S;
i2q Tn—i — Tn—it1 L1 = Tn—itl/ 25
NG
( ) UOQ

B H1§i<j§n(xi — ;)

So from 3.3.13 for a8 = o and 3 = 0™ we get

as(z) = Uor(”)< (*1)(2) xj)) . sign(o)

H1§i<j§n($i - B H1§i<j§n(xi —xj)

This proves 3.3.10.
This proposition has the following immediate corollary

Theorem 3.3.1
For any partition A\ = (A1, X, ..., \,) we have

A1+n—1_MXo+n—2 Ant+n—m _
O (n) (:vl1 x5? Sz ) = S\(z1,x9,...,2,).
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3.3.13

3.3.14

The fact that a Schur function can be obtained by the action of the difference operator §,,(») on a monomial

should suggest that an interesting family of polynomials might be obtained by the action of the general operators

do. This is precisely the discovery of Lascoux and Schiitzenberger in []. In fact for a ¢ € S,, the Schubert

polynomial SC,,(x) is defined by setting

n—1,n—2 1
SCo(x) = dp1pm @] @y “ o rxp 4.

3.3.15
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In particular we get
SCom(z) = o a2 al . 3.3.16

n—1

The polynomials SC, () have been shown to have remarkable properties The reader will find a detailed presen-
tation of basic results of theory of Schubert polynomials in Macdonald’s book []. For sake of completeness we
shall reproduce here the statements and proofs of the results that we will need in our proof of Theorem 1.4.1.

Remark 3.3.1
Note that for any o € S,, we have

l(a_la(")) = (3) = (o) 3.17
the reason for this is that all the inversions of o~! are transformed into non-inversions after right multiplication

by o™. Thus I(6710™) = (}) — I(¢~}), and then 3.3.17 follows since l(c) = (0™ 1).

Note next that we can always find a sequence of indices ajas - - - a, with 1 < a; < n — 1 such that
H0SaySay " Sa;) = (o) +1i fori=1,2,...,k 3.18
and
0Sa,5ay  Sap, = o 3.19

To do this we simply choose s,, to be any of the transpositions that interchanges two adjacent elements of
OSaySas ** - Sa;_, that are in the right order. This will eventually bring us to the top element of S,, at which time
we stop. Now 3.17, 3.18 for i = k and 3.19 give

a) k = () —1o) and b) o7 to™ =5, 5a, - Sa, 3.20
In particular from 3.20 a) we derive that
aias---ay € RED(U_la(”)) )
This given, the definition in 3.3.15 yields

SCo() = 04,04y 0g a7 tal ™2 gl 3.3.21

n—1

These observations immediately yield us the following two basic facts.

Theorem 3.3.2

For o € S, SC,(x) is a homogeneous polynomial of degree I(o) in xy,72,..., 2,1 .
Proof

We see from 3.3.5 that each §; preserves homogeneity and lowers degrees by 1. This given the statement
follows from 3.20 a) and formula 3.3.21.

We shall here and after denote by A,, the collection of monomials

A, = {zfa] -] 1 0<e¢<n-—i for i=12,...,n—1}.
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It is well known that A,, is a basis for the quotient

Qlz1, o, ..., x,)/(e1,€2,...,¢ep)

where e, e, .., e, are the elementary symmetric functions. It develops that Schubert polynomials may be
integrally expanded in terms of these monomials. More precisely
Theorem 3.3.3
Foroe s,
SCo(z) = Y apa? 3.3.22
xPEA,

where the coefficients a, are non-negative integers. For the identity permutation this reduces to
SCr(z) = 1 3.3.23

Proof

In view of formula 3.3.21, to prove 3.3.24 we need only show that each §; sends any element of 4,, into a
N-linear combination of elements of .A,,. However this follows immediately from formula 3.3.5. In fact, if a = ¢;
and b = ¢;41 we get that

€0 €t
0 wytwylh

is a sum of monomials of the form

I?_T_lx:f:llJrr (withr >0 and €41 +7r<¢—1)

if €; > €;41 or a sum of monomials of the form

x?"'rmffll_r_l (withr >0 and € +7<e€q1—1)

if €; < €;41. In either case we see that ¢; <n — i and ¢;11 < n — i — 1 force all these summands to be of the form

xfixffll (with p; <n—4 and p;y1<n—i-—1

and this is all that is needed to show the first assertion of the Theorem. To complete the proof we note that by
definition we have

SCr(z) = Gpemal oy tx)
but then 3.3.10 gives
1 . 1 e [Licicj<n(®i — ;)
SCi(z) = sign(o) al tant gl = SIEISIS 1
Micicjen(®i —25) a%;n ’ " Theicjen (@i — 25)

This proves the second assertion.

The following identities enable us to obtain explicit expressions for some Schubert polynomials.
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Proposition 3.3.4
For u,0 € S,

{scml(x) if (out) = i(o) — U(u)
8,8Co(z) =

0 otherwise
In particular when 1<i<n-1
SCUSi ({E) if o; > Oi+1

§; SCo(z) = {

0 otherwise
Proof
From the definition we get

0uS8Co(x) = 8y 0y-15m) x{"lngz...;@
Now clearly 6, 6,1, = 0 unless
lw) + lo7'0™) = l(uo~'e™) = I((cu)"1a™)

in which case

5u50_10(n) = 5(0u—1)—10<n).

However, from 3.17 we derive that 3.3.26 is equivalent to

or better

This proves 3.24. In particular we get

SCos,(x) ifl(os;) = (0) — 1
§; SCo(z) = {

0 otherwise
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3.3.24

3.3.25

3.3.26

and 3.3.25 then follows since I(0s;) = (o) — 1 holds if and only if o; > 0;1. This completes the proof.

Schubert polynomials have several interesting properties the following two are worth mentioning here

Theorem 3.3.4
For any o € S,
a) SC,(z) is symmetric in x; x4, if and only if o; < 0,44
b) If 1 <r < n is the last descent of o then SC,(x) € N[z1,x2,...,z,]
Proof
Formula 3.3.24 yields that
0; SCy(z) = 0

3.3.27



Topics in Algebraic Combinatorics LECTURE NOTES may 3, 2001 87

if and only if 0; < 0,41 . However 3.3.4 shows that 3.3.27 is equivalent to
SCo(x) = 5;8C,(x).

This proves the assertion in a). Note next that if r is the last descent, then
Opg1 < Opga < - < 0Op

So part a) gives that SC,(x) is symmetric in 2,41, Zy42, ..., 2,. But from Theorem 3.3.2 it follows that SC,(z)
does not depend on x,,, Therefore it cannot depend on =, 11, Z; 2, . .., 2,1 as well. This proves part b).

Let H,, denote the linear span of the monomials in 4,,, in symbols
H, = Llafag a7 : 0<e¢<n—i]. 3.3.28

This given we have the following useful result.

Theorem 3.3.5
The collection {SC,(z)}
expansion formula

,cs. 1s a basis of H,, and for any polynomial P € H, we have the

P(l’l,{EQ,...,.’En,l) = Z 50P|$=0860(x1;x27~“7xn71) 3.3.29
O'ESn

Proof
The definition in 3.28 gives that

dimH, = nl = #{SC,(z)}

oesS,

Since Theorem 3.3.2 gives {SC,(z)} C H,,, we need only show independence. To this end let

ocES,

P(z) = Y a,8Cs(x) 3.3.30

oc Sn
Note that the homogeneity of SC,, (x) coupled with formulas 3.3.23 and 3.3.24 give

1 ifa=o,
00 SCo(x)|,_, = { 3.3.31

0 otherwise.

Applying 4, to 3.3.30 and setting = = 0 we get

Qo = 5aP’ 3.3.32

z=0"

Thus P =0 = a, =0, proving independence. This given, 3.29 follows from 3.3.32.
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The following beautiful result of Billey, Jockusch and Stanley reveals the intimate relationship between
Schubert polynomials and Stanley symmetric functions.

Theorem 3.3.5
For any permutation o € S,, of length | we have

SCy(z) = Z Z T, T8, G, 3.3.33
araz--a;€RED(0) 1<p81<f2<-- < <n—1
ai<air1 = Bi<Bit1
Bi<a;

We shall give here the remarkably simple proof of this result due to Fomin and Stanley []. To this end
we need to present some auxiliary material. To begin we note that the right hand side of this identity has a very
simple expression in terms of the Nil-Coxeter algebra.

Proposition 3.3.5
For any o € S,, we have

A1($1)A2($2) te Anfl(xnfl)

- > > zpp,ap, 3.3.34

u
’  aiaz-@€RED(0) 1<B1<B< - <Bi<n—1
ai<aiy1r = Bi<Bit1
Bi<a;

Proof
It is easily seen from the definition in 3.2.14 that the expansion of the product on the left hand side
produces terms of the form

LB1TBy = X By, Uay Uay *** Uay,

o

with

satisfying
a; < air1 = Bi < Bit1

this is for the same reason as in the proof of 3.2.22. However in this case we have the additional feature that the
factor Ag(zg) contributes only terms x5 u, with a > . This shows that we must also have the inequalities

ﬂigai (fori:1,2,...,m).

Now the Nil-Coxeter relations in 3.2.12 again guarantee that the only terms that survive are those for whichm = [

and
Ug, Ugy ** *Uq, = Ug .

This completes the proof of 3.3.34.

To proceed we need one more identity of the Nil-Coxeter algebra.
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Proposition 3.3.6
For any 1 <i <n we have

Oay Ai(@)Aix1(y) = Ai(x)Ait1(y) s

Proof
Note that from the definition in 3.2.14 we get that

Ai(@)Ai(y) = Ai(@)Aia(y) + yAi(@)Aia(y) ui
Interchanging x and y gives

Ai(y)Ai(z) = Ai()Aini(z) + 2 Ai(y)Aip () ui
Subtracting 3.3.37 from 3.3.36 and using Proposition 3.2.1 we get

(wAi(y)AiH(x)Ui - y-Ai(x)Aerl(y)uz)

6wy Al(x)A%Fl(y) = T—y

But we have

—

Ai(@)Aiv1 () ui = A1 (2)(1 + zu) Aira (y) wi

ir1(2) A (y) + 2 A

$

Aiy1(z)
Ait1(z) (y) () ui Ai1(y) wi
Aiv1(2)Ai1(y) + 2 Aip1(2) Aipa(y) wi (1 + yuipr) ug
= Ai1(@)Ait1(y) + 2y Aipa(2)Aigo
Aip1(2) At (y) + 2y Aipa
Aita(z) (y)
Ait1(z) (y)

( Uj Ui41 Ug
(

i+1(2) A1 (y) + 2y A (@
(

T T

Uj4-1 Us Ui41

b

) (y)
) (y)
JAi2(Y) (1 + y i) i1 wi Uit
) )

i1 () Air1(y) + vy Aip1 () Aip1 (¥) Wier Ui Uit

$

Since this last expression is completely symmetric in z and y (again by Proposition 3.2.1) we deduce that

Aiy)Aipi(@)ui = Ai(@)Aisa (y) wi
Using this in 3.3.38 gives that

(zAi(@)Aip1 () wi — yA@)Aigr(y) wi)

which is easily seen to simplify to 3.3.35.

We now have all the ingredients we need to establish the Billey-Jockusch-Stanley formula.
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3.3.35

3.3.36

3.3.37

3.3.38
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Proof of Theorem 3.3.5
For convenience, let us for a moment denote by G, () the right hand side of 3.3.33. Recalling in extent
the definition in 3.2.14, 3.3.34 gives
Go(z) = I+z1un—1)1 + z1Up—2) - - - (1 + z1u1) X
(1 + xoup—1)(1 4+ zoup—2) - -+ (1 4+ zaug) x

3.3.39
(]- + xn72un71>(1 + xn72un72) X

(]- + wnflunfl)

Uo

A view at this display makes it palpably clear that the only way to obtain a term involving u,) from this

“"_ 1

expression is to pick the “z” part in every one of the factors. Thus we must have
Gy () = aP tah™2. .zl .

This proves 3.3.33 for the top permutation. We can thus proceed by descent induction on the length of . Let us
then assume that we have proved G,(z) = SC,(z) for all o € S, of length [ 4+ 1 and let o € S, be of length /.
Since « is not the top element there will be an index i < n for which a; < a;41. This gives that the permutation
as; has length [ 4 1 so by the induction hypothesis we have

Gos,(x) = SCas, ().
Now 3.3.25 can be applied to ¢ = as; and obtain
SCo(z) = 0;SChs,(x) = 06;Gas,(x).
Now, using 3.3.39 we get that

Sca(iﬂ) = 5iA1 (171) o 'Ai(iliqi)Ai+1(Ii+1) o 'An—l(zn—l)

U Ui

= Ai(z1) - (6Ai(xi) Aipr (i) - - Ap—1(Tn-1)

Ua Ui

(using 3.3.35 ) = .Al (331) te (Ai(xi)AiH(xiH)ui) s -An—l(xn—l) s
(using3.2.12b) ) = Aj(21) - A (@) Aig1(@ig1) - Ano1(Tn-1) u; Y
= Ai(z1)Az(z2) - Ap—1(xpn—1) L= Gao(z).

This completes the induction and the proof of the Theorem.

An immediate corollary of Theorem 3.3.5 is the following important identity.
Theorem 3.3.6

If 0 € S,, is any permutation of length | then

SCi 50 (T1,22,...,2n) = Fy(x1,22,...,2n) Y m>n) 3.3.40
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Proof
Note that we have

ajag--a; € RED(o) «— ai+mas+m ---aq+m € RED(1,,® o).
Thus formula 3.3.33 for 1,,® ¢ may be written in the form

SCr@0 (€122, s Tmin—1) = > > Tadp, -, - 3.3.41

ajazaq€RED(0) 1<p1<B2<-<F<m+n—1
a;+m<air1+m = B;<Bit1

Bi<a;+m
But if all the variables x,, 1, Tp12,- - ., Tmin_1 are set to zero the condition 3; < a; + m becomes vacuous when
m > n, and so 3.3.41 yields
SClm@G(zlax%--wxm—&-n—l) 0 = Z Z TE, TR, TP -
Frbl B n T @ €RED(0) 1<B1<fa<-<Bi<n
ai<ait1 = Bi<Bit1
This proves 3.3.40.

Before we proceed any further it will be good to note that Schubert polynomials are stable under the
natural embedding of S, into Sy, +.,. To be precise we have the following general result.

Proposition 3.3.7
If o =0y05---0, € S, has last descent at r then for any m >0 we have

SCos1,, (1,22, ... xr) = SCo(1,22,...,2). 3.3.42
Proof
By definition
1 2 - n n+l1l n+2 -+ n+m
U®1m - )
oy o9 -+ o0, n+1l n+2 -+ n+m

In particular also o ® 1,,, has last descent at r. Thus from Theorem 3.3.4 we derive that both sides of 3.3.42 are
polynomials in z1, x2, . . ., x,. Moreover we see that we also trivially have

RED(c) = RED(0c®1n).
Thus 3.3.42 follows immediately from Theorem 3.3.5.

This given, here and after we will make replacements ¢ — ¢ ® 1,,, whenever necessary to keep all
the permutations, indexing Schubert polynomials appearing in a given identity, in the same Symmetric Group.
Keeping this in mind we have the following basic result.

Theorem 3.3.7
For any u € S,, we have

(121 + @y + -+ + @py)SCoy(x1, T2, . .. Tp1) = Z (g — ap) SCyxt,, (T1, T2, .., Tp) 3.3.43
1<a<b<n+1
l(uxtap)=l(u)+1
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Proof
Since by Theorem 3.3.3 we have SC,,(z1,22,...,2,-1) € Hy, it follows that the left hand side of 3.3.43 is
in H,,+1. We can thus apply Theorem 3.3.35 and obtain the expansion

FSCu(x1,m2, .. 1) = Y 0,(fSCu)|,_,SCol@1, 22, ..., ) 3.3.44

0ESnt1

where for convenience we have set
f=a1x1 +asxa+ -+ anxy 3.3.45

Assuming that [(u) = [ — 1, it follows that the product fSC, is a homogeneous polynomial of degree ! and
therefore the summation in 3.3.44 need only be carried out over permutations o of length {. This given assuming
that

aias -+ a; € RED(o)

we may compute the coefficient of SC,, in 3.3.34 by means of formula 3.3.6 with ¢ = SC,, and k£ = . We thus

obtain
l

5o (fSC) |,y = D (BaiSarsrosy, f) Oay =+ [0a,] -+ 00, SCu - 3.3.46

i=1
Note that we need not evaluate at z = 0 on the right hand side here since SC,, is homogeneous of degree | — 1.

For the same reason we have
80,00y <04, SCyy = 0,

so no additional term is needed in 3.3.46. Now it follows from formula 3.3.24 that we have

1 ifay---[a;]--a € RED(u),
Oay *+ [0a,] 00, SCu = 3.3.47
0 otherwise.
Now it is easy to see that if
(CL, b) = Sal e 5a7-,+1 (a’i 9’ ai + 1) 3348
then
tab = Sa, " Sa; " Say and Say* [Sa;] " Sa, = O Xtap 3.3.49

and thus from 3.3.47 we deduce that the only terms that survive in 3.3.44 are those for which
o=uXtgy and I(uxte)=1.

for some 1 < a < b < n + 1. This given note that 3.3.48 gives that

Sa; * Sai+15aisai+l"'3al - 61@7%};

Thus from 3.3.45 we get that

5a,;5ai+1~~salf = Sal"'Sai+16ai5ai+1msalf = (;Jca,,acbf = Qg —Qp .
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In summary when we have 3.3.49 the summation in 3.3.46 reduces to the single term «,, — . This proves 3.3.43.

For our purposes we only need the special case f = x, of the identity in 3.3.43. This may be written as

2 SCou(21, X2, ..oy Tp1) = Z (X(a =r)—x(b= r))SCuxtab(ml,xg, cey Tn)
1<a<b<n+1
l(uXtqp)=l(u)+1
or better
Z SCuxt o (T1,@2, ..., Xp) = p SCy(x1, T2, ., Tp—1) + Z SCuxt, (X1, T2, ..., &) . 3.3.50
r<b<n+1 1<a<r
I(uXtyep)=l(u)+1 l(uXtagr)=l(u)+1

We are finally in a position to prove the crucial identity in 2.4.17 . To this end note that comparing the
definition of =(¢) given in 2.3.19 and of the Stanley symmetric function F,, (z1, zo, . .., ) givenin 3.2.1 it is easily
seen that Theorem 2.4.1 is equivalent to the following result.

Theorem 3.3.8
Forues, and 1 <r <n set
U(u,r) = {aeSya=uxty & (o) =1(u)+1withn>b>r},

3.3.51
P(u,r) = {BeSp:f=uxty & IUB)=1l(u)+1withl<a<r}.
Then for every 1 < r < n for which both ¥(u,r) and ®(u,r) are not empty we have
Z Fo(xy,29,...,2,) = Z Fg(z1,29,...,2p) 3.3.52
a€V(u,r) BeP(u,r)
Proof
We begin by rewriting 3.3.50 with u — 1,, ® u and r—r + m in the form
Z Sc(lm®u)><tT+m,b(‘T1ﬂm27"'7xn+m) =
r4+m<b<n+m-+1
l((1m®u)Xtr+rvz,b):l(1")+1
Tr4+m Sclm®u(x1a T2, -- 7xn+m—1) + Z Sc(lm®u)><ta,r+m (xla T2y ey xn-l—m) .
1<a<r+m
ULy @) Xt g, rpm)=1(u)+1
3.3.93

Now note that ¥(u, r) is not empty if and only if we have u; > u, for some indexn > b > r. Under this condition,
wehave u, +m < up+m < m+n-+1and then the length of the permutation (1,, ® u) X t; 4 ntm-+1 is Necessarily
greater than I(u) + 1. Likewise, ®(u,r) is not empty if and only if we have u, < u, for some index 1 < a < r.
Now under this condition, we have m < u, + m < u, + m and the length of the permutation (1,,, ® u) X ty r4m
is greater than I(u) + 1 for all m’ < m. This given, when ¥(u,r) and ®(u,r) are both non empty 3.3.53 can be
rewritten as
Z Sc(lm®u)><tr+m,b+m (T1, 22, s Tngm) =
r<b<n
(L ®@u) Xty bpm)=1(u)+1
Trgm SC1,, @u(T1, T2y - -+ s Tppm—1) + Z SC (1, @u) X tarmrsm (T1T25 -+ Trpm) -
1<a<r
U(Lon @) X tagrm,rpm ) =L(u)+1
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But since (1,,, @ ) X trtm prm = L ® (u X t,.p) and likewise (1., @ u) X tatm rtm = Lm & (u X t, ) this equation
simplifies to

Z SCL”@(uxtnb)(l‘l; T2y ..y xn-l—m) =
r<b<n
H(uxtyp)=l(u)+1

Trim SC1,,0u(T1, T2, .o, Tpgm—_1) + § 861WL®(uxta,T)<l'l7x2»'~7=’Un+m)'
1<a<r
l(uxtq,r)=l(u)+1

Now setting z,,+1 = Zpt2 = -+ = Zptm = 0 and using Theorem 3.3.6 we see that for m > n we must have
E FuXtryb(g)lvaa"'amn) - § FuXta)T(xlal'Q;"';xn)a
r<b<n 1<a<r
Huxtyp)=l(u)+1 l(uxXtq,r)=l(u)+1

and this is simply another way of writing the equation in 3.3.52. Our proof is thus complete.

Now that we have finally established the identity in 2.4.17, (and with quite some effort we must say), a
natural question arises whether or not there is a simpler, purely combinatorial explanation of this identity. To be
precise, purely esthetical considerations lead us to the following conjecture.

For each v € S, and 1 < r < n, when ®(u,r),¥(u,r) # 0, there is a natural bijection O,
between the following two collections of reduced words

\J RED(a) and J RED(p)

a€W(u,r) BED(u,r)
with the property that

p(0yw) = p(w) for all we UaE\Il(u,r) RED(«)

Now it develops that as this writing was about to be completed, David Little was able to prove this
conjecture by constructing a bijection based on simple manipulations of line diagrams. In fact, forany o € ¥(u, ),
David Little’s ©,,, sends a reduced word w = ajaz---a; € RED(a) into a word w’ = biby---b = O, ,w €
RED(S) for some 3 € ®(u,r) with the property that

a;i—b;, = 1 or 0.

It is easy to see that this assures the preservation of “descents” in the simplest possible way.

Of course David Little’s construction proves the identity in 2.4.17, completely bypassing all the machinery
we have developped in these notes. David Little’s discovery yields the simplest and most elementary proof of the
Schur positivity of the Stanley symmetric functions that could ever have been conceived. Moreover, by iterations
of the Little bijection we can obtain a very elementary algorithm that converts a reduced factorization of any
given permutation o into a standard tableau. To do this we simply go down the Lascoux-Schiitzenberger tree of
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o, starting from a word w € RED(o) then proceed from parent to child until we reach a Grassmanian leaf o’.
At that point all we are left to do is convert the target word w’ into the standard tableau obtained by reading
the corresponding labelled circle diagram of ¢’. A bijection between reduced words of the top permutation (™)
and standard tableaux was in fact one of the important results of the Edelman and Greene paper []. It is quite
possible that the algorithm we have just described may yield the same final tableau. Nevertheless, we should
add that the proof of the validity of the David Little bijection is considerably simpler than what is required to
validate the Edelman and Greene’s correspondence.

We should also add that another byproduct of David Little’s discovery is a completely elementary proof
of the validity of the Lascoux-Schiitzenberger tree as a tool for the computation of the Littlewood-Richardson
coefficients. It is simply astounding that so many time proven very difficult achievements can be derived from
such a surprisingly simple construction.
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