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Abstract
These notes cover the contents of a series of lectures in a Topics in

Algebraic Combinatorics course given at UCSD in Winter 2001. The initial
effort was prompted by a desire to understand the connections between the
theory of reduced decompositions started by the pioneering paper [] of R.
Stanley and the theory of balanced tabloids studied by C. Green et al. [] []
However soon it appeared quite clear that a deeper understanding of the sub-
ject requires a parallel understanding of the Lascoux-Schützenberger theory of
Schubert polynomials. These notes should offer a glimpse of the fascinating
combinatorial connections between these theories. The presentation is gener-
ally self contained. The notes culminate with what should be a fairly lucid and
illuminating proof of the Schur positivity of the Stanley symmetric functions.
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Introduction

In 1982 R. Stanley initiated the study of reduced decompositions of elements of Sn.
Central to his work was a the introduction of a family of symmetric functions indexed by
permutations. He conjectured these functions to be Schur positive and proved a number of
their interesting properties including the enumeration of certain classes of reduced decom-
positions. Over the years that followed several works have appeared with different proofs
of the Stanley conjecture by various methods which range from the purely combinatorial
to the purely algebraic. Circa 1982 in a completely independent development Lascoux and
Schützenberger founded the Theory of Schubert polynomials. Central to their study were
some combinatorial consequences of a Pieri-like result for Schubert polynomials which they
called “Monk’s rule”. This led to the definition of a tree associated to every permutation
σ ∈ Sn. Unbeknown to them at the time and to many even at the present time, the LS tree of
a permutation is, in a sense that can be made precise, a purely combinatorial version of the
Stanley symmetric function. Using this tree and several combinatorial properties of reduced
decompositions, the Schur positivity of the Stanley symmetric function follows in a remark-
ably illuminating manner. In these notes we present the contents of a series of lectures in
a Topics in Algebraic Combinatorics Course given at UCSD in Winter 2001. The material
by no means covers all the aspects of the fascinating subject of reduced decompositions that
have been developed over the last two decades. The choice of topics, limited by the time
available, follows the taste of the author and what appeared to be a natural path through a
luscious forest of remarkable combinatorial discoveries. We strived throughout to make our
presentation as self-contained as possible. Some of the later proofs that appeared in the lit-
erature after the original papers are so elegant and simple that we were forced to reproduced
them here almost verbatim. We claim no credit here for any of the results presented. This
in only an expository work. Our main effort has been concentrated into providing a novel
and illuminating way to develop the material. Our original stimulus for choosing this topic
came from several exciting exchanges with Kevin Kadel a visitor at UCSD for the academic
year 2000-2001. We also benefitted immensely from some of the insights he provided us in
the study and developments connecting reduced decompositions to balanced tabloids.
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The Saga of Reduced Factorizations
of

Elements of the Symmetric Group

by
A. M. Garsia

1. Reduced Factorizations

1.1 Notation
It is customary to interpret a permutation σ ∈ Sn as a bijection of {1, 2, . . . , n} onto itself and we

often write it in the form

σ =
(

1 2 3 . . . n
σ1 σ2 σ3 . . . σn

)
,

meaning that σi is the image of i under σ. In this vein to compute the product θ × σ we proceed from right
to left and obtain(

1 2 3 . . . n
θσ1 θσ2 θσ3 . . . θσn

)
=
(

1 2 3 . . . n
θ1 θ2 θ3 . . . θn

)
×
(

1 2 3 . . . n
σ1 σ2 σ3 . . . σn

)
Keeping this in mind, it will be convenient and economical with space to omit the Þrst line and simply write

σ = σ1σ2σ3 · · ·σn

viewing σ as a word in the letters 1, 2, 3, . . . , n. Here and after we let si (for 1 ≤ i ≤ n − 1) represent the
simple transposition

si = (i, i + 1) =
(

1 2 · · · i i + 1 · · · n
1 2 · · · i + 1 i · · · n

)
1.1.1

Note that multiplication of σ on the right by si results in the interchange of the elements σi, σi+1. Thus in
our shorthand we may write

σ1σ2 · · ·σi+1σi · · ·σn = σ1σ2 · · ·σiσi+1 · · ·σn × si .

Let us recall that the number of inversions of σ is given by the sum

inv(sig) =
∑

1≤i<j≤n

χ(σi > σj) .

It is clear that right multiplication of σ by any simple transposition increases the number of inversions by
one if σi < σi+1 and decreases it by one if σi > σi+1. Let us recall that an index i such that σi > σi+1 is called
a ÒdescentÓ of σ and correspondingly

D(σ) = {1 ≤ i ≤ n− 1 : σi > σi+1 }

is usually referred to as the Òdescent setÓ of σ. This given, if we want to express an element σ as a product
of simple reßections the number of factors required should be at the very least inv(σ). For this reason, inv(σ)
is often referred to as the ÒlengthÓ and brießy also denoted by l(σ). Note that it is always possible (in fact in
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many ways) to express σ as a product of l(σ) simple transpositions. To do this we simply start with σ = σ(o)

and construct a sequence of permutations

· · · ← σ(r+1) ← σ(r) ← · · · ← σ(2) ← σ(1) ← σ(o)

with σ(r+1) = σ(r) × si and where i is only chosen by the requirement that i be
in the descent set of σ(r), that is σ

(r)
i > σ

(r)
i+1 . Since this requirement assures that

l(σ(r+1)) = l(σ(r))− 1 the sequence will stop after exactly l(σ) steps with σ(l(σ)) =
123 · · ·n , (the identity permutation). In the display on the right we illustrate such
a sequence for the permutation σ = 35621784. Here the labels on the right of the
dividing line give the indices i forwhich the correspondind siwas chosen. It should
be apparent from this example that each time we have a variety of choices, (one for
each element of the descent set of the current permutation).

Factorizations of a permutation σ as a product of l(σ) reßections are called ÒreducedÓ and the
word in the letters 1, 2, . . . , n− 1 giving the successive indices of the factors is called the Òreduced word Ó
corresponding to the factorization. Thus for the factorization above

35621784 = s1s4s2s3s5s1s2s4s6s3s7 1.1.2

the corresponding reduced word is 14235124637
Factorizations into simple reßections whether reduced or not are best studied by means of a line

diagram which exhibits the trajectories of each of the labels 1, 2, . . . , n as we proceed in our construction of
the target permutation. In the display below we illustrate the diagram corresponding to the factorization
illustrated above.

1.1.3

A close examination of this display reveals one fundamental property of diagrams corresponding
to reduced factorizations:

for any pair of indices 1 ≤ i < j ≤ n : the i-line and j-line cross at most once.
The reason for this is quite simple: once we interchange i and j, doing it again would decrease the number
of inversions, and we never do that to get a reduced factorization.
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We should mention that there is a systematic way of getting a reduced factorization for any permu-
tation σ = σ1σ2 · · ·σn. Starting from the identity permutation, we make Þrst the interchanges that bring σ1

to Þrst position, then those that bring σ2 to second position, then those that bring σ3 to third position and
so on until we reach σ. This is best understood by an example. In the next display we have illustrated this
process applied to σ = 452163.

1.1.4

We thus obtain the factorization 452163 = s3s2s1s4s3s2s3s5. It is easily seen that, in general, the resulting
factorization will be of the form

σ =
n−1∏
i=1

(
saisai−1sai−2 · · · si+1si

)
1.1.5

with ai ≥ i − 1 (note that ai = i − 1 must be included for the cases when the the corresponding factor
should be taken equal to 1 (i.e. missing). Here and after these factorizations will be called ÒcanonicalÓ. A
momentÕs reßection should reveal that these observations yield the following basic identity

Theorem 1.1.1

∑
σ∈Sn

σ =
n−1∏
i=1

(
1 + si + si+1si + si+2si+1si + · · ·+ sn−1 · · · si+2si+1si

)
1.1.6

Proof
It should be understood that the factors in the right hand side of 1.1.6 are to be taken from left to

right as i goes from 1 to n− 1. This given, interpreting the left hand side as an element of the group algebra
of Sn, then the identity simply asserts that each σ ∈ Sn has a factorization of the form given in 1.1.5.

The following basic identities will play a fundamental role in the sequel, they are usually referred
to as the ÒCoxeter RelationsÓ.

Proposition 1.1.1

1) s2
i = id ∀ 1 ≤ i ≤ n− 1 ,

2) si si+1 si = si+1 si si+1 ∀ 1 ≤ i ≤ n− 1 ,
3) si sj = sj si if |i− j| ≥ 2 .

1.1.7
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Proof
The Þrst and last follow immediately from the deÞnitions of the si. The middle one just expresses

the fact that the permutation

θi =
(

1 2 · · · i i + 1 i + 2 · · · n
1 2 · · · i + 2 i + 1 i · · · n

)
has two reduced decompositions. We should also point out that the right hand side of 1.1.7 2) is in fact
the canonical decomposition of θi. A visual understanding of this relation may also be provided by the
following display

This is but an instance of the more general result which may be stated as follows
Theorem 1.1.2

We may pass from any reduced factorization to any other of a given permutation σ

by a sequence of applications of identities 1.1.7 2) & 3). The inclusion of 1.1.7 1) is only
necessary to pass from a non-reduced factorization of σ to a reduced one.

Proof
It is sufÞcient to show that we can pass from any factorization of σ to a canonical one. To this end

our Þrst step is to show that we may pass from any factorization which does not contain s1, s2, . . . , si−1 to
one which contains at most one occurrence of si. We can prove this by descent induction on i. Clearly the
assertion is trivial for i = n − 1. So let us assume that it is true for i + 1, i + 2, . . . , n − 1 and let W be a
factorization which contains no occurrences of s1, s2, . . . , si−1. Suppose W contains two occurrences of si

and let us write it in the form
W = W1siW2siW3 1.1.8

with no occurrences of s1, s2, . . . , si inW2. So by inductionwe changeW2 to a expressionW ′
2 which contains

no occurrences of si+1 or one of the form

W ′
2 = W21 si+1W22

withW21 andW22 not containing any occurrences of s1, s2, . . . , si+1. In the Þrst case, by successive uses of
the Coxeter relations we can carry out the three transitions

W = W1siW2siW3 −→ W1siW
′
2siW3 −→ W1sisiW

′
2W3 −→ W1W

′
2W3 .

In fact, the second transition only needs successive uses of 1.1.7 3). Clearly, this case only occurs whenW is
not reduced.

In the other case, using the Coxeter relations we Þrst carry out the transition

W = W1siW2siW3 −→ W1 si W21 si+1 W22 si W3 .
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Since W21 and W22 have only occurrences of sj with j > i + 1, by successive uses of 1.1.7 3) we can then
carry out the transition

W1 si W21 si+1 W22 si W3 −→ W1 W21 si si+1 si W22 W3

and Þnally a use of 1.1.7 2) completes the sequence

W = W1siW2siW3 −→ W1 si W21 si+1 W22 si W3 −→
−→ W1 W21 si si+1 si W22 W3 −→ W1 W21 si+1 si si+1 W22 W3

reducing by one the number of occurrence of si in W . Proceeding in this manner we can arrive at a point
where either there is only one si left or none at all. This completes our induction. This given, starting from
any factorizationW , by means of the Coxeter relations we can eliminate altogether all the occurrences of s1

or carry out the transition
W −→ W1 s1 W2

withW1 andW2 containing no occurrences of s1. By a further sequence of steps we can carry out one of the
two transitions

W1 s1 W2 −→ W11 s2 W12 s1 W2 or W1 s1 W2 −→ W ′
1 s1 W2

with no occurrences of s1 or s2 in W12 or W ′
1. In each case successive uses of 1.1.7 3) will complete the

succession of transitions

W −→ W1 s1 W2 −→ W11 s2 W12 s1 W2 −→ W11 s2 s1 W12W2

or
W −→ W1 s1 W2 −→ W ′

1 s1 W2 −→ s1W
′
1 W2 .

Since there are no other occurrences of s1 in either case and no ocurrences of s1 or s2 in W11 in the Þrst
case, we see that the pattern typical of a canonical factorization is beginning to emerge. Indeed the next
step is to work onW11 and obtain one of the transitionsW11 −→W111 s3W112 or W11 −→ s3W112 with no
occurrennces of s1, s2, s3 inW112. This gives the transitions

W −→ W11 s2 s1 W12W2 −→ W111 s3W112 s2 s1 W12W2 −→ W111W112 s3 s2 s1 W12W2

or
W −→ W11 s2 s1 W12W2 −→ s3W112 s2 s1 W12W2 −→ s3s2 s1 W112 W12W2 .

We need not say any more here. The reader should have no difÞculty understanding how this process
can be continued to yield in the end a canonical decomposition of the permutation σ corresponding to the
factorizationW . To clear up any remaining uncertainties it may be appropriate to carry out the all the steps
necessary in a particular instance. A good case in point is the factorization in 1.1.2. In the display below
the labels on the right of the vertical line indicate which of the Coxeter relations are used in that particular
transition the boxes appear as soon as one of the descent strings typical of canonical factorizations is formed.



cocat:=proc(s,L)
  local out,i,w;
  out:=NULL;
 for w in L do        
out:=out,[op(w),s];
    od;
  out;
 end:

preds:=proc(sig)
  local n,out,i;
  n:=nops(sig);
  out:=NULL;
  for i from 1 to n-1 do
   if sig[i]>sig[i+1] then
   out:=out,[i,sigact(i,sig)];
     fi;
  od;
 [out];
  end

sigact:=proc(i,sig)
  local j,out;
 out:=[seq(sig[j],j=1..i-1), 
         sig[i+1],sig[i],seq(sig[j],
              j=i+2..nops(sig))];
 end:
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The main goal of these notes is to present some of the main results obtained in the description and
enumeration of all reduced decompositions of any given permutation. Nevertheless, we should note at this
point that, at least for small n, these reduced words can be constructed by computer in a relatively simple
manner. This construction is based on the following identity.

Theorem 1.1.3
If for a given σ ∈ Sn, we denote by “RED(σ)” the collection of all words corresponding

to reduced factorizations of σ then∑
w∈RED(σ)

w =
∑

i∈D(σ)

∑
w′∈RED(σsi)

w′i 1.1.9

Proof
It might be good to start by explaining the notation used in 1.1.9. To begin with the left hand side

should be interpreted as the formal sum of all the elements of R(σ). Thus to prove 1.1.9 we only have to
show that each summand occurring in the left hand side occurs once and only once on the right hand side.
Finally, we should note that the symbol Òw′i Ó simply means the word obtained by appending the letter i

to the word w′. Now note that if W = W ′si is a reduced factorization of σ then we must necessarily have
σi > σi+1 andW ′will necessarily be a reduced factorization of σ′ = σsi . This is becauseW ′ is a factorization
of σ′ and the number of its factors is l(σ) − 1 = l(σ′). Now if w is the word corresponding to W and w′ is
the word corresponding to W ′ we have w = w′i. This given we see that all w ∈ RED(σ) do occur in the
right hand side and they occur only once for the simple reason that each sum

∑
w′∈RED(σsi)

w′i consists
of distinct words and different values of Òi Ó yield different sums of words.

It will be instructive at this point to show how this identity can be translated into aMAPLE program.
However, before implementing 1.1 we need a three auxiliary procedures ÒsigactÓ, ÒpredsÓ, ÒcocatÓ. The
Þrst has 2 input variables, an index i and a permutation σ . Then sigact returns the permutation σ′ = σsi.
The procedure preds takes a permutation σ as input and returns all the ÒpredecessorsÓ of σ, that is the
collection

PRED(σ) = {σ′ : σ′ = σsi & σi > σi+1 } 1.1.10

Finally, cocat takes two input variables, an index s and a list of words L. Its output is the list of all words
obtained by appending the index s to each word of L. These three procedures are given below



REDS:=proc(sig)
local prevs,out,i,s,m,tau,te,med;
 prevs:=preds(sig);
 if prevs=[] then 
    out:=[[]];
   else
 te:=NULL;
  m:=nops(prevs);
   for i from 1 to m do
     s:=prevs[i][1];
     tau:=prevs[i][2];
    med:=cocat(s,REDS(tau));
 te:=te,med;
  od;
 out:=[te];
 fi;
 out;
 end;
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This given, the following procedure with input a permutation σ returns all the words corresponding to
reduced factorizations of σ. It can be easily checked that it simply expresses inMAPLE almost verbatim the
identity in 1.1.10.

Now a call ofREDS([4,3,2,1]) yielded 16 reduced words as listed below.

123121
121321
212321
231231

213231
123212
312312
132312

312132
132132
321232
231213

213213
232123
323123
321323

1.1.11

We need to introduce a combinatorial structure which will play a crucial role in our further developments.
Given a permutation σ = σ1σ2σ3 · · ·σn we associate to it an n × n diagram with entries Ò©Ó, ÒXÓ or Ò•Ò,
as follows. In column j and row σj we place an X . This done, in all the positions west or below this X we
place an Ò•Ò. Finally when all the XÕs and the • Õs have been placed we Þll the remaining positions with
© Õs. The resulting Þgure will be referred to here and after as the ÒCircle DiagramÓ of the permutation σ.
The display below gives the circle diagram of the permutation σ = 48652371.

1.1.12
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Remark 1.2.1
Weshouldnote that eachof the circles correspond to an inversionofσ. Indeed, fromour construction

of circle diagrams we will have a Ò©Ó in position (i, j) if and only if the ÒXÓ in column j occurs below (i, j)
and the ÒXÓ in row i occurs to the right of (i, j). This is equivalent to saying that σj > i and j′ = σ−1

i > j,
Thus this Ò©Ó corresponds to the inversion σj > σj′ .

1.2 The matrix approach
Note that the rearrangement

X = (x1, x2, x3, x4, x5, x6, x7, x8) −→ X ′ = (x4, x8, x6, x5, x2, x3, x7, x1)

may simply be obtained by matrix multiplication. In fact, if we must have X ′ = XM (interpreting X and
X ′ as row vectors), then we are forced to take

M =



0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0


1.2.1

We clearly see that the positions of the ones in this matrix corresponds precisely to the positions of the X ′s

in the circle diagram of 48652371. More generally, the transition

X = (x1, x2, x3, . . . , xn) −→ X ′ = (xσ1 , xσ2 , xσ3 , . . . , xσn)

can obtained be obtained by right multiplication of X by the matrix

M(σ) =
∥∥χ(i = σj)

∥∥n

i,j=1

Weusually refer toM(σ) as the Òpermutation matrixÓ corresponding toσ. Note then that thepermutation
matrix corresponding to the simple transposition si = (i, i + 1) of Sn may be schematically depicted as the
n× n matrix

In other words, M(si) has entries equal to one in positions (i, i + 1), (i + 1, i) and (j, j) for j = 1, . . . , i − 1
and j = i + 1, . . . , n, and all the remaining entries equal to zero.
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This enables us to view the line diagrams in 1.1.3 and 1.1.4 in a completely different light. Indeed,
note thatwemaywrite the i, j-entryof themultiplicationofk+1 matricesA(r) = ‖a(r)

ij ‖ni,j=1, (r = 1, . . . , k+1)
in the form

(A(1)A(2)A(3) · · ·A(k+1))ij =
n∑

i1=1

n∑
i2=1

n∑
i3=1

· · ·
n∑

ik=1

a
(1)
i,i1

a
(2)
i1,i2

a
(3)
i2,i3
· · · a(k+1)

ik,j . 1.2.2

This expression has a very useful visualization. We depict a sequence of k + 2 equally spaced columns, with
nodes labelled 1, 2, . . . , n and view the sequence of indices i→i1→i2→· · ·→ik→j as a path successively
hitting the labels i, i1, i2, . . . , ik, j as indicated below for the case n = 6, k = 4 and the sequence 3, 5, 2, 1, 4, 2.
We also assign to the edge joining label i of column r to label j of column r + 1 the ÒweightÓ a

(r)
i,j and,

correspondingly assign to any path a weight equal to the product of the weights of its edges. This given,
we can then interpret the right hand side of 1.2.2 as the sum of the weights of all the paths joining label i of
column 1 to label j of column k + 2.

We shall here and after brießy refer to these displays as Òmultiplication diagramsÓ. Clearly, the sum on
the right hand side of 1.2.2 need only be carried out over the paths of weight 6= 0. This given, to further
simplify these diagrams, we shall only depict edges i→j of weight aij 6= 0. In thismanner themultiplication
diagram ofM(s1)M(s2)M(s1) reduces to

We can thus visualize the identity

M(s1)M(s2)M(s1) =

 0 0 1
0 1 0
1 0 0

 1.2.3
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by computing each of the 9 i, j-entries in the product as a sum of weights of paths. Zero i, j-entries corre-
sponding to the cases when there is no path joining i to j. Of course in this extremely simple case for any
pair i, j either there is no path or there is only one of weight 1. This accounts for the right hand side of 1.2.3.
Although we may not see it from this example, we will soon appreciate how powerful this imagery can be
in understanding certain matrix identities. At any rate, we can now visualize the displays in 1.1.3 and 1.1.4
as instances of multiplication diagrams. In this manner we can use the display in 1.1.3 to obtain a visual
understanding of the identity

M(s1)M(s4)M(s2)M(s3)M(s5)M(s1)M(s2)M(s4)M(s6)M(s3)M(s7) =



0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0


.

It develops that Kassel, Lascoux and Reutenauer [] discovered that by adding a single non-zero entry in
each of the matricesM(si)we can have the resulting product retain full information as to each of its factors
and the order in which they occur. To be precise these authors let Pi(x) (for a Þxed n) be the n× nmatrix

This given, it is easy to see that in the 3 × 3 case the product P1(x)P2(y)P1(z) may be represented by the
multiplication diagram

from which we derive that

P1(x)P2(y)P1(z) =

 y + xz x 1
z 1 0
1 0 0

 1.2.4

Here the y + xz entry accounts for the fact that there are two paths joining 1 to 1. Namely, 1→1→1→1 and
1→2→2→1 of weights ÒxzÓ and ÒyÓ respectively.
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Likewise from the diagram

we derive that

P2(x)P1(y)P2(z) =

 y z 1
x 1 0
1 0 0

 1.2.5

At this point it will be useful to note, for future reference, that combining 1.2.5 and 1.2.4 we obtain

P1(x)P2(y)P1(z) = P2(z)P1(y + xz)P2(x)

Similarly, in the n× n case, we derive that

Pi(x)Pi+1(y)Pi(z) = Pi+1(z)Pi(y + xz)Pi+1(x) (for i = 1, 2, . . . , n− 1) 1.2.6

More generally, for a given reduced word w = a1a2a3 · · · al Kassel et al. do set in []

Pw(x1, x2, x3, . . . , xl) = Pa1(x1)Pa2(x2)Pa3(x3) · · ·Pal(xl) . 1.2.7

Our goal here is to fully understand the structure of this matrix. We shall begin by showing that
in some cases its entries can be written down without any calculation. To be precise we have the following
remarkable fact.

Theorem 1.2.1 (Kassell, et al.)
If w is the word of the canonical factorization of a permutation σ, then the matrix

Pw(x1, x2, x3, . . . , xl) is simply obtained from the circle diagram of σ by replacing every “X” by
a 1, every “•” by 0 and the “© ′s” by the variables x1, x2, x3, . . . , xl successively up the columns
starting from the left most column and proceeding to the right.
Proof

It will be good to start with a particular case. For instance, for the canonical factorization of σ =
452163, illustrated in 1.1.4, this construction yields

−→ P32143235(x1, x2, . . . , x8) =


x3 x6 x7 1 0 0
x2 x5 1 0 0 0
x1 x4 0 0 x8 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0

 1.2.8
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To visualize the mechanism that produces this result we resort to the multiplication diagram corre-
sponding to the product that yields P32143235(x1, x2, . . . , x8). Now it is not difÞcult to see that this diagram
can be simply obtained by adding edges with weights x1, x2, x3, x4, x5, x6, x7, x8 to the display in 1.1.4, as
indicated below

To calculate the 3, 2-entry in P32143235(x1, x2, . . . , xn) using this diagram we locate all the paths that join 3
to 2. We see that there is only one such path. This is obtained by following the 3-line until it meets the
edge labled x4 then traverse this edge and then follow the 5-line untill the end. This gives that the 3, 2-
entry is x4. Now we should clearly see why the entries in positions (3, 1), (2, 1) and (1, 1) turn out to be
x1, x2, x3 respectively. This is simply because as we bring 4 to Þrst position by the transpositions s3, s2, s1,
in the product diagram corresponding to P3(x1)P2(x2)P1(x3) the horizontal edges with weights x1, x2, x3

open up three paths respectively joining 3 to 1, 2 to 1 and 1 to 1. Similarly in the portion of the diagram
corresponding to the factors P4(x4)P3(x5)P2(x6) the horizontal edges with weights x4, x5, x6 open up three
paths respectively joining 3 to 2, 2 to 2 and 1 to 2. That accounts for x4, x5, x6 landing in positions (3, 2),
(2, 2), (1, 2), of the resulting matrix. Similar reasoning accounts for the positions of x7 and x8. To establish
the result in the general case, we have three crucial observations:

First, we note that because in a canonical factorization, we bring the elements σ1,σ2, σ3 . . . to their
positions successively one at the time, as we bring σj to the jth in steps k, k + 1, k + 2, . . . , k + r the edges
with weights xk, xk+1, xk+2, . . . , xk+r are all above the σj-line. This given, when a path in themultiplication
diagram traverses one of these edges it will then be forced to follow the σj-line to its end and therefore it
will never be able to traverse any other x-weighted edge. This shows that for any pair (i, j) there is no path
joining i to j, or a single path. In the latter case the path starts with the i-line and either it never traverses
one of the x-weighted edges thereby following the i-line all the way to the end (here i = σj and the i, j-entry
is Ò1Ó ) or it traverses an x-weighted edge and then it must continue along the i′ = σ−1

j -line all the way to
the end (see Þgure below)

If the crossing occurs at step k then the weight of the edge is xk and the i, j-entry will be xk.
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Second, we note that in the latter case, σj′ = i (see Þgure above) with j′ > j and σj = i′ > i imply
that the i, j-position is precisely a Ò©Ó-position in the circle diagram of σ.

Finally, if theweightsofhorizontalx-labellededges that touch theσj-lineare successivelyxi, xi+1, . . . , xi+r

then these weights will necessarily land in the Ò©Ó-positions of the jth column of the resulting matrix. This
completes our proof.

Remark 1.2.2
We have shown above that if the kth transposition in our reduced expression interchanges i with

i′ = σj then the variable xk will appear in the i, j-entry of the resultingmatrix. If we review the argumentwe
can easily see that this particular conclusion did not use the fact that there we were dealing with a canonical
factorization. However, in the general case, as we shall see, there will also be other paths joining i to j and
they will contribute further terms to the i, j-entry of the resulting matrix. Keeping in mind this fact we can
prove the following remarkable property of the matrices Pw(x1, x2, . . . , xl).

Theorem 1.2.2 (Kassel, et al.)
Let σ be a permutation of length l and let J = (xixj : 1 ≤ i < j ≤ l) be the ideal

in the polynomial ring Q[x1, x2, . . . , xl] generated by the products xixj. Then for any w ∈
RED(σ) the matrix Pw(x1, x2, . . . , xl) modulo J may be obtained from the circle diagram of
σ by replacing every “X” by a 1, every “•” by 0 and the “© ′s” by a permutation of the
variables x1, x2, x3, . . . , xl. More precisely, if w = a1, a2, . . . , al then the “©” in position (i, j) is
to be replaced by xk if the transposition sak interchanges i with σj.
Proof

Recall that we can pass from w to the canonical factorization wo of σ by a succession of applications
of the relations 2) and 3) of 1.1.7. Now from 1.2.6 we deduce that

Pi(x)Pi+1(y)Pi(z) ∼= Pi(z)Pi+1(y)Pi(x) (mod J ) for i = 1, . . . , l 1.2.9

and we clearly have

Pi(x)Pj(y) = Pj(y)Pi(x) for |j − i| ≥ 2 . 1.2.10

Thus if we use the same relations that bring us from w to wo to the product

Pw(x1, x2, . . . , xl) = Pa1(x1)Pa2(x2)Pa3(x3) · · ·Pal(xl) ,

we see that the relations in 1.2.9 and 1.2.10 will yield us an identity of the form

Pw(x1, x2, . . . , xl) ∼= Pwo(xθ1 , xθ2 , . . . , xθl) (mod J )

with θ1, θ2, . . . , θl a permutation of 1, 2, . . . , n. This given, our assertions follow from Theorem 1.2.1 and
Remark 1.2.1.

It will be worthwhile to illustrate this argument by working on a speciÞc example. For this we take
σ = 615243 and the word w = 453243251 ∈ RED(σ). In the display below we give the sequence of steps
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that transform 453243251 into the canonical factorization 543215435 of σ. On the right of the vertical line we
have indicated the transformation we carried out from one step to the next.

1.2.11

This shows that modulo the ideal J =
(
xixj : 1 ≤ i < j ≤ 9

)
we have

P453243251(x1, x2, x3, x4, x5, x6, x7, x8, x9) ∼= P543215435(x7, x2, x5, x6, x9, x1, x3, x4, x8, ) 1.2.12

Since s5s4s3s2s1s5s4s3s5 is the canonical factorization of σ = 615243 we can follow the recipe given by
Theorem 1.2.1 and obtain

P453243251(x1, x2, x3, x4, x5, x6, x7, x8, x9) ∼=


x9 1 0 0 0 0
x6 0 x4 0 0 0
x5 0 x3 0 x8 1
x2 0 x1 0 1 0
x7 0 1 0 0 0
1 0 0 0 0 0

 1.2.13

Remark 1.2.3
We should note that the effect of working

in the quotient ring Q[x1, x2, . . . , xl]/J is to kill
all contributions to the matrix Pw(x1, x2, . . . , xl)
coming from paths that traverse more than one of
the x-weighted edges. In fact we can easily see
from the adjoining product diagram that the if we
do not kill all monomials of degree 2 the resulting
matrix is

P453243251(x1, x2, . . . , x9) =


x9 1 0 0 0 0

x6 + x4x7 0 x4 0 0 0
x5 + x3x7 0 x3 0 x8 1
x2 + x1x7 0 x1 0 1 0

x7 0 1 0 0 0
1 0 0 0 0 0


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Our next goal is to show that we can produce equivalences such as in 1.2.12 by working directly
with the Þnal matrices, rather than by acting on the factors. To state and prove this result we need to make
some deÞnitions and establish some auxiliary propositions. To begin let us denote by PJw (x1, x2, . . . , xl)
the matrix we obtain when we compute the entries of Pw(x1, x2, . . . , xl) mod J . We shall also refer to
PJw (x1, x2, . . . , xl) as the Òlinear partÓ of Pw(x1, x2, . . . , xl). For given indices j1 < j2 < · · · < jk , let us
denote by PJw [j1, j2, . . . , jk] the k×k submatrix of PJw (x1, x2, . . . , xl) contained in columns j1, j2, . . . , jk and
rows σj1 , σj2 , . . . , σjk . Note that if k = 3 and σj1 > σj2 > σj3 then the submatrix PJw [j1, j2, j3] will be of the
form

PJw [j1, j2, j3] =

 y z 1
x 1 0
1 0 0


This given, we shall call a Ò3-Coxeter transition for kÓ in PJw (x1, x2, . . . , xl) a replacement of the formxk+1 xk+2 1

xk 1 0
1 0 0

 ←→

xk+1 xk 1
xk+2 1 0

1 0 0

 1.2.14

More precisely, such a transition consists in locating three indices j1 < j2 < j3 such that the submatrix
PJw [j1, j2, j3] is of one of the forms given in 1.2.14. This done, the 3-Coxeter transition consists in replacing
one form by the other form in PJw (x1, x2, . . . , xl).

In the same vein, a Ò2-Coxeter transition on kÓ is the exchange of xk and xk+1 when

xk and xk+1 are not in the same row or column.

Thus thisCoxeter transitioncarriesoutoneof the following4 possible exchanges in thematrixPJw (x1, x2, . . . , xl):

Proposition 1.2.1
Let w = a1, a2, · · · al be a reduced word and let

ak = i , ak+1 = i + 1 , ak+2 = i .

Let w′ = a′1, a
′
2, · · · a′l be the same as w except in positions k, k + 1, k + 2 where we have

a′k = i + 1 , a′k+1 = i , a′k+2 = i + 1

Then the matrix PJw′(x1, x2, . . . , xl) is simply obtained from PJw (x1, x2, . . . , xl) by making a
3-Coxeter transition on k.
Proof

We have

Pw(x1, x2, . . . , xl) = Pa1(x1) · · ·Pi(xk)Pi+1(xk+1)Pi(xk+2) · · ·Pal(xl) .
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Under this assumption, the portion of the diagram that contains the edges of weights xk, xk+1 and xk+2 will
necessarily be of the form given belowwith the xk, xk+1 and xk+2 edges at heights i, i+1 and i respectively.

Indeed, if it is i1-line and the i2-line that cross at thew kth step, and if it is the i3-line that the i1-line crosses
at the k + 1st step then the i2 and i3 lines will necessarily cross at the k + 2nd step. Since, in the line diagram
of a reduced decomposition, any two labelled lines cross only once, we will have i1 < i2 < i3 and the i3, i2
and i1 lines must respectively end up at levels j1 < j2 < j3 as indicated in the Þgure. Of course this means
that σj1 = i3, σj2 = i2 and σj3 = i1

Using this diagram and the recipe given by Theorem 1.2.3, we can easily derive that the submatrix
PJw [j1, j2, j3]must be precisely as given below

PJw [j1, j2, j3] =

xk+1 xk 1
xk+2 1 0

1 0 0

 . 1.2.16

Note next that if the portion of the product diagram of Pa1(x1)Pa2(x2) · · ·Pal(xl) given above, is replaced
by the portion given below
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what we get is precisely the multiplication diagram we can use to compute the matrix

Pw′(x1, x2, . . . , xl) = Pa′1
(x1) · · ·Pi+1(xk)Pi(xk+1)Pi+1(xk+2) · · ·Pa′

l
(xl) .

On the other hand, the relation in 1.2.7 (modulo J ) gives

Pi+1(xk)Pi(xk+1)Pi+1(xk+2) ∼= Pi(xk+2)Pi+1(xk+1)Pi(xk) (mod J )

This means that we also have

PJw′(x1, x2, . . . , xl) ∼= Pa1(x1) · · ·Pi(xk+2)Pi+1(xk+1)Pi(xk) · · ·Pal(xl) ∼= PJw (x1, · · · , xk+2, xk+1, xk, . . . , xl)

In other words PJw′(x1, x2, . . . , xl) is obtained from PJw (x1, x2, . . . , xl) by interchanging xk with xk+2. How-
ever, in view of 1.2.16 this is precisely a 3-Coxeter transition on k.

It is important to know at this point how the matrix PJw (x1, x2, . . . , xl) changes as we increase or
decrease the number of factors. It develops that these changes can be carried out by a very simple recipe.
More precisely we have

Proposition 1.2.2
Let w = a1a2 · · · ak ∈ RED(σ), and let σj < σj+1 so that w′ = a1a2 · · · akj ∈ RED(σ × sj),

then the transition
PJw (x1, x2, . . . , xk) −→ PJw′(x1, x2, . . . , xk+1)

is simply obtained by interchanging columns j and j+1 of PJw (x1, x2, . . . , xk) and then changing
the (σj , j)-entry of the resulting matrix to “xk+1”.
Proof

For convenience letMw andMw′ denote the multiplications diagrams corresponding
to w and w′ and letMw′/w denote the the last two columns we have to add toMw to getMw′ .
Since by our assumptions we have

Pw′(x1, x2, . . . , xk+1) = Pw(x1, x2, . . . , xk)× Pj(xk+1) ,

the diagramMw′/w will necessarily be as depicted in the the adjacent Þgure. We have also set
there i = σj and i′ = σj+1. Now note that, when s 6= j or s 6= j + 1, to compute an r, s entry in
the matrix Pw′(x1, x2, . . . , xk+1)we simply follow the same paths as for the computation of the
r, s entry of Pw(x1, x2, . . . , xk) up to the Þrst column ofMw′/w and then proceed to the second
column ofMw′/w traversing the horizontal edge at level s. This yields that the sth columns of
Pw′(x1, x2, . . . , xk) and Pw(x1, x2, . . . , xk) are identical. Similarly we see that, to compute an
r, j +1-entry of Pw′(x1, x2, . . . , xk), wemust follow a path ofMw that goes from r to level j and
then drop down to level j + 1 by following the last step of the i-line inMw′/w. This causes the
j+1st column ofPJw′(x1, x2, . . . , xk+1) to be identical with the jth column ofPJw (x1, x2, . . . , xk).
To compute the r, j-entry of PJw′(x1, x2, . . . , xk+1) we have two sets of paths. Those which in
Mw go from r to level j and continue inMw′/w horizontally by traversing the xk+1-weighted
edge (see Þgure), and those which inMw go from r to level j + 1 and then climb up to level j
by following the last step of the i′-line inMw′/w.
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However from the Þrst set of paths only the i-line survives in computation mod J . The reason
for this is,except for the i-line, all the other paths have contributed an x-entry in PJw (x1, x2, . . . , xk) and the
continuation across the the xk+1-weighted edge will make their weight a product of x′s and therefore equal
to zero mod J . On the other hand the i-line inMw followed by the xk+1-weighted edge will contribute an
xk+1 to the i, j-entry of PJw′(x1, x2, . . . , xk+1). Now a path inMw from second set that goes from an r 6= i to
level j + 1, yields the r, j + 1-entry in PJw (x1, x2, . . . , xk) and will cause this entry to move to the r, j position
in PJw′(x1, x2, . . . , xk+1) as it climbs to level j inMw′/w .

We have now accounted for all but the i, j-entry in PJw′(x1, x2, . . . , xk+1). The possibility remains
that xk+1 may not be the only term there because of some path from second set that went from i to level
j + 1 inMw. However note that since σj = i there is no Ò©Ó or ÒXÓ in position i, j + 1 in the circle diagram
of σ so the i, j-entry in Pw(x1, x2, . . . , xk) is necessarily zero and therefore there is no path inMw that joins
i to j + 1. Thus the i, j-entry of PJw′(x1, x2, . . . , xk+1)must be xk+1 precisely as asserted.

In the display below we illustrate the sequence of transitions corresponding to the reduced word
w = 24534231 ∈ RED(516324).


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

− 2→


1 0 0 0 0 0
0 x1 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

− 4→


1 0 0 0 0 0
0 x1 1 0 0 0
0 1 0 0 0 0
0 0 0 x2 1 0
0 0 0 1 0 0
0 0 0 0 0 1

− 5→


1 0 0 0 0 0
0 x1 1 0 0 0
0 1 0 0 0 0
0 0 0 x2 x3 1
0 0 0 1 0 0
0 0 0 0 1 0



− 3→


1 0 0 0 0 0
0 x1 x4 1 0 0
0 1 0 0 0 0
0 0 x2 0 x3 1
0 0 1 0 0 0
0 0 0 0 1 0

− 4→


1 0 0 0 0 0
0 x1 x4 x5 1 0
0 1 0 0 0 0
0 0 x2 x3 0 1
0 0 1 0 0 0
0 0 0 1 0 0

− 2→


1 0 0 0 0 0
0 x4 x1 x5 1 0
0 x6 1 0 0 0
0 x2 0 x3 0 1
0 1 0 0 0 0
0 0 0 1 0 0

 1.2.17

− 3→


1 0 0 0 0 0
0 x4 x5 x1 1 0
0 x6 x7 1 0 0
0 x2 x3 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0

− 1→


x8 1 0 0 0 0
x4 0 x5 x1 1 0
x6 0 x7 1 0 0
x2 0 x3 0 0 1
1 0 0 0 0 0
0 0 1 0 0 0


Since each of these matrix transitions can be reversed, an immediate corollary of Proposition 1.2.3 is that the
word w can be reconstructed from PJw (x1, x2, . . . , xl). To do this we simply carry out the illustrated process
in reverse. In particular we obtain thus a proof that the matrix Pw(x1, x2, . . . , xl) is completely determined
by its linear part. Now it develops that there is an even simpler way, in fact a recipe, for recovering w from
PJw (x1, x2, . . . , xl). This result can be stated as follows.



Topics in Algebraic Combinatorics LECTURE NOTES may 3, 2001 19

Theorem 1.2.3 (C. Greene et Al [])
Let w = a1a2 · · · al, and for each k ∈ [1, l] let ck denote the number of xs with s > k

that are directly NORTH or SOUTH of xk in PJw (x1, x2, . . . , xl) and let rk be the number of xs

with s > k that are directly WEST. This given, if xk is in column jk of PJw (x1, x2, . . . , xl) we
necessarily have

ak = jk + ck − rk 1.2.18

Proof
It follows from Proposition 1.2.2 and it is easy to see from the process in 1.2.17 that if ak = j then xk

lands in column j at the moment it is inserted. However, as the process of construction of PJw (x1, x2, . . . , xl)
continues, its column changes. Nevertheless we can easily keep track of what happens. To beginwe see that
every time an xs with s > k gets inserted in the column of xk the column number of xk decreases by one.
On the other hand note that if an xs with s > k gets inserted in the row of xs this will necessarily take place
EAST of xk, because to the right of xs we place a 1 and there is nothing but zeros in PJw (x1, x2, . . . , xl) to the
right of any 1 Õs. Now the only time when such an xs passes to the WEST of xk is when xs is immediately to
the right of xk and their columns are interchanged. This causes the column number of xk to increase by one
at that time. Putting all this together we derive that when the transition process terminates we will Þnd xk

in column jk with

jk = ak + rk − ck .

This proves 1.2.18.

Proposition 1.2.3
Let w = a1, a2, · · · al be a reduced word and let

ak = r and ak+1 = s with |r − s| ≥ 2 . 1.2.19

Let w′ = a′1, a
′
2, · · · a′l be the same as w except in positions k, k + 1 where we have

a′k = s and a′k+1 = r 1.2.20

Then the matrix PJw′(x1, x2, . . . , xl) is simply obtained from PJw (x1, x2, . . . , xl) by making a
2-Coxeter transition on k.
Proof

Let M
(h)
w for a moment denote the matrix obtained after h steps in the construction process that

yields PJw (x1, x2, . . . , xl). Likewise letM
(h
w′ be the matrix obtained after h steps in the construction process

that yields PJw′(x1, x2, . . . , xl). This given, from Proposition 1.2.2 and 1.2.19 it follows that xk and xk+1 will
respectively be in columns r and s ofM (k+1)

w . It is also clear that xk+1 is not inserted in the same row as xk

because immediately to the right of xk inM
(k)
w there is a 1.

Now note that since the two columns involved in the insertion of xk do not overlap with the two
columns involved in the insertion of xk+1 we can easily see that M

(k+1)
w′ will necessarily be identical with

M
(k+1)
w except that the positions of xk and xk+1 are interchanged. Consequently, during the remaining part
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of the insertion processes yielding PJw (x1, x2, . . . , xl) and PJw′(x1, x2, . . . , xl) we shall have that M
(h)
w and

M
(h)
w′ will remain related by a 2-Coxeter transition and it will be so the end as well proving our assertion.

We are now Þnally in a position to establish the following basic result.

Theorem 1.2.3
For any two reduced words w1 and w2 of a permutation σ of length l we can find a

sequence of Coxeter transitions that transform PJw1
(x1, x2, . . . , xl) into PJw2

(x1, x2, . . . , xl).
Proof

By Theorem 1.1.2 we can pass from w1 to w2 by a sequence of applications of identities 1.1.17 2) and
3). But now from Propositions 1.1.2 and 1.1.3 we derive that 1.1.17 2) will cause a 3-Coxeter transition on
the corresponding matrix and 1.1.17 3) will cause a 2-Coxeter transition. Thus the theorem is an immediate
consequence of Theorem 1.1.2 and Propositions 1.1.2 and 1.1.3.

2. Balanced Labeled Circle Diagrams

2.1 From matrices to tabloids
The matrix approach of Kassel et. al. has naturally brought us to the general notion of Balanced

Labeled Circle Diagram introduced in [] and []. Although it will be good to keep in mind the mechanisms
that produce the matrices PJw (x1, x2, . . . , xl) it will be more convenient to carry out all our combinatorial
constructions and manipulations directly on these tabloids. Roughly speaking, these tabloids are obtained
by Þlling the circles in the diagram of σ with the labels 1, 2, . . . , l so that ÒkÓ is in the same position as ÒxkÓ
is in PJw (x1, x2, . . . , xl).

To be precise, in view of Theorem 1.2.2, we have the following
DeÞnition 2.1

Given a permutation σ of length l, here and after we associate to each word w =
a1a2 · · · al ∈ RED(σ) the tabloid T (w) obtained by placing “k” in the “©” that is in position
(i, j) if and only if the transposition sak interchanges i with σj.

Now it develops that these tabloids have a very curious characterization. To state it we need some
notation and further deÞnitions. To begin, it will be convenient to let ÒCD(σ)Ó denote the circle diagram of a
permutation σ. If σ has length l thenCD(σ) has l circles and a Þlling of these circles with the labels 1, 2, . . . , l

will be called an ÒinjectiveÓ labeling of CD(σ) or brießy an Òinjective tabloidÓ. The label in position
(i, j) in the resulting tabloid T will be denoted Tij . We shall of course use matrix convention to denote
location and thus i increases as we go SOUTH and j increases as we go EAST. As we did for matrices, if T
is an injective labeling of CD(σ), we shall denote by T (j1, j2, . . . , jk) the subdiagram of T that is contained
in columns j1, j2, . . . , jk and rows σj1 , σj2 , . . . , σjk . We shall also denote by Trs(j1, j2, . . . , jk) the entry that
is in the rth row and sth column of T (j1, j2, . . . , jk).

For a given cell (i, j) ∈ CD(σ) the collection of cells that are directly EAST of (i, j) is called the
ÒarmÓ of (i, j). Likewise the collection of cells that are directly SOUTH of (i, j) is called the ÒlegÓ of (i, j).
The collection consisting of the cell (i, j) together with its arm and leg is usually referred to as the ÒhookÓ
of (i, j), it will be denoted by ÒHijÓ. A hook Hij of an injective tableau T is said to be ÒbalancedÓ if and
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only if the number of labels in the arm of (i, j) that are smaller than Tij is equal to the number of labels in
the leg that are bigger than Tij . In particular we see that if the labels in Hij are sorted in increasing order
then placed back inHij starting from the bottom of the leg then NORTH up to (i, j) then Þnally EAST along
the arm, Tij will necessarily land right back in its cell. We say that T itself is ÒbalancedÓ if all its hooks are
balanced.

The notions of ÒarmÓ, ÔlegÓ, ÒhookÓ and Òbalanced hookÓ and Òbalanced tabloidÓ are easily
extended to subdiagrams T (j1, j2, . . . , jk). For instance we let the arm of Tr,s(j1, j2, . . . , jk) be the col-
lection of cells of T (j1, j2, . . . , jk) that are EAST of Tr,s(j1, j2, . . . , jk). The remaining notions are analo-
gously deÞned. In particular, we let Hrs(j1, j2, . . . , jk) denote the hook of Tr,s(j1, j2, . . . , jk). To be precise,
Hrs(j1, j2, . . . , jk) consists of Tr,s(j1, j2, . . . , jk) together with its arm and leg in T (j1, j2, . . . , jk). Likewise
we say that T (j1, j2, . . . , jk) is balanced if all the hooks Hrs(j1, j2, . . . , jk) are balanced.

It goes without saying that all the results we have established for the matrices PJ (x1, x2, . . . , xl)
can be transfered to the tabloids T (w). We shall use this fact here and after without necessarily spelling out
in detail how this transfer should be carried out, since it only amounts to making the replacements

“xk” −→ “ ” , “0” −→ “ • ” , “1” −→ “X” ,

In particular the 3-Coxeter and 2-Coxeter transitions of section 1.2 now become as indicated below. Namely,
3-Coxeter transitions are simply interchanges in T of 3× 3-subdiagrams T (j1, j2, j3) of the form:

2.1.1

while 2-Coxeter transitions are substitutions of the form

2.1.2

In the same vein Theorem 1.2.3 may now be stated as

Theorem 2.1.1
For any two reduced words w1, w2 ∈ RED(σ) we can find a sequence of Coxeter transi-

tions which transform T (w1) into T (w2).

The notion of balanced tabloid arised quite early [] in the study of reduced words. The work of
Kassel et. al. shows that it has a natural algebraic setting which beutifully explains its origin. We derive it
here as a corollary of Theorem 2.1.1.

Proposition 2.1.1
The tabloids T (w) are all balanced.

Proof
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Aview of the displays in 2.1.1 and 2.1.2 shouldmake it clear that applying a 2 or 3-Coxeter transition
on a balanced tabloid does not destroy balance. At any rate, note that in the case of the 3-Coxeter transition
which goes from left to right in 2.1.1 we see that we are increasing by one the number of entries in the arm
of k + 1 that are less than k + 1 but at the same time we are increasing by one the number of entries in the
leg of k + 1 that are larger than k + 1. Going from right to left in 2.1.1 reverses this process and cannot affect
balance of the hook of k + 1. All the other hooksHij contain only k, k + 1 or k + 1, k + 2 and their balance is
trivially not affected by either of the two changes in 2.1.1. Likewise, the balance of a hook is not affected by
any of the two transition in the Þrst part of 2.1.2, for in this case no hook contains both k and k + 1. As for
the transitions in the second part of 2.1.2, note that if Tij 6= k, k + 1 then Tij > k if and only if Tij > k + 1 and
the balance of Hij cannot be affected by this transition. Similarly, if Tij = k or Tij = k + 1 then replacing k

by k + 1 or viceversa cannot affect the balance of Hij .
To conclude, note that the tabloid T (wo) of any canonical factorization wo is necessarily balanced

since, by the way T (wo) is constructed (cf. Theorem 1.2.1), all the labels in the arm of a hookHi,j are larger
than Tij and all the labels in the leg are smaller. Now when w and wo are reduced words of the same
permutation, by Theorem 2.1.1, we can pass from T (wo) to T (w) by a sequence of Coxeter transitions. Since
when wo is canonical T (wo) is balanced, T (w) must be balanced as well since, as we have seen, all these
transitions preserve balance.

We should note that Proposition 1.2.2 yields us an algorithm for constructing our tabloids T (w)
without resorting to multiplication diagrams. In fact, Proposition 1.2.2, converted to tabloids, may be
restated as

Proposition 2.1.2
Let w = a1a2 · · · ak ∈ RED(σ), and let σj < σj+1 so that w′ = a1a2 · · · ak j ∈ RED(σ × sj),

then the transition
T (w) −→ T (w′)

is simply obtained by interchanging columns j and j + 1 of T (w) and then changing the
(σj , j)-entry of the resulting tabloid to “k + 1”.

This result as an immediate converse which may be stated as follows

Proposition 2.1.3
Let w = a1a2 · · · ak j ∈ RED(σ), and let σj > σj+1 so that w′ = a1a2 · · · ak ∈ RED(σ × sj),

then the transition
T (w) −→ T (w′)

is simply obtained by interchanging columns j and j +1 of T (w) and then changing the “k+1”
to a “•”.

At this point it is good to have a visual image of these two transformations. For convenience let
ÒconstructÓ and ÒdeconstructÓ denote the transformations described in Propositions 1.1.2 and 2.1.3. More
precisely when w ∈ RED(σ) and σj < σj+1 then

construct
[
T (w), j

]
= T (w j)
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and when w = a1a2 · · · ak+1 ∈ RED(σ) then

deconstruct
[
T (a1a2 · · · ak+1)

]
=
(
T (a1a2 · · · ak), j) .

This given we can schematically represent Propositions 2.12 and 2.1.3 by the following displays.

Remark 2.1.1
We should note that to apply construct we need to give j and then k is the largest entry in T (w).

To apply deconstructwe locate the largest entry, say it is k + 1 and it lies in the jth column. This given we
operate as indicated in the Þgure and return the resulting tabloid along with the index ÒjÓ .

Now we see that to construct a tabloid T (a1a2 · · · al) we only need to carry l applications of
construct. More precisely, we recursively set

T(a1a2 · · ·ak+1) = construct
[
T(a1a2 · · ·ak),ak+1

]
(for k = 1, 2, . . . , l − 1)

with the initial step
T(a1) = construct

[
To

]
where To is the tabloid that corresponds to the identity permutation. In the following display we have
carried out this algorithm for w = 42132.

For a moment let us say that a injective labeling T of the circle diagram CD(σ) is ÒconstructibleÓ
if and only if T = T (a1a2 · · · al) for some a1a2 · · · al ∈ RED(σ).
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We have the following remarkable fact.

Theorem 2.1.2
An injective labeling of the circle diagram of a permutation is constructible if and

only if it is balanced.
Proof

In view of Proposition 2.1.1, we need only prove that every balanced tabloid is constructible. Let
then T be a balanced labelling of the circle diagram of σ and letN be the largest label in T . Suppose further
that N = Tij . We claim that in position (i, j + 1) there necessarily is an X . To see this, note that if this were
not so then the jth and j + 1st columns of T would have one of the following forms:

Indeed, if the X in column j + 1 were above the th row then immediately to the left of it there would have
to be a circle because there is no ÒXÓ to kill that cell from the left or above. Now the label in that circle is
necessarily a number a < N but that would cause the hook of a to be unbalanced since there is a label bigger
than a SOUTH of a and no label less than a EAST. In fact no label at all EAST of a because of that adjacent
X . This eliminates the Þrst alternative. In case theX in column j + 1 is below the ith row then there would
have to be a circle in column j + 1 immediately to the right of N because there is no ÒXÓ to kill that cell
from the left or from above. Now again in that circle there would have be a label b < N , but then the hook
of N is unbalanced be cause there is a label smaller than N EAST and no label bigger than N SOUTH. This
eliminates the second possibility. This forces the jth and j + 1st columns to be of the following form

2.1.3

where we claim that every label b above N , in the jth column, has necessarily an adjacent label a < b in the
j + 1st column. Clearly, there must be a circle adjacent to b in the j + 1st column because there is no ÒXÓ to
kill that cell from the left or from above. To show that in that circle there is a label a less than b we proceed
by contraddiction. Suppose that the situation is as indicated in 2.1.3 with a > b, and that pair is the lowest
we can Þnd. Let then p be the number of labels, SOUTH of b, that are larger than b. We have p ≥ 1 because
N > b. But then, since T is balanced, there must also be p labels b1, b2, . . . , bp all less than b in the arm of b.
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Now, since a > b all these labels are less than a as well. But then again, since T is
balanced, there must be at least p labels u1, u2, . . . , up larger than a in the leg of a. However all
these labels must fall in circles of column j + 1 that are between the a and the X . Moreover,
the presence of these circles in column j + 1 forces circles adjacent to them in column j. Let
w1, w2, . . . , wp be the labels that fall in these circles, (indexed so that wr is to the left of ur). Since
we chose b and a to form the lowest pair b < a, wemust havewr > ur > a > b (for r = 1, 2, . . . , p).
In summary, these two columns would the be as depicted in the adjacent Þgure. But this cannot
be since we now see p + 1 labels greater than b in the leg of b, contrary to our initial choice of
p. We have now proved that T is the form given in 2.1.3 where every pair of adjacent circles
above the pair N, X contain labels b, a with b > a. We claim that if we apply deconstruct to T

the resulting tabloid T ′ will be again a balanced injective labelling of CD(σ). Indeed a look at
the picture below should make it clear that the only hooks whose collections of labels have been
affected in a signiÞcant way are those of a and b. Now a only gains a label greater than it to the
right, this does not affect its rank among the labels in his hook, so its hook remains balanced. As
for b we see that it looses N > b in its leg but at the same time it looses a < b in its arm. These
losses compensate each other and thus leave the hook of b still balanced.


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

We can see nowhow the proof can be completed. To begin the result is trivially true for the circle diagram
of the identity since there are no circles at all to Þll. So we assume by induction on the number of circles, that all
balanced labelings of CD(σ) that have less circles than T are constructible. Now we see from the Þgure above
that T ′ is, in fact, a labelling of the circle diagram of the permutation σ× sj . The inductive hypothesis gives that
T ′ is constructible. This given, we must have that T ′ = T (a1, a2, · · · al−1)with a1, a2, · · · al−1 ∈ RED(σ× sj) and
a fortiori a1, a2, · · · al−1 j ∈ RED(σ). Since

construct (T, j) = T′

We deduce that

T = T (a1, a2, · · · al) (with al = j)

This shows that T is constructible, completing the induction and the proof.

It develops that constructibility, (and now in particular balance) forces a whole family of restrictions on
the labeling.
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DeÞnition 2.1.2
Let T be an injective labelling of the circle diagram of a permutation. We shall say that

T is “k-balanced” if and only if all of its k × k-subtabloids are balanced.
Now we have the following remarkable result.

Proposition 2.1.4
Every constructible tabloid is 3-balanced. In other words each of its 3×3 subtabloids must

have one of the following forms with a < b < c:

2.1.4

Proof
Let T = T (w) with w = a1a2 · · · al ∈ RED(σ) and letM(a1a2 · · · al) be the multiplication diagram for

the matrix
Pw(x1, x2, . . . , xl) = Pa1(x1)Pa2(x2) · · ·Pal(xl) .

Let 1 ≤ i < j < k ≤ l be given indices and let

r = σi , s = σj , t = σk .

Now there are 6 possibilities.

r < s < t , s < r < t , r < t < s , t < r < s , s < t < r , t < s < r ,

In the Þrst case the r, s and t-lines do not cross inM(a1a2 · · · al). In the second case the s-line and r-line cross and
in the third case it is the the t-line and s-line that cross. Assuming that these crossings occur at time a, we have
schematically represented below, what these conditions imply onM(a1a2 · · · al) and the subdiagram T (i, j, k):
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In the fourth and Þfth case there are two crossings. Assuming that the Þrst crossing occurs at time a and the
second at time b > a, the fact that any two lines cross only once forces the line diagrams and implications depicted
below:

In fact, for instance, when when t < r < s we clearly see from the Þgure that the s and r lines must cross an
even number of times and thus in a line diagram they can only cross 0 times. This given the t and r lines will
necessarily be the Þrst pair to cross.

Finally, when t > s > r, the t and r lines must cross, and if the time they cross is b, there still remains
two possibilities. Indeed the geometry of these line diagrams requires the s line to go either over or under the
b-crossing (see Þgure below). In the Þrst case the t and s line crossing occurs Þrst and the s and r lines cross last.
In the second case the order is reversed. This accounts for the diagrams and implications depicted below.

This establishes our result.

Now it develops that Proposition 2.1.4 can be reversed.

Proposition 2.1.5
Every 3-balanced injective tabloid is balanced, therefore constructible.

Proof
Let T be given and 3-balanced injective labeling of CD(σ) and let b = Tti. To show that the hook Hti is

balanced we need to show that there is a one to one correspondence between the labels ÒaÓ EAST of b that are
less than b and the labelsÒcÓ, SOUTH of b , that are larger than b. Now, this correspondence is simply obtained
from the highest pattern in 2.1.4. To be precise, let a < b be in position (t, j), with j > i and let the ÒXÓ in row t

be in column k > j. This given, from the list in 2.1.4 we deduce that the subdiagram T (i, j, k) can only be of the
form

with t = σk, s = σj and r = σi. This shows that if b = Tti then the label c > b in the leg of b that corresponds to a
label a < b in position (t, j)will be found in position (σj , i). This completes the argument.

What now follows by putting together all the results of this section is truly remarkable.
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Theorem 2.1.3
For an injective labeling T of the circle diagram of a permutation σ of length l the following

conditions are equivelent
(i) T is balanced,
(ii) T is constructible,
(iii) T is 3-balanced,
(iv) T is k-balanced for some k = 4, 5, . . . , l,
(v) For some k = 4, 5, . . . , l all the k × k subtabloids of T are constructible.

Proof
We have the following sequence of implications

(i) −→ (ii) −→ (iii) −→ (iv) −→ (v) −→ (iii) −→ (i)

Indeed ifT is balanced then it is constructible by Theorem2.1.2. If it is constructible it is 3-balanced by Proposition
2.1.4. If it is 3-balanced all the k × k subtabloids are necessarily also balanced by Proposition 2.1.5 and so they
are salso constructible by Theorem 2.1.2. But then all the 3× 3 subtabloids will be balanced by Proposition 2.1.4
and then Proposition 2.1.5 yields that T must be balanced.

Remark 2.1.2
We should note that saying Òall the k × k subtabloids of T are constructibleÓ is an abuse of

terminology. What we really should say that if we take a k × k subtabloid T (j1, j2, . . . , jk)with labels a1 < a2 <

· · · < am and respectively, replace these labels by 1, 2, . . . , m the resulting tabloidT ′(j1, j2, . . . , jk) is constructible.
For later purposes it will be good to formalize this operation, refering to it as ÒdownscalingÓ and set

T ′(j1, j2, . . . , jk) = downscale
(
T (j1, j2, . . . , jk)

)
. 2.1.5

It follows then fromTheorem2.1.3 that ifwewant to have the list of all possible tabloidsT ′ thatmaybe obtainedby
downscaling a subtabloidT (j1, j2, . . . , jk)wesimply list all tabloidsTw corresponding to reduceddecompositions
of permutations in Sk.

We should also keep in mind that we denote by M(a1, a2, · · · , al) the diagram corresponding to the
product

Pa1(x1)Pa2(x2) · · ·Pal(xl)

We will also informally refer toM(a1, a2, · · · , al) as the Òline diagram for wÓ.
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2.2 Descents and Kevin KadelÕs ZIGZAGs
We deÞne the ÒDescent SetÓ of a word w = a1a2 · · · al and denote it ÒD(w)Ó the set

D(w) =
{

1 ≤ k < l : ak > ak+1

}
2.2.1

Kevin Kadel discovered a remarkably simple way to recoverD(w) directly from the tabloid T (w). To state it we
need some notation. Note Þrst that, if the labels k and k + 1 are not in the same row or column of the tabloid
T (w), then the 2× 2 subtabloid of T (w) containing the labels k, k + 1may have one of the following forms.

2.2.2

or

2.2.3

and, of course, also those that are be obtained from them by interchanging k and k + 1. Kadell [] associates to
each of these subtabloids a ÒZIGZAGÓ path, whose midcorners are labelled by k, k + 1, oriented so that k comes
before k + 1. The following display depicts the ZIGZAGs associated to the tabloids in 2.2.2 and 2.2.3.

2.2.4

The display below shows the ZIGZAGs obtained when we interchange k and k + 1 in 2.2.2 and 2.2.3.
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2.2.5

This given, KadellÕs result may be stated as follows

Theorem 2.2.1
Let σ be of length l and w = a1a2 · · · al ∈ RED(σ), then a given k is in the descent set D(w)

if and only if one of the following three conditions are satified

(1) k and k + 1 are in the same column of T (w).
(2) k and k + 1 are not in the same row or column of T (w), k is in a lower row than

k + 1 and the corners of their ZIZAG contain no other labels.
(3) k and k + 1 are not in the same row or column of T (w) and the labels encountered

in their ZIGZAG are in increasing order.

Proof

We should note that (3) simply means that the ZIGZAG of k and k + 1 is given by one of the patterns in
in 2.2.4 and 2.2.5 with a < k and b > k + 1. We shall Þrst establish the result under the assumption that k + 1
is the largest label. More precisely we work with σ→σ(k+1) = sa1sa2 · · · sak+1 and w→a1a2 · · · ak+1. This given,
letting r = ak and s = ak+1, the last two columns of the line diagramM(w(k+1) can be schematically represented
by one of the four cases depicted below

Fig 2.2.5
Cases A and B occur when |r − s| > 1, cases C and D when |r − s| = 1. Moreover

(ac) Cases A and C occur when k is not a descent, that is we have ak < ak+1 (i.e. r < s) .
(bc) Cases B and D occur when k is a descent, that is we have ak > ak+1 (i.e. r > s) .

The indices i1, i2, i3, i4 and j1, j2, j3, j4 are determined as follows
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(1) In cases A:
i1 = σ

(k+1)
j2

, i2 = σ
(k+1)
j1

, i3 = σ
(k+1)
j4

, i4 = σ
(k+1)
j3

,

j1 = r , j2 = r + 1 , j3 = s , j4 = s + 1
2.2.6

(2) In cases B:
i1 = σ

(k+1)
j2

, i2 = σ
(k+1)
j1

, i3 = σ
(k+1)
j4

, i4 = σ
(k+1)
j3

,

j1 = s , j2 = s + 1 , j3 = r , j4 = r + 1
2.2.6

(3) In case C we have s = r + 2 and

i1 = σ
(k+1)
j3

, i2 = σ
(k+1)
j1

, i3 = σ
(k+1)
j2

,

j1 = r , j2 = r + 1 , j3 = r + 2 .
2.2.7

(4) In case D we have
i1 = σ

(k+1)
j2

, i2 = σ
(k+1)
j3

, i3 = σ
(k+1)
j1

,

j1 = r , j2 = r + 1 , j3 = s .
2.2.8

It develops that, in case C the labels k and k + 1 are in the same row of the tabloid T (a1a2 · · · ak+1) and in caseD

they are in the same column. This is in complete agreement with with assertion (1) of the Theorem.
To prove this note Þrst that, in case C, if w continue the i1, i2 and i3 lines all the way to the beginning

of the diagramM(a1a2 · · · ak+1) the i1-line cannot intersect either of the i2 and i3 lines but the i2 and i3 lines
can intersect. Now using the assignements in 2.2.7 we can schematically represent these two possibilities by the
following diagrams

form which we derive the following two possibile forms for the the subtabloid Tw(k+1)(j1, j2, j3) in case C :

Likewise from the assignments in 2.28 we derive that caseD the portion ofM(a1a2 · · · ak+1) consisting of the i1,
i2 and i3 lines can be schematically represented by one of the following two diagrams
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consequently, in this case we get the following two possibile forms for the the subtabloid Tw(k+1)(j1, j2, j3):

We show next that in the Cases A and B the labels k and k + 1 are at the corners of a rectangle with the
cooresponding ZIGZAG meeting its labels in increasing order in Case B and in disorder in Case A. Note that
since theword corresponding toCaseA can be obtained from theword corresponding toCaseB by interchanging
the last two letters, we derive that the tabloid T (a1a2 · · · ak+1) corresponding to caseA can be obtained from that
corresponding to Case B by a 2-Coxeter transition. This implies that the ZIGZAGs occurring in case A can be
obtained from those occurring in caseB by interchanging k and k + 1. Therefore it will be sufÞcient to show that,
in Case B the ZIGZAGs meet their labels in increasing order. It will then follow that, in Case B, the ZIGZAGs
meet their labels in disorder as asserted.

We can deal with case B as we did for Cases C andD. We start by noting that, as we follow the i1, i2, i3
and i4 lines from the last three columns of the diagramM(a1a2 · · · ak+1), all the way back to the beginning, there
cannot be any further intersections between the i1 and i2 lines nor between the i3 and i4 lines. This implies that
the indices i1, i2, i3, i4 may be governed only by the following six sets of inequalities:

1) i1 < i2 < i3 < i4 2) i1 < i3 < i2 < i4 3) i1 < i3 < i4 < i2

4) i3 < i1 < i2 < i4 5) i3 < i1 < i4 < i2 6) i3 < i4 < i1 < i2

In the two following displays we have schematically represented each ensuing diagram and the corresponding
form of the subtabloid Tw(k+1(j1, j2, j3, j4). Here we have omitted Þlling the circles that are not corners of the
ZIGZAG of k and k + 1. We should note that the label ÒaÓ, of course, will always be less that k since the
corresponding intersection occurs before time k.

Fig 2.2.9
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Fig. 2.2.10
We have thus established the result in the case that k + 1 is the highest label. To complete the proof we

need only check what happens as we continue the diagram T (a1a2 · · · ak+1) so as to obtain the Þnal diagram
T (a1a2 · · · ak+1ak+2 · · · al). To begin with we note that in applying ÒconstructÒ a Ò•Ó can never be changed to a
labelled ÒOÓ if it lies below an ÒXÓ. This means that the Þrst subtabloid Tw(k+1)(j1, j2, j3, j4) in 2.2.9 namely

will never acquire a labelled circle below k + 1 in the row of k. Moreover if it acquires a circle in the row of
k + 1 above k it will necessarily be with a label b > k + 1 yielding a ZIGZAG with increasing labels. Likewise,
in all remaining cases of Figures 2.2.9 and 2.2.10, any labelled circle added to a further corner of the ZIGZAG
will also come with a label b > k + 1. Finally it is easily seen that the transformations which Tw(m)(j1, j2, j3, j4)
undergoes asm increases to l under successive applications of ÒconstructÓ cannot change an ordered ZIGZAG
to a disordered one for the simple reason that the label a < k will always remain before k and the label b > k + 1
will always remain after k + 1 in the ZIGZAG ordering. This completes our argument.
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2.3 Special Circle Diagrams
In this section we introduce several important classes of permutations and derive some useful properties

of their circle diagrams. Before we can proceed we need to make a few deÞnitions. To begin, for a given σ ∈ Sn

we set for 1 ≤ i ≤ n− 1

Ci(σ) =
{

j > i : σj < σi

}
. 2.3.1

The sequence of subsets

C(σ) = [C1(σ), C2(σ), . . . , Cn−1(σ)] , 2.3.2

will be referred to as the Òcode sequenceÓ of σ. Setting

ci(σ) = #
{

j > i : σj < σi

}
= |Ci(σ)| , 2.3.3

the vector

c(σ) =
(
c1(σ), c2(σ), . . . , cn−1(σ)

)
will be called the ÒcodeÓ of the permutation σ.

Note that we have

ci(σ) ≤ n− i
(
for i = 1, . . . , n

)
, 2.3.4

this is because there are i ÒXÓ Õs in the Þrst i columns of CD(σ) that leaves at most n− i cells in the ith column
where we can put a circle. It is also easily seen that every vector c = (c1, c2, . . . , cn) with non-negative integer
components satisfying the inequalities in 2.3.4 is the code of a permutation σ ∈ Sn. Indeed, the circle diagram
CD(σ), and therefore σ itself are easily reconstructed form c(σ). We start by placing an ÒOÓ Õ in each of the Þrst
c1 cells of the Þrst column of CD(σ) followed by an ÒXÓ in the c1 + 1st cell. Then, having placed all the ÒXÓ Õs,
the ÒOÓ Õs and the Ò•Ó Õs in the Þrst i− 1 columns, we Þll the ith column by Þrst placing the Ò•Ó Õs in each cell that
is killed by an ÒXÓ to itsWEST, then place the ÒOÓ Õs in the Þrst ci available cells followed by an ÒXÓ in the next
available cell. Of course here Òavailable cellÓ means a cell that has not been killed by a previous ÒXÓ. Note that
after we Þlled the n− 1st column, the nth column will automatically get an ÒXÓ in the only remaining available
cell. In the display belowwe illustrate this construction processwhen the given code is c = (2, 4, 3, 0, 1, 0) yielding
the permutation σ = 365142.

Let γ be a two-line array

γ =
[

j1 j2 j3 · · · jk

a1 a2 a3 · · · ak

]
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with j1 < j2 < j3 · · · < jk and a1, a2, a3, . . . , ak distinct integers. For a given i = 1, 2, . . . , k let ri(γ) denote the
ÒrankÓ of ai in the set {a1, a2, a3, . . . , ak}. That iswe set ri(γ) = m+1 if and only if preciselym of a1, a2, a3, . . . , ak

are less than ai. This given, we shall say that Óγ downscalesÓ to the permutation

r(γ) =
[

1 2 3 · · · k
r1(γ) r2(γ) r3(γ) · · · rk(γ)

]
. 2.3.5

Let σ ∈ Sn and let θ ∈ Sk for some 2 ≤ k ≤ n, we shall say that σ is Òθ-avoidingÓ if we cannot Þnd
indices 1 ≤ j1 < j2 < · · · < jk ≤ n such that the two-line array

γ =
[

j1 j2 j3 · · · jk

σj1 σj2 σj3 · · · σjk

]
downscales to θ.

Remark 2.3.1
It is not difÞcult to see that a permutation σ is θ-avoiding if and only if there are no subdiagrams of the

circle diagram of σ which are identical to the circle diagram of θ.

We now have the following remarkable result

Theorem 2.3.1
If a permutation σ is 321-avoiding then

(i) When we remove from CD(σ) all the rows and columns that contain no circles, the
circles in the resulting diagram fill the cells of a French skew Ferrers diagram D.

(ii) For every w ∈ RED(σ) the balanced filling Tw of CD(σ) can be obtained from a
corresponding standard filling τw of D.

(iii) The descent sets of w and τw are identical.
Proof

A French skew diagram D is characterized by the following property

(i1, j1), (i2, j2) ∈ D with i1 ≤ i2 & j1 ≤ j2 −→ (i1, j2), (i2, j1) ∈ D

Thus to prove the Þrst assertion we need only show that no 2 × 2 subdiagram of CD(σ) can have any of the
following forms

where a shade in a cell signiÞes absence of a circle. To begin with, it is easily seen that the Þrst two cases can
never occur for a 2× 2 subdiagram of a circle diagram. To eliminate the third case let it be possible that the 2× 2
subdiagram of CD(σ) contained in rows i1, i2 and columns j1, j2 has any of the two forms below

2.3.6
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Now in the Þrst case the Ò•Ó must be due to an ÒXÓ either to the left or above. However, this ÒXÓ together with
the ÒXÓÕs in column j1 and row i1 yield us one of the two conÞgurations below

which yield a 321-pattern that σ is supposed to avoid. Likewise for the second case in 2.3.6 the ÒXÓÕs in column
j1 and row i1 yield us again a 321 pattern. In either case we reach a contraddiction. This proves (i).

As for (ii) note that, since σ is 321-avoiding, the two tabloids below

cannot occur as 3×3 subtabloids of Tw. Thus fromPropostion 2.1.4we derive that the only remaining possibilities
for a 3× 3 subtabloid of Tw are

with a < b. This means that for any pair of labels appearing in the same row of Tw the one to the left is smaller
that the one to the right and for any pair of labels that are in the same column the one below is smaller than the
one above. This shows that this Þlling can be obtained from (or gives rise to) a standard Þlling τw of D.

To prove (iii) recall that k is called a ÒdescentÓ of a french standard tableau if and only if k + 1 is
NORTH-WEST of k. This given, we see that if k and k + 1 are in the same row in Tw then k + 1 is to the right k
and therefore k is not in the descent set of τw. If k and k + 1 are in the same column of Tw then k + 1 is above
k and therefore k is in the descent set of τw. Finally, if k and k + 1 are not in the same row or column and there
are no other labels in the in the ZIGZAG of k and k + 1 then from (2) of Theorem 2.2.1 we get that we have a
descent at k for w if and only if k + 1 is NORTHWEST of k in Tw. This makes k also a descent of τw. Likewise, if
the ZIGZAG of k and k + 1 as some other labels then from (3) of Theorem 2.2.1 we get that k is a descent of w if
and only if the labels in the ZIGZAG of k and k + 1 are in increasing order. But that again can happen if and only
if k + 1 is NORTHWEST of k in Tw. In any case we see that the assertion in (iii) is an immediate consequence of
KadelÕs Theorem 2.2.1. This completes our proof.

DeÞnition 2.3.1
The decreasing rearrangement of the code of a permutation σ (with all the zero’s omitted)

will be here and after called the “shape of σ” and will be denoted λ(σ).
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The following is an important property of the shape.

Proposition 2.3.1
For any permutation σ we have

λ(σ) ≤ λ′(σ−1) 2.3.7

where “≤” represents the dominance partial order. Moreover, equality here holds if and only if
the code sequence C(σ) is totally ordered by set inclusion.
Proof

Let σ = σ1σ2 · · ·σn and letM = ‖mi,j‖ni,j=1 with

mi,j =
{

1 if there is a circle in CD(σ) in position (i, j)
0 otherwise

It is easily derived from the deÞnition in 2.3.3 that the column sums ofM are c1(σ), c2(σ), . . . , cn(σ) and the row
sums are c1(σ−1), c2(σ−1), . . . , cn(σ−1). Let j1, j2, . . . , jn be a permutation that rearranges c1(σ), c2(σ), . . . , cn(σ)
in decreasing order so that

cj1(σ), cj2(σ), . . . , cjn(σ)

except for some terminal zeros gives λ(σ). Clearly, the matrix

M ′ =


m1,j1 m1,j2 . . . , m1,jn

m2,j1 m2,j2 . . . , m2,jn)
...

...
...

...
mn,j1 mn,j2 . . . , mn,jn


has the same row sums asM and moreover, for every k = 1, 2, . . . , n , the number of 1Õs in the Þrst k columns of
M ′ is given by

cj1(σ) + cj2(σ) + · · ·+ cjk(σ)

Note next that if, in each row ofM ′, we push all the 1Õs to the left until they are Òbumper to bumperÓ and likewise
push all the zeros to the right, then the number of 1Õs in the Þrst k column of the resulting matrix will be given
by the expression

c1(σ−1) ∧ k + c2(σ−1) ∧ k + · · ·+ cn(σ−1) ∧ k

where for convenience we set a∧ b = min(a, b). This is simply due to the fact that in row i ofM ′ there are ci(σ−1)
1Õs altogether and we canÕt Þt more than k in the Þrst k columns of any row. Consequently we must have

cj1(σ) + cj2(σ) + · · ·+ cjk(σ) ≤ c1(σ−1) ∧ k + c2(σ−1) ∧ k + · · ·+ cn(σ−1) ∧ k 2.3.8

Note further that if µ = (µ1, µ2, . . . , µm) is any partition and µ′ = (µ′1, µ
′
2, . . . , µ

′
m′) is its conjugate we necessarily

have for any k ≤ m′

µ1 ∧ k + µ2 ∧ k + · · ·+ µm ∧ k = µ′1 + µ′2 + · · ·+ µ′k

Thus if k is less than the number of parts in both λ(σ) and λ′(σ−1)we may rewrite 2.3.8 as

λ1(σ) + λ2(σ) + · · ·+ λk(σ) ≤ λ′1(σ−1) + λ′2(σ−1) + · · ·+ λ′k(σ−1) .
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This shows that λ(σ) is dominated by λ′(σ−1). To prove the last assertion, note that equality in 2.3.8 for all k can
only hold true if and only if none of the 1Õs have moved. Let us take a moment to Þnd out when can this happen.
Note Þrst that the way we constructedM ′, it follows that the 1Õs in the rth column ofM ′ are in the rows indexed
by the elements of Cjr (σ) (†). This given, we claim that no motion of 1Õs forces the set inclusions

Cj1(σ) ⊇ Cj2(σ) ⊇ · · · ⊇ Cjn(σ) . 2.3.9

Indeed if any of these containements did not hold then there would be a 1 to the right of a 0 in M ′ and that 1
would move. This show that equality in 2.3.7 implies that the components of the code sequence C(σ) are totally
ordered by inclusion. Conversely, if this holds true, then the permutation j1j2 · · · jn that yields cj1(σ) ≥ cj2(σ) ≥
· · · ≥ cjn(σ) ≥ will necessarily produce 2.39 as well, and under these conditions there would be no possible
movement of 1Õs, forcing equality in 2.38 for all k and equality in 2.3.7 as well. This completes our proof.

Remark 2.3.2

We should point out that if the setsCj(σ) are not totally ordered by inclusion if and only if there are a pair
of indices r < s for which both containements Cr(σ) ⊆ Cs(σ) and Cs(σ) ⊆ Cr(σ) simultaneously fail. However
this will happen if and only if in the columns r and s the circle diagram CD(σ) contains a 2 × 2 subdiagram of
the form

2.3.10

note further that locating the two ÒXÓÕs that cause these Ò•Ó and the ÒXÓÕs to the right and below the second
ÒOÓ we will necessarily Þnd in CD(σ) a 4× 4 subdiagram of the form

2.3.11

This given, we arrive at the conclusion that equality holds in 2.37 if and only if CD(σ) contains no such 4 × 4
subdiagrams. Finally we should add that what we did with C(σ) we could just as well have done with C(σ−1).
Thus we see that the esclusion of 4×4 subdiagrams of the form in 2.3.11 is also equivalent toC(σ−1) being totally
ordered by inclusion. Adding the notion of pattern avoidance to all this we may schematically represent the

(†) see deÞnition 2.3.1
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contents of this remark by the following diagram of equivalences.

2.3.12

This brings us to another remarkable class of permutations:

DeÞnition 2.3.2
We say that σ is “Vexillary” if and only if it satisfies any of the equivalent conditions

displayed in 2.3.12.
We should note that this terminology is due to Lascoux-Sch ¬utzenberger who apparently used the preÞx

“Vexill” to express the presence of the ÒßagÓ of subsets we see in 2.3.9.

Remark 2.3.3
Note that if a permutation σ has a 2143 subpattern then it has also a 132 subpattern. Moreover between

the Ò2Ó and the Ò1Ó σ will necessary have a have a descent and likewise between the Ò4Ó and the Ò3Ó it will have
another descent. This brings us two important subclasses of Vexillary permutations that play a crucial role in the
study of reduced decompositions.

DeÞnition 2.3.3
A 132-avoiding permutation will be called “Dominant ”

DeÞnition 2.3.4
A permutation with only one descent will be called “Grassmanian”

These two classes of permutations have further useful characterizations.

Proposition 2.3.2
For a permutation σ ∈ Sn the following conditions are equivalent

(i) σ is dominant
(ii) The circles in CD(σ) fill an english Ferrers diagram.
(iii) The code sequence C(σ) is decreasing.
(iv) The code of σ is weakly decreasing.

Proof
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Note that from the deÞnitions in 2.3.1 and 2.3.3 we derive that (ii) is equivalent to the condition

Ci(σ) = {1, 2, · · · , ci(σ)} with ci(σ) ≥ ci+1(σ) for i = 1, 2, . . . , n− 1 2.3.13

Thus (ii) implies
C1(σ) ⊇ C2(σ) ⊇ C3(σ) ⊇ · · · ⊇ Cn−1(σ) .

Consequently (ii)→(iii)→(iv). We next prove (iv)→(ii) by showing that the condition

ci(σ) ≥ ci+1(σ) for i = 1, 2, . . . , n− 1 2.3.14

implies 2.3.13. We proceed by induction on ÒiÓ. Clearly, in any case we have

C1(σ) = {1, 2, · · · , c1(σ)} .

Now note that if Ci(σ) = {1, 2, · · · , ci(σ)} then all the ÒXÓ Õs in the Þrst ci(σ) rows of CD(σ)must be in columns
i + 1, i + 2, · · · , n. Thus Ci+1(σ) = {1, 2, · · · , k} if the ÒXÓ in column i + 1 is in a row k ≤ ci(σ). But then
|Ci+1(σ)| = ci+1(σ) ≤ ci(σ) forces k = ci+1(σ) and completes the induction. Thus (ii), (iii) and (iv) are
equivalent. To complete the argument we show that 132-avoiding is equivalent to (ii). To this end note that
an english Ferrers diagram λ is characterized by the property that all cells NORTH or WEST of a cell of λ are
in λ. Now if one of these conditions fails for CD(σ) it necessarily follows that CD(σ) must contain one of the
subpatterns below

However, if we add the ÒXÓ that causes the Ò•Ó and add the ÒXÓ Õs that are in the column and row of the ÒOÓ
we see that CD(σ would necessarily contain one of the patterns below

forcing σ to have a 132 subpattern. Conversely, we easily see that the presence of a Ò132Ó in σ would prevent the
circles of CD((σ) to form a FerrersÕ diagram. In summary we see that Ònot (i)Ó is equivalent to Ònot (ii)′′. This
proves that (i),(ii),(iii) and (iv) are equivalent as asserted.

Proposition 2.3.3
For a permutation σ ∈ Sn the following conditions are equivalent

(i) σ is Grassmanian with descent at r

(ii) c1(σ) ≤ c2(σ) ≤ · · · ≤ cr(σ) > 0 and ci(σ) = 0 for all i > r.
Proof
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Note that for any permutation σ we have

a) ci(σ) > ci+1(σ) ⇐⇒ σi > σi+1

b) ci(σ) ≤ ci+1(σ) ⇐⇒ σi < σi+1

2.3.15

The reason for this is simple. If σi > σi+1, then all the σj less than σi+1 to the right of σi+1 are also less than σi.
Accounting for σi+1 itself, this gives ci(σ) ≥ 1 + ci+1(σ). Conversely, if σi < σi+1, then all the σj less than σi that
are to the right of σi must also be to the right of σi+1. Thus, in this case, we must have ci+1(σ) ≥ ci(σ) . This
given, we see that the condition

σ1 < σ2 < · · · < σr > σr+1 and σr+1 < σr+2 < · · · < σn

is equivalent to

c1(σ) ≤ c2(σ) ≤ · · · ≤ cr(σ) > 0 and cr+1(σ) = cr+2(σ) = · · · = cn(σ) = 0 .

This proves the proposition.

Remark 2.3.4
Note that if a permutation σ has a 321-subpattern, then it must have at least 2 descents. Indeed, σ will

necessarily have descents between the Ò3Ó and the Ò2Ó and between the Ò2Ó and the Ò1Ó. Thus we see that
Grassmanian permutations are also 321-avoiding.

This observation yields us a beautiful corollary of Theorem 2.3.1. It may be stated as follows.

Theorem 2.3.2
If σ is Grassmanian of shape λ then

(i) For every w ∈ RED(σ) the balanced filling Tw of CD(σ) can be obtained from a
corresponding standard filling τw of the Ferrers diagram of λ′.

(ii) Under this correspondence the descent sets D(w) and D(τw) are reversed. That is
we have D(w) = n−D(τw).

Proof
From Remark 2.3.4 and (i) of Theorem 2.3.1 it follows that the circles of C(σ) Þll the cells of a French

skew diagramD. However, since σ is also vexillary from (ii) of Proposition 2.3.3 we derive that its code sequence
is an increasing sequence of subsets. This forces D to be a ÒreversedÓ Ferrers diagram. More precisely, if
λ(σ) = (λ1, λ2, . . . , λk) then the columns of D will have lengths λk, λk−1, . . . , λ1, and its rows will have lengths
λ′1, λ

′
2, . . . , λ

′
h with λ′ = (λ′1, λ

′
2, . . . , λ

′
h) the conjugate of λ(σ). This means that if we rotate D 180 degrees, we

will obtain precisely the Ferrers diagram of the partition λ′. In particular, this rotation gives a correspondence
between the standard Þllins of D and the standard Þllings of the Ferrers diagram of λ′. To do this we only need
to replace, after rotation, each label k by its complement n + 1 − k. This given, for w ∈ RED(σ), let Tw be the
corresponding standard labeling of CD(σ), τw be the induced standard labeling of D and Þnally let τ ′w be the
standard labeling of the Ferrers diagram of λ′ that we obtain by rotating and complementing τw. It is easily seen
that under the mapping τw −→ τ ′w an element i of D(τw) is sent onto the element n − i of D(τ ′w). Thus Part (ii)
of this theorem follows from (ii) and (iii) of Theorem 2.3.1.



Topics in Algebraic Combinatorics LECTURE NOTES may 3, 2001 42

From Theorems 2.3.1 and 2.3.4 we may derive two remarkable identities which essentially go back to R.
StanleyÕs original paper. To state them we need to introduce some notation. To begin with, it will be convenient
to use compositions to represent descent sets. More precisely, given a subset

S = {1 ≤ i1 < i2 < · · · < ik < n} ⊆ [1, n]

we set
p(S, n) = [i1 , i2 − i1 , i3 − i2 , . . . , ik − ik−1 , n− ik] 2.3.16

Note that from this notation not only we can recover S but also the interval [1, n] we are considering S a subset
of. This given, for any word w = a1a2 · · · al we shall here and after set

p(w) = p
(
D(w), n

)
2.3.17

For instance for
w = 23453624 ∈ RED([1, 5, 3, 6, 4, 7, 2])

we have
D(w) = {4, 6} ⊆ [1, 8]

Thus
p(w) = [4, 2, 2] .

In the same vein for a standard labeling τ of a french or english skew or straight Ferrers diagram on 1, 2, . . . , n

we set
p(τ) = p

(
D(τ), n

)
. 2.3.18

For instance for the french standard tableau

τ =
4 8
3 5 7
1 2 6

the underlined elements are its ÒdescentsÓ thus

p(τ) = [2, 1, 3, 1, 1]

Using this notation we can represent collection of ÒdescentÓ sets by formal sums of variables indexed by compo-
sitions. More precisely we set for a given σ ∈ Sn

Ξ(σ) =
∑

w∈RED(σ)

xp(w) 2.3.19

For example we have

RED([3, 4, 2, 1) =
{

[1, 2, 3, 1, 2] , [1, 2, 1, 3, 2] , , [2, 1, 2, 3, 2] , [2, 3, 1, 2, 3] , [2, 1, 3, 2, 3]
}

from which we deduce that
Ξ([4, 3, 1, 2]) = x32 + x221 + x131 + x23 + x122 2.3.20
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In the same vein, for a french or english straight or skew Ferrers diagram D we set

Σ(D) =
∑

τ∈ST (D)

xp(τ) 2.3.21

where this summation is over all standard labelings of D.
For instance, the standard tableaux of shape (3, 2)with descents underlined are

2 4
1 3 5 ,

2 5
1 3 4 ,

3 4
1 2 5 ,

3 5
1 2 4 ,

4 5
1 2 3 .

and this gives
Σ([3, 2]) = x122 + x131 + x23 + x221 + x32 .

The fact that we get the same expression here as in in 2.3.20 is not an accident. Indeed, it is a particular case of
the main result proved by StanleyÕs in []. We can show now that it is a consequence of Theorem 2.3.2.

In fact, Theorems 2.3.1 and 2.3.2 yield us the following two general results.
Theorem 2.3.3

(1) If σ is 321-avoiding with associated french skew diagram D then

Ξ(σ) = Σ(D) , 2.3.22

(2) If σ is Grassmanian of shape λ and we let λ also denote the Ferrers diagram of
shape λ then

Ξ(σ) = Σ(λ′) . 2.3.23

Proof
The identity in 2.3.22 is simply another way of stating part (iii) of Theorem 2.3.1. Now from part (ii) of

Theorem 2.3.2 we derive that if σ is Grassmanian then

Ξ(σ) =
∑

τ∈ST (λ)

xp∗(τ)

where, for a composition p = (p1, p2, . . . , pr) we set p∗ denotes the reversed composition p∗ = (pr, . . . , p2, p1).
But then 2.3.23 follows from the fact that for any Ferrers diagram we have∑

τ∈ST (λ)

xp∗(τ) =
∑

τ∈ST (λ)

xp(τ) .

It turns out that Grassmanian permutations are also closely related to dominant permutations. More
precisely we have

Proposition 2.3.4
Let σ = σ1σ2 · · ·σn be Grassmanian with descent at r, and shape λ = (λ1, λ2, . . . , λr) then

σ′ = σrσr−1 · · ·σ1σr+1σr+2 · · ·σn 2.3.24

is dominant of shape
µ = (λ1 + r − 1, λ2 + r − 2, . . . , λr + r − r) 2.3.25
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Proof
If

σ1 < σ2 < · · · < σr > σr+1 and σr+1 < σr+2 < · · · < σn

then the code of σ is
c(σ) = (σ1 − 1, σ2 − 2, . . . , σr − r, 0, 0, . . . , 0)

and
λ(σ) = (σr − r, . . . , σ2 − 2, σ1 − 1) . 2.3.26

On the other hand, we derive from 2.3.24 that

λ(σ′) = (σr − 1, . . . , σ2 − 1, σ1 − 1) 2.3.27

and (iv) of Proposition 2.3.2 gives that σ′ is dominant. The Þnal assertion in 2.3.25 follows by comparing 2.3.26
and 2.3.27.

Now it develops that collections of Grassmanian permutations and in particular also collections vexillary
permutations can be used to encode certain characteristics of general permutations. This remarkable discovery
of Lascoux and Sch ¬utzenberger will be the main topic of the next section.
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2.4 The Lascoux-Sch ¬utzenberger tree of a general permutation.

Before we can proceed with the construction of this tree we need to review a few basic facts about the
so called ÒBruhatÓ partial orders. To begin, let us use the symbol tij to denote the transposition (i, j). Here
and after we shall use the symbol ÒtÓ to refer to a generic such transposition and reserve the letter s to refer to a
generic simple transpositions si = (i, i + 1). We also set

T = Tn =
{
tij : 1 ≤ i < j ≤ n

}
and S = Sn =

{
si ; i = 1, 2, . . . , n− 1 } 2.4.1

Note that if

σ′ = σ × t with t ∈ T 2.4.2

then

σ′ = t′ × σ with t ′ ∈ T 2.4.3

Indeed from 2.4.2 we derive that

t′ = σ × t× σ−1

In other words, if 2.4.3 holds with t = tij then 2.4.3 holds with t′ = tσi,σj . Keeping this observation in mind we
set

σ−B→σ′ ⇐⇒

 a) σ′ = σ × t with t ∈ T

b) l(σ′) > l(σ)
2.4.4

Note that if t = tij we see that b) simply says that σi < σj . Note further that when σi < σj we have

l(σ′) = l(σ) + 1 if and only if
{
σi+1, σi+2, . . . , σj−1

}
∩ [σi, σj ] = ∅ 2.4.5

This is simply due to the fact that for any i < k < j such that σk is in the interval [σi, σj ] the number of inversions
of σ increases by 2 as we transpose σi with σj . We shall refer to Òσ −B→ σ′Ó as a ÒBruhat transition Ó and
as a Òsimple Bruhat transition Ó when 2.4.5 holds true. This given, the transitive closure of the relation
Òσ −B→ σ′ Ó, denoted Ò<BÓ is usually referred to as ÒBruhat partial order of SnÓ.

Remark 2.4.1

We should note that the Òweak Bruhat orderÓ, denoted Ò<W Ó is similarly obtained. We call Òweak
BruhatÓ transitions interchanges of the form

σ−W→σ′ ⇐⇒

 a) σ′ = σ × s with s ∈ S

b) l(σ′) > l(σ) ,
2.4.6

and then deÞne Ò<W Ó be the transitive closure of weak Bruhat transitions. With this terminology the reduced
decompositions of a permutation σ ∈ Sn may be viewed as the maximal (unreÞnable) chains joining the identity
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of Sn to σ. The following display illustrates the difference betwee the weak and strong Bruhat orders of S3.

The following is an important tool for working with Bruhat order.

Proposition 2.4.1 (EXCHANGE PROPERTY)
Let σ a permutation of length l and suppose that

w = a1a2 · · · al ∈ RED(σ′) 2.4.7

let
l(σ′) < l(σ) with σ′ = σtrs (r < s) . 2.4.8

Then for some i = 1, 2, . . . , l we have

a) σ′ = sa1sa2 · · · sai−1sai+1 · · · sal and b) σ = sa1sa2 · · · sai−1sai+1 · · · saltrs 2.4.9

In particular if l(σ′) = l(σ)− 1 then we also have

w′ = a1a2 · · · ai−1ai+1 · · · al ∈ RED(σ′) 2.4.10

Proof
The assumption in 2.4.8 says that σr > σs. This together with 2.47 yields that in the line diagram

M(a1a2 · · · al) the σr and σs lines cross precisely once. Assuming that this crossing occurs at time i by the action
of sai , then removing sai and trs from the factorization

σ′ = sa1sa2 · · · sai · · · saltrs 2.4.11

we simply obtain the factorization in 2.4.9 a) which will then achieve the same end result. Schematically we may
represent the passing from 2.4.11 to 2.4.9 a) as replacing the line diagram on the left by the one on the right in the
following display.
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Clearly 2.4.9 b) follows from 2.4.9 a) and 2.4.8. Finally, since the factorization in 2.4.9 a) has l − 1 factors, the
assertion in 2.4.10 will necessarily hold true when l(σ′) = l − 1. This completes our proof.

Remark 2.4.2
We should note that removing sai from a factorization

σ = sa1sa2 · · · sai · · · sam

may be simply obtained upon multiplication of σ on the right by the transposition

t = samsam−1 · · · sai+1saisai+1 · · · sam−1sam

It will be convenient here and after to denote the omission of a factor by sourrounding it by square brackets. That
is we shall write

σ = sa1sa2 · · · [sai ] · · · sam

for
σ = sa1sa2 · · · sai−1sai+1 · · · sam

As a corollary of Proposition 2.4.1 we obtain.

Proposition 2.4.2
If the permutation σ has the factorization

σ = sa1sa2 · · · sam 2.4.12

Then indices 1 ≤ i1 < i2 < · · · < ik ≤ m can be selected so that

σ = sai1
sai2
· · · saik

2.4.13

Gives a reduced factorization of σ.
Proof

If l(σ) = m then 2.4.12 is reduced and there is nothing to prove. If l(σ) < m then as we compute the
successive products

sa1 → sa1sa2 → sa1sa2sa3 → · · ·

sooner or later we will have a drop in length. Letting j + 1 be the Þrst time this happens we will have

l(sa1sa2sa3 · · · saj ) = j and l(sa1sa2sa3 · · · saj+1) = j − 1 .

From the exchange property we then deduce that for some 1 ≤ i ≤ j we will have the reduced factorization

sa1sa2sa3 · · · saj+1 = sa1sa2 · · · [sai ] · · · saj

Continuing the successive multiplications

sa1sa2 · · · [sai ] · · · saj → sa1sa2 · · · [sai ] · · · sajsaj+2 → sa1sa2 · · · [sai ] · · · sajsaj+2saj+3 →· · ·
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Wemay run into another drop in length. If this occurs at time k +1, another application of the exchange property
will yield a reduced factorization of the form

sa1sa2 · · · sak+1 = sa1sa2 · · · [sai ] · · · [saj+1 ] · · · [sar ] · · · sak

We can easily see that if we carry out this process to completion we will end up obtaining a reduced factorization
for σ from an appropriate subword of a1a2 · · · am precisely as asserted.

The construction of the Lascoux-Sch ¬utzenberger trees, here and after brießy referred to as ÒLS-treesÓ,
depends on performing certain Òdown-upÓ transitions of the form

σ −→ u −→ σ′ 2.4.14

where for some i < r < swe have

a)

{u = σ × trs

l(u) = l(σ)− 1
and b)

σ′ = u× tir

l(σ′) = l(u) + 1
2.4.15

This given, for a Þxed u ∈ Sn and 1 ≤ r < nwe set

Ψ(u, r) =
{

α ∈ Sn : α = u× trs & l(α) = l(u) + 1 with s > r
}

,

Φ(u, r) =
{

β ∈ Sn : β = u× tir & l(β) = l(u) + 1 with i < r
}

.
2.4.16

Now we have the following truly remarkable identity

Theorem 2.4.1
For every 1 < r < n for which both Ψ(u, r) and Φ(u, r) are not empty we have∑

α∈Ψ(u,r)

Ξ(α) =
∑

β∈Φ(u,r)

Ξ(β) 2.4.17

The proof of this result will be given in section x.y. In this section we shall start by showing that it
naturally leads to LS trees and then derive a number of its important consequences. To this end note that 2.4.17
takes a most interesting form when Ψ(u, r) or Φ(u, r) contains a single element. The case when |Ψ(u, r)| = 1 can
be stated as follows.
Theorem 2.4.2

Let σ = σ1σ2 · · ·σn ∈ Sn and suppose that for a pair 1 < r < s ≤ n the permutation u = σtrs

satisfies

(1) l(u) = l(σ)− 1.
(2) Ψ(u, r) = {σ}
(3) Φ(u, r) 6= ∅

Then
Ξ(σ) =

∑
σ′∈Φ(u,r)

Ξ(σ′) 2.4.18
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This identity suggests an algorithm for computing the polynomials Ξ(σ). The idea is that recursive
applications of 2.4.18 should enable us to reduce Ξ(σ) to a sum of Ξ(σ′) which we already know. In view of
Theorem 2.3.3, we might hope that we can force all the σ′Õs occurring in the Þnal sum to be Grassmanian or even
only 321-avoiding. It develops that Lascoux and Sch ¬utzenberger in [] devised precisely such an algorithm for
the computation of Littlewood-Richardson coefÞcients. Curiously, their algorithm (in spite of their claims to the
contrary) is hopelessly inefÞcient as compared with well known methods. Nevertheless, unbeknown to them
at that time, and unbeknown to many even at this time, the ÒtreeÓ resulting from their algorithm is precisely
what is needed for an efÞcient way to compute the polynomials Ξ(σ) as well as proving some the fundamental
properties of the Stanley symmetric functions.

We shall see that conditions (1) and (2) of Theorem 2.4.2 are easily assured. The only thing that is needed
is a device for assuring condition (3). This is obtained by means of the following ÒshiftÓ operation introduced
by Lascoux and Sch ¬utzenberger. Using MacdonaldÕs notation this operation may be deÞned by setting for each
σ = σ1σ2 · · ·σn ∈ Sn and and integerm > 0:

1m ⊗ σ =
[

1 2 3 · · · m 1 + m 2 + m · · · n + m
1 2 3 · · · m σ1 + m σ2 + m · · · σn + m

]
. 2.4.19

The relevancy of this operation for our purposes derives from the following simple fact:

Proposition 2.4.3
For all σ ∈ Sn and m ≥ 1 we have

Ξ(1m ⊗ σ) = Ξ(σ) 2.4.20

Proof
Note that from 2.4.19 we deduce that

a1a2 · · · al ∈ RED(σ) ⇐⇒ a1 + m a2 + m · · · al + m ∈ RED(σ) . 2.4.21

Since shifting by a constant each letter of a word does not change its descent set, the identity in 2.4.20 follows
then immediately from the deÞnition in 2.3.19.

The following result is basic in assuring that conditions (1) and (2) of Theorem 2.4.2. are satisÞed.

Proposition 2.4.4
Let σ = σ1σ2 · · ·σn and for a triplet 1 ≤ i < r < s ≤ n suppose that σi < σs < σr. Set u = σ× trs

and σ′ = u× tir. Decompose the circle diagrams of σ, u and σ′ as indicated below

2.4.22
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where a letter in a square represents the collection of “X” ’s in that open region. Then (a) Ψ(u, r) =
{σ} and (b) σ′ ∈ Φ(u, r) hold true if and only if D = ∅, G = ∅, H = ∅, L = ∅.
Proof

To assure that σ ∈ Ψ(u, r)we must have 2.4.15 a). This requires that σs < σr and{
σr+1, σr+2, . . . , σs−1

}
∩ [σr, σs] = ∅ , 2.4.23

because any element common to these two sets would produce two additional inversions in the transition u→σ,
violating the second part of 2.4.15 a). Now it is easily seen that 2.4.23 simplymeans that there are no ÒXÓ Õs in the
open region denoted by G in CD(σ), CD(u) and CD(σ′). Similarly, to assure that σ′ ∈ Φ(u, r)we need to have{

σi+1, σi+2, . . . , σr−1

}
∩ [σi, σs] = ∅ . 2.4.24

and this means that there are no ÒXÓ Õs in the open region denoted by D.
Note further that if we had some s′ > s with σs < σs′ < σr then by taking the one with s′ minimal the

permutation u × trs′ would yield us another element of Ψ(u, r). So to satisfy the uniqueness part of condition
(a)wemust also require that there be no ÒXÒ Õs in the open regions denoted byH . Likewise if we had an s′ with
r < s′ < s and σs′ > σr then by taking the one with s′ smallest the permutation u× trs′ would yield us another
element of Ψ(u, r). This accounts for the requirement L = ∅ in CD(σ), CD(u) and CD(σ′). This completes our
argument.

To complete the picture we need to Þnd out for which permutations σ = σ1, σ2 · · ·σn we can Þnd at least
one triplet of indices 1 ≤ i < r < s ≤ n for which the conditions of Proposition 2.4.4 are satisÞed. Lascoux and
Sch ¬utzenberger noted the following very simple solution to this problem.

Theorem 2.4.3
If we choose r to be the last descent of σ = σ1, σ2 · · ·σn and let s > r be the largest index

such that σs < σr, then setting u = σ× trs we shall have Ψ(u, r) = {σ} and there will be at least one
index i < r for which σ′ = u× tir ∈ Φ(u, r) provided

min {σj : j < r } < σs 2.4.25

Proof
To help visualizing these choices of r and s, in the Þgure below, we have schematically depicted the

behaviour of σ after its last descent.

In other words we have assured the inequalities

σr+1 < σr+2 < · · · < σs−1 < σs < σr < σs+1 < σs+2 < · · · < σn 2.4.26
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In the same vein the permutation u = σ×trswhich here and after is denoted Òu(σ)Ó, may be depicted as indicated
below

2.4.27

Now it is not difÞcult to see that the inequalities in 2.4.26 guarantee the conditions G = H = L = ∅ for CD(σ)
and CD(u(σ)) assuring that Ψ(u(σ), r) = {σ}. Now, if the condition in 2.4.25 is satisÞed then by chosing the
largest i < r for which σi < σs we will have

{σi+1, σi+2, . . . , σr−1} ∩ [σi, σs] = ∅

assuring that σ′ = u(σ)× tir ∈ Φ(u(σ), r). This completes our argument.

This result shows that when condition 2.4.25 is satisÞed we are able to express Ξ(σ) as in 2.4.18 with
u = u(σ). But what are we to do if

σ1, σ2, . . . , σr−1 > σs 2.4.28

Lascoux and Sch ¬utzenberger have a simple answer also in this case: They simply replace σ by

1⊗ σ =
[

1 2 3 · · · n + 1
1 1 + σ1 1 + σ2 · · · 1 + σn

]
Indeed, since the last descent of 1⊗ σ is now at r + 1 and

u(1⊗ σ) = 1⊗ u(σ)

we can easily see that we have
l(u(1⊗ σ)) = l(1⊗ σ)− 1

as well as
Ψ
(
u(1⊗ σ), r + 1

)
=
{

1⊗ σ
}

Now the inequalities in 2.4.28 can also be rewritten as

1 + σ1, 1 + σ2, . . . , 1 + σr−1 > 1 + σs

and these yield that the permutation
σ′ = u(1⊗ σ)× t1,r+1 2.4.29

belongs to the set
Φ(u(1⊗ σ), r + 1) .

Moreover, it is easy to see that σ′ is the only element of this set. Thus we can apply Theorem 2.4.2 to this case
and derive from 2.4.18 that

Ξ(σ) = Ξ(u(1⊗ σ)× t1,r+1) 2.4.30
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We now have all the ingredients we need for the construction of the LS trees.

The Branching Process for σ = σ1σ2 · · ·σn:

Step 1: Locate the last descent of σ. If this occurs at r then let s be the largest index such
that s > r and σs < σr .

Step 2: Let u = σ × trs = σ1, σ2 . . . σr−1 σs σr+1 · · ·σs−1 σr σs+1 · · ·σn.

Step 3: Case a) If Φ(u, r) 6= ∅ then the children of σ are the permutations σ′ ∈ Φ(u, r) .
Case b) If Φ(u, r) = ∅ then σ has only one child, namely σ′ = u(1⊗ σ)× t1.r+1.

DeÞnition 2.4.1
The LS tree of a permutation σ is the tree obtained by recursive calls of the branch-

ing process described above starting with σ and stopping the recursion at every child that is
Grassmanian.

To show that this construction always yields a Þnite tree, Lascoux and Sch ¬utzenbereger produce the
following beautiful estimate for the length of any downward path in the LS tree of a permutation.

Proposition 2.4.5
Let σ be a permutation of length l and let do(σ) and d1(σ) denote the first and last descents

of σ. Assume that for the following chain of permutations

σ = σ(1)→σ(2)→· · ·→σ(N)

we have
(a) Each is a child of the previous one,
(b) None of them is Grassmanian,

then
N ≤ l ×

(
d1(σ)− do(σ)

)
2.4.33

Before we prove this result it will be good to experiment with the construction of a number of LS trees
and understand how simple the process really is.

To begin let us make more explicit our construction of the children of σ. To this end note that in Case a)
the children of σ are the permutations σ′ = u× tir for each i < r such that

σi < σs &
{
σi+1, σi+2, . . . , σr−1

}
∩ [ σi , σs ] = ∅ ,

and when this holds

σ′ = σ1, σ2 · · ·σi−1 σs σi+1 · · · . . . σr−1 σi σr+1 · · ·σs−1 σr σs+1 · · ·σn. 2.4.34

In Case b), the unique child σ′ = u(1⊗ σ)× t1,r+1 is none other than the permutation

σ′ =
[

1 2 3 · · · r r + 1 r + 2 · · · s s + 1 s + 2 · · ·n + 1
σs σ1 σ2 · · · σr−1 1 σr+1 · · · σs−1 σr σs+1 · · ·σn

]
2.4.35
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with the understanding that x = x + 1 .

For our Þrst example we take the permutation σ = 2671536, which has a simple but not entirely trivial
LS tree. In the Þgure below we depict this tree with a circle diagrams appended at each leaf.

Note then that multiple applications of the identities in 2.4.18 and 2.4.30 give us the relations

Ξ(2671534) = Ξ(2674135) + Ξ(4671235)

Ξ(2674135) = Ξ(3672145)

Ξ(3672145) = Ξ(24781356)

On the other hand since 24781346 and 4671235 are Grassmanian of shapes [4421] and [443], from Theorem 2.3.3
we derive that

Ξ(24781356) = Σ([4322]) , Ξ(4671235) = Σ([3332])

Combining all these identities we derive that

Ξ(2671534) = Σ([4322]) + Σ([3332])

Thus, in particular it follows that the number reduced decompositions of 2671534 is equal to the number of
standard tableaux of shapes [4421] and [443].

We can easily see from this example that the relations in 2.4.18 and 2.4.30 combined with Theorem 2.3.3
yield us the following general result

Theorem 2.4.4
On the validity of Theorem 2.4.1 and Proposition 2.4.5, for any permutation σ, we have

the expansion

Ξ(σ) =
∑

σ′∈LeavesLS(σ)

Σ
(
λ′(σ′)

)
2.4.36

where the symbol “σ′ ∈ LeavesLS(σ)” is to indicatee that the summation is over the leaves of the
LS tree of σ
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We shall take as our next example the permutation σ = 24156837. To follow step by step the operations
that yield the LS tree of this permutation, in the display below we have placed under each σ the permutation
u(σ) or u(1⊗ σ) as the case may be, and right below we display the offspring. The circled indices are those that
get transposed as we pass from a σ to its corresponding u(σ). Finally under each Grassmanian leaf σ′ we draw
the Ferrers diagram of the partition λ′(σ′).

Thus from Theorem 2.4.4 we derive that

Ξ(34156837) = Σ([5, 2]) + Σ([5, 1, 1]) + Σ([4, 3]) + Σ([4, 2, 1]) 2.4.37

This example is particularly interesting since the permutation 34156837 is 321-avoiding with corresponding
diagram the French skew partition [5, 5, 2]/[4, 1]. Now it develops that the skew Schur function S[5,5,2]/[4,1] has
the Schur function expansion

S[5,5,2]/[4,1] = S[5,2] + S[5,1,1] + S[4,3] + S[4,2,1] 2.4.38

The fact that the right hand sides of 2.4.37 and 2.4.38 are essentially identical is not an accident. In fact it is only
an instance of the general fact discovered by Lascoux and Sch ¬utzenberger that the LS tree can be used to compute
Littlewood-Richardson coefÞcients.

For the Þnal example we have chosen σ = 4321. Here, to save space, we have depicted the LS tree
horizontally. In particular the permutations must be read from top to bottom. We have depicted the circle
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diagrams of the starting and ending permutations.

We should notice two important facts. First we see here a case when each parent has a single child. This not an
accident. As we shall soon see this is always true for vexillary permutations. Secondly we might guess that for
the general reversing permutation

σ(n) =
[

1 2 · · · n− 1 n
n n− 1 · · · 2 1

]
,

which is dominant of shape [n−1, n−2, . . . , 2, 1], the Grassmanian permutation which is the single leaf of its tree
has always an associated French skewdiagramobtained as 180o rotation of of the diagramof [n−1, n−2, . . . , 2, 1].
We leave the proof of this to the reader and derive from Theorem 2.3.3 the following result which essentially goes
back to Richard Stanley.

Theorem 2.4.5
For the top permutation σ(n) ∈ Sn we have

Ξ(σ(n)) = Σ([n− 1, n− 2, . . . , 2, 1])

In particular the number of reduced decomposition of σ(n) is equal to the number of standard
tableaux of “staircase” shape [n− 1, n− 2, . . . , 2, 1].

Our next task is the proof of Proposition 2.4.5. However before we do this we need some preliminary
observations and an auxiliary result. To begin, given a permutation σ, it will be good to distinguish children
σ′ resulting from Case a) of the branching process from those resulting from Case b). We shall call the former
ÒregularÓ children and the latter ÒlateralÓ children.

It will be good to order regular children σ′ = u(σ)× tir according to increasing i. More generally, under
the hypotheses of Proposition 2.4.4 let

Φ(u, r) =
{
u× ti1,r , u× ti2,r , · · · , u× tim,r

}
with i1 < i2 < · · · < im. Then it is easy to see that we must also have

σi1 > σi2 > · · · > σim 2.4.39

for otherwise the condition in 2.4.24

{σi+1, σi+2, . . . , σr−1} ∩ [σi, σs] = ∅

assuring that σ′ = u × tir ∈ Φ(u, r) would be violated. This given we see that im must be the last index i < r

such that σi < σs. Following Lascoux and Sch ¬utzenberger we shall call u× tim,r the ÒleaderÓ of Φ(u, r).
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Remark 2.4.3
For our later purposes it will be good to note that if σ′ = u× ti,r is the leader of Φ(u, r) if and only if

σi+1, σi+1, . . . , σr−1 > σs 2.4.40

The following two auxiliary results will provide us with the necessary ingredients for the proof of
Proposition 2.4.5.

Lemma 2.4.1
Let σ = σ1σ2 · · ·σn and suppose that for a triplet 1 ≤ i < r < s ≤ n we have σi < σs < σr.

Suppose that for u = σ × trs and σ′ = u× tir we have

Ψ(u, r) = {σ} , σ′ ∈ Φ(u, r) . 2.4.41

Then
Ψ(u−1, σs) = {σ−1} , σ′−1 ∈ Φ(u−1, σs) 2.4.42

and
a) λ(σ) ≤ λ(σ′) b) λ′(σ′−1) ≤ λ′(σ−1) 2.4.43

with equality in a) if and only if σ′ is the leader of Φ(u, r) and equality in b) if and only if σ′−1 is
the leader of Φ(u−1, σs).
Proof

From Proposition 2.4.4 we derive that the conditions in 2.4.41 hold if and only if the circle diagrams of
σ, u and σ′ are of the form given below.

2.4.44

Since the empty sets are symmetrically located with respect to the main diagonal of these diagrams we derive
from Proposition 2.4.4 that the conditions in 2.4.41 and 2.4.42 are equivalent. Thus we only need to prove the
inequalities in 2.4.43. Letting a, b, c, e, f denote the cardinalty of the sets A, B, C, E, F we immediately deduce,
by counting the number of circles in columns i, r and s of CD(σ) that

ci(σ) = a + b + c , cr(σ) = b + c + e + f + 1 , cs(σ) = c + f . 2.4.45

Doing the same for CD(σ′)we obtain

ci(σ′) = a + b + c + 1 + e + f , cr(σ′) = b + c , cs(σ′) = c + f . 2.4.46
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Since the changes needed to get CD(σ′) from CD(σ) involve only columns i, r and swe see that we have

cj(σ) = cj(σ′) for j 6= r, s

Now we need to distinguish two cases according as

a) a > e + f + 1 or b) a ≤ e + f + 1 .

In the Þrst case ci(σ) > cr(σ) and 2.4.46 shows that to obtain the Ferrers diagramof λ(σ′) from the Ferrers diagram
of λ(σ) we simply transfer 1 + e + f cells from a smaller row to a larger row. In the second case ci(σ) ≤ cr(σ)
and to obtain the transition λ(σ)→λ(σ′) we need to transfer a cells again from a smaller row to a larger row. So
in either case the transfer will cause λ(σ′) to be larger than λ(σ) in the dominance order. This proves a) of 2.4.43.
Now because of 2.4.2, we can apply this very same inequality to the triplet σ−1, u−1, σ′−1 and obtain

λ(σ−1) ≤ λ(σ′−1) . 2.4.47

This proves 2.4.43 b), since passing to conjugates reverses dominance.
Finally, from 2.4.45 and 2.4.46 we see that in any case we have

cr(σ) > cr(σ′) . 2.4.48

Thus equality in 2.4.43 a) can only occur if and only if cr(σ) = ci(σ′) and ci(σ) = cr(σ′). This shows that equality
holds if and only if a = 0. Now a look at the diagrams in 2.4.44 reveals that a = 0 occurs if and only if

σj > σs ∀ i < j < r

But this is 2.4.40 which, from Remark 2.4.3, is precisely the condition that characterizes a leader of a collection
Φ(u, r). This given, note that since equality in in 2.4.43 b) holds if and only if we have equality in 2.4.47, we see
that the Þnall assertion simply follows by applyng what we have just shown to the triplet σ−1, u−1, σ′−1. This
completes the proof.

Lemma 2.4.2
If σ′ is a child of a non-Grassmanian σ then

d1(σ′)− do(σ′) ≤ d1(σ)− do(σ) , 2.4.49

and, in case of equality we then have

cd1(σ′)(σ′) < cd1(σ)(σ) . 2.4.50

Proof
Since a lateral child of a permutation σ is a regular child of 1⊗ σ, and we trivially have

a) d1(1⊗ σ) = d1(σ) + 1

b) do(1⊗ σ) = do(σ) + 1

c) cd1(1⊗σ)(1⊗ σ) = cd1(σ)(σ)
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we can easily see that we need only prove 2.4,49 and 2.4.50 for regular children. This given, let us assume that σ′

is a regular child of σ. Now under this hypothesis we will actually show that

a) do(σ) ≤ do(σ′) and b) d1(σ′) ≤ d1(σ) . 2.4.51

To this end, recall that in this case we have u = u(σ) = σ × trs, σ′ = u(σ)× tir with r = d1(σ) (the last descent)
and again 1 ≤ i < r < s ≤ n with σi < σs < σr. In summary

σ = σ1 · · ·σi−1σiσi+1 · · ·σr−1σrσr+1 · · ·σs−1σsσs+1 · · ·σn

and
σ′ = σ1 · · ·σi−1σsσi+1 · · ·σr−1σiσr+1 · · ·σs−1σrσs+1 · · ·σn

In particular
σj = σ′j for j 6= i, r, s .

Thus if do(σ) < i − 1 then do(σ′) = do(σ) and similarly we will have do(σ) = do(σ′) if i < do(σ) < r − 1. If
do(σ) = i− 1we may have destroyed the descent at i− 1 by placing σs > σi in position i, giving do(σ′) > do(σ).
Otherwise we again have do(σ′) = do(σ). If do(σ) = i then the inequalities

σ′i = σs > σi > σi+1 = σ′i+1

give do(σ′) = i as well. But what if do(σ) > i (that is σi < σi+1) and σi+1 < σs. Now this cannot happen for
otherwise the condition

{σi+1, σi+2, . . . , σr−1} ∩ [σi, σs] = ∅

assuring that σ′ = u× tir ∈ Φ(u, r)would be violated. Since by assumption σ is not Grassmanian we must have
do(σ) < r, thus we are only left to check what happens when do(σ) = r− 1. That is if σr−1 > σr. However in this
case the inequalities σr > σs > σi guarantee that r − 1 remains a descent as we pass from σ to σ′ completing the
proof of 2.4.51 a). To prove 2.4.51 b) note that the picture in 2.4.27 clearly shows that neither u(σ) nor σ′ have a
descent after position r. So we only need to checkwhat happens at r itself. To this end note that since σ′r = σi and
σ′r+1 = σr+1 we see that we have d1(σ′) = d1(σ) only if the picture is as in 2.4.27 and σi > σr+1. For if σi < σr+1

or worse yet if σ has no elements between positions r and s, (that is if s = r + 1) then σ′r+1 = σr > σs > σi > σ′r
destroys the descent at r and we will have d1(σ′) < d1(σ).

Finally since the computations in the proof of Lemma 2.4.1 apply to the present case as well we see that
the inequality in 2.4.48 holds true here with r = d1(σ). In other words we have in any case

cd1(σ)(σ′) < cd1(σ)(σ) .

However, this inequality reduces to 2.4.50 when d1(σ) = d1(σ′) and this certainly happens when 2.4.49 reduces
to an equality. In fact from 2.4.51 a) and b) we can see that 2.4.49 can be an equality only if we have both
d1(σ′) = d1(σ) and do(σ′) = do(σ). This completes our proof.

We now have all the ingredients we need to carry out the Þnal step in the deÞnition of the LS tree.
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Proof of Proposition 2.4.5
Let us associate to the member σ(i) of the chain

σ = σ(1)→σ(2)→· · ·→σ(N)

the point
P (i) =

(
cd1(σ(i))(σ

(i)) , d1(σ(i))− do(σ(i))
)

.

Note that, since the components of the code of a permutation never exceed its length, and all the descen-
dants of a permutation have the same length we see that we must have

1 ≤ cd1(σ(i))(σ
(i)) ≤ l for i = 1, 2, . . . , N . 2.4.52

Note further that, since none of the σ(i) are Grassmanian, we necessarily have

1 ≤ d1(σ(i))− do(σ(i)) for i = 1, 2, . . . , N . 2.4.53

Moreover, we can apply Lemma 2.4.2 to each transition σ(i)→σ(i+1) and, by successive applications of the
inequality in 2.49, derive that

d1(σ(i))− do(σ(i)) ≤ d1(σ)− do(σ) for i = 1, 2, . . . , N . 2.4.54

Combining 2.4.52, 2.4.53 and 2.4.54 we obtain that each of the points P (i) lies in the rectangle

S(σ) =
{

(x, y) : 0 ≤ x ≤ l & 1 ≤ y ≤ d1(σ)− do(σ)
}

.

Since S(σ) contains l × (d1(σ) − do(σ)) lattice points, we see that to prove the inequality in 2.4.33 we need only
show that the points P (i) are all distinct. Actually we can domore than that. Indeed, note that from Lemma 2.4.2
we derive that either

d1(σ(i+1))− do(σ(i+1)) < d1(σ(i))− do(σ(i))

or
d1(σ(i+1))− do(σ(i+1)) = d1(σ(i))− do(σ(i))

but then 2.4.50 gives

cd1(σ(i+1))(σ
(i+1)) < cd1(σ(i))(σ

(i)) .

Thus the point P (i) keeps moving to the left as it remains in any given row of S(σ), This means that after at most
l steps we will necessarily have the inequality

d1(σ(i+1))− do(σ(i+1)) < d1(σ(i))− do(σ(i))

which will cause P (i) to skip to a lower row. In summary, we see that P (i), as i = 1, 2, . . . , N , skips from lattice
point to lattice point precisely in a strictly decreasing lexicographicmanner and thusN cannot exceed the number
of lattice points in S(σ).
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The last result of this section is the following (anticipated) beautiful consequence of Theorem 2.4.4.

Theorem 2.4.6
If σ is vexillary then its LS tree reduces to a chain of vexillary permutations ending with

a Grassmanian. In particular it follows that

Ξ(σ) = Σ
(
λ′(σ)

)
2.4.55

Proof
Let σ be any vexillary permutation and let its children be given by the collection

Φ(u, r) =
{
u× ti1,r , u× ti2,r , · · · , u× tim,r

}
with r = d1(σ) and i1 < i2 < · · · < im. Then we have seen (2.4.39) that we must also have

σi1 > σi2 > · · · > σim

However our construction also requires that
σr > σs > σi1

and the elements σi1 , σi2 , σr, σs occur in σ precisely in this order. This means that if k ≥ 2 then σ would contain
a 2143 subpattern which is contrary to our assumption that σ is vexillary. Thus vexillary permutations have only
one child, regular or lateral.

Now, recalling (see 2.3.12) that a vexillary permutation σ is characterized by the equality λ(σ) = λ′(σ−1),
we derive from the inequalities in 1.4.43 that the child of a vexillary must also be vexillary and of the same shape
as well. This means that the Grassmanian leaf σ′ of the LS tree of a vexillary σ will necessarily also have shape
λ(σ). Thus the equality in 2.4.55 is simply another consequence of Theorem 2.3.3.

3. Symmetric Functions and Schubert Polynomials.

3.1 StanleyÕs Theory of P-Partitions

In these note a partially ordered set (brießy a poset) is a pair
{

Ω , ¹) consisting of a Þnite set Ω and a
partial order Ò¹Ó of the elements of Ω. It will be convenient here and after to let n be the number of elements of
Ω. For a given poset P =

{
Ω , ¹) we let FP denote the family of integer valued weakly increasing function of

P . In symbols
FP =

{
f : Ω→N : x ¹ y ⇒ f(x) ≤ f(y)

}
.

The elements of FP are usually referred to as ÒP-PartitionsÓ. More generally, given an integral injective
labelling ω ofΩwe letFP,ω denote the subfamily consisting of those elements ofFP which strictly increase when
ω decreases. In symbols

FP,ω =
{
f ∈ FP : x ≺ y & ωx > ωy ⇒ f(x) < f(y)

}
. 3.1.1
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The elements of FP,ω are called Òω-Compatible P-PartitionsÓ.

It will be convenient sometimes to keep these families Þnite and restrict their elements to take only the
values 0, 1, 2, . . . , N , for some unspeciÞed very large integer N . In this vein set

FP(N) =
{
f ∈ FP : 0 ≤ f ≤ N

}
, FP,ω(N) =

{
f ∈ FP,ω : 0 ≤ f ≤ N

}
. 3.1.2

This given , to each element f ∈ FP,ω we associate a monomial x(f) in the variables x1, x2, x3 . . .which
is to carry information as to the multiset of values taken by f . More precisely we set

x(f) =
∏
r∈Ω

xf(r) =
∏

i

x
mi(f)
i 3.1.3

where for i ∈ N, the integermi(f) denotes the number of times f takes the value i.
Extending an idea of MacMahon, Stanley obtained a number of identities concerning the generating

functions

FP,ω(x1, x2, . . . xN ) =
∑

f∈FP,ω(N)

x(f) . 3.1.4

The main goal of this section is the derivation of some of the identities that are pertinent to our study of reduced
decompositions.

The Þrst step is to obtain an expression for FP,ω that more closely reßects its dependence on the poset P
and its labeling ω. The basic idea is to obtain a decomposition of each element f into a pair (σ(f), p(f)) consisting
of a permutation σ = σ1σ2 · · ·σn and a composition p = (p1, p2, · · · , pn). To this end, let f ∈ FP,ω(N) take the
values

v1 < v2 < · · · < vk

and set

Ai = {x : f(x) = vi } . 3.1.5

Since Ω has a n elements, there is no loss to assume that the given labeling ω takes the values 1, 2, . . . , n. For
simplicity it will also be convenient to denote the elements of Ω by their labels. This given, the permutation σ(f)
is simply obtained by reading the elements of A1, A2, . . . , Ak successively. More precisely we set

σ(f) = ↑ω A1 ↑ω A2 · · · ↑ω Ak . 3.1.6

Where the symbol Ò↑ω AiÓ denotes the word obtained by reading the elements of Ai in increasing order. Now,
given that σ = σ1σ2 · · ·σn we simply set p(f) = (p1, p2, . . . , pn)with

p1 = f(σ1) and pr = f(σr)− f(σr−1) (for r = 2, . . . , n) . 3.1.7

This construction is best understood by an example. Let P be the poset depicted below with the partial order
indicated by the arrows and the labeling ω indicated by the integers placed in the circles. We have also given an
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instance of a particular element f ∈ FP,ω(N) by placing its value above each of the circles.

3.1.8

In this case our deÞnition gives

A1 = {5} , A2 = {2, 6, 7} , A3 = {3, 4} , A4 = {1} . 3.1.9

thus 3.1.6 gives
σ(f) = 5.267.34.1 3.1.10

Here we have indicated by dots the positions of the descents of the resulting permutation. Following 3.1.7 we
then obtain

p(f) = (1, 2− 1, 2− 2, 2− 2, 3− 2, 4− 3, 5− 3) = (1, 1, 0, 0, 1, 1, 2) . 3.1.10

To state the basic result of the Stanley Theory pf P-partitions we need some notation. To begin,
given a poset P = (Ω,¹), the linear extensions of the partial order Ò¹Ó will be brießy referred to as the
ÒStandard Orders of PÓ. If P has been given an injective labeling ω by the numbers 1, 2, . . . , n , then by
reading its labels according to standard orders ofP we obtain a collection of permutations σ ∈ Sn. Here and after
we will call these permutations Òω-StandardÓ and we will denote their collection by ÒSTω(P)Ó. Finally, given a
permutation σ = σ1σ2 . . . σn a composition p = (p1, p2, . . . , pn)will be called Òσ-compatibleÓ if its components
satisfy the inequalities

pn ≥ 0 &

 pr+1 ≥ 1 if σr > σr+1

pr+1 ≥ 0 otherwise
for r = 1, 2, . . . , n− 1 3.1.11

Since this condition essentially says that pmajorizes the descent set of σ translated by 1we will brießy express it
by writing

“ p >> 1 + D(σ) ′′

We now have the following fundamental fact.

Theorem 3.1.1
Let P = (Ω,¹) be a poset with an injective labeling ω by the integers 1, 2, . . . , n. Then

the map f→
(
σ(f), p(f)

)
defined by 3.1.6 and 3.1.7 is a bijection between the family FP,ω and the

collection C(P, ω) of pairs (σ, p) where σ is ω-standard and p is σ-compatible. In symbols

C(P, ω) =
{

(σ, p) : σ ∈ STω(P) & p >> 1 + D(σ)
}

3.1.12

Proof
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For a given f ∈ Fω(P) let σ(f) = σ1σ2 · · ·σn. Identifying the elements of Ω with their labels 1, 2, . . . , n ,
to show that σ(f) ∈ STω(P)we need only verify that

σr ≺ σs ⇒ r < s 3.1.13

Now recalling the construction that led to 3.1.6, we see that if f(σr) = f(σs) then the deÞnition in 3.1.2 yields
that σr < σs. Moreover, σr and σs must lie in the same set Ai. But then σr must come before σs giving r < s as
desired. If f(σr) 6= f(σs) then σr ≺ σs forces f(σr) < f(σs) and this means that σr ∈ Ai and σs ∈ Aj with i < j,
so we must again have r < s. This proves 3.1.13.

To show that p(f) satisÞes 3.1.11 note that, by its very construction, the descents of the permutation σ(f)
can only occur between two successive words Ò↑ω AiÓ and Ò↑ω Ai+1Ó. But if σr ∈ Ai and σr+1 ∈ Ai+1 then
f(σr) = vi and f(σr+1) = vi+1 give pr+1(f) = vi+1 − vi ≥ 1 as desired.

Now the map f→
(
σ(f), p(f)

)
is clearly injective since we may simply recover f from the identity

f(σr) = p1 + p2 + · · ·+ pr 3.1.14

which reverses 3.1.7. To complete the proof we need only verify that this map is onto. Let then the pair
(σ, p) ∈ C(P, ω) be given and let f be deÞned according to 3.1.14. We must show that f ∈ Fω(P) and that
(σ(f), p(f)) = (σ, p). To begin with, since σ is a linear extension of P we have that σi ≺ σj forces i < j and thus
the deÞnition in 3.1.14 gives

f(σi) ≤ f(σj)

as desired. Moreover, note that if σi > σj then between i and j the permutation σ will necessarily have a descent
and the σ-compatibility of pwill force

f(σj)− f(σi) = pj + pj−1 + · · ·+ pi+1 > 0 .

This shows that f ∈ Fω(P).
Finally, to construct the permutation σ(f) according to the recipe in 3.1.6 we need to determine Þrst the

sets Ai. To this end let us decompose the permutation σ in the form

σ = B1B2 · · ·Bh

where the Bj are the words obtained by cutting σ at its descents. Since these words are necessarily increasing,
we may view their collection as a partition of the set {1, 2, . . . , n}. Note then that, having constructed the sets
Ai for the f deÞned by 3.1.14, we see that if σr ∈ Ai, then pr+1 > 0 will cause σr+1 to be in Ai+1 and this forces
A1, A2, . . . , Ak to be a partition of {1, 2, . . . , n} which can be obtained by cutting the words Bj into successive
segments. Putting it in another way, for some indices 1 ≤ i1 < i2 < · · · < ih−1 < k we will have

B1 =↑ω A1 ↑ω A2 · · · ↑ω Ai1

B2 =↑ω Ai1+1 ↑ω Ai1+2 · · · ↑ω Ai2

· · ·
Bh =↑ω Aih−1+1 ↑ω Aih−1+2 · · · ↑ω Ak
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But this gives
σ(f) = ↑ω A1 ↑ω A2 · · · ↑ω Ak = B1B2 · · ·Bh = σ

as desired. This given the identity
p(f) = p

immediately follows from the deÞnition of f in 3.1.14. This completes our proof.

Theorem 3.1.1 yields a beautiful expansion for the polynomials FP,ω.

Theorem 3.1.2

FP,ω(x1, x2, . . . , xN ) =
∑

σ∈STω(P)

∑
1≤β1≤β2≤···≤βn≤N

σi>σi+1 ⇒ βi<βi+1

xβ1xβ2 · · ·xβn 3.1.15

Proof
Using the map f→

(
σ(f), p(f)

)
from Theorem 3.1.1 and the deÞnition in 3.1.3 we get that

FP,ω(x1, x2, . . . , xN ) =
∑

(σ,p)∈C(P,ω)

xp1xp1+p2 · · ·xp1+p2+···+pn .

However, 3.2.12 gives

FP,ω(x1, x2, . . . , xN ) =
∑

σ∈STω(P)

∑
p>>1+D(σ)

xp1xp1+p2 · · ·xp1+p2+···+pn . 3.1.16

Now p >> 1 + D(σ) simply means that

σi > σi+1 =⇒ p1 + · · ·+ pi < p1 + · · ·+ pi+1

and so we see that 3.1.15 is simply another way of writing 3.1.16.

Remark 3.1.1
We should mention that the inner sum in 3.1.15 is one of GesselÕs ÒQuasi-SymmetricÓ functions []. To

simplify some of our formulas, and to be consistent with the notation introduced in section 2.3, it will be good to
represent these polynomials by a symbol indexed by a ÒstrictÓ composition. (†) To this end if p = (p1, p2, . . . , pk)
and all pi ≥ 1 then we shall write

p |= n ←→ p1 + p2 + · · ·+ pk = n

To such a composition pwe shall associate the subset S(p) ⊆ {1, 2, . . . , n} deÞned by setting

S(p) = {p1, p1 + p2, · · · , p1 + p2 + · · ·+ pk−1} 3.1.17

This given, for p |= nwe shall here and after set

Qp(x1, x2, . . . , xN ) =
∑

1≤β1≤β2≤···≤βn≤N

i∈S(p) ⇒ βi<βi+1

xβ1xβ2 · · ·xβn 3.1.18

(†) That is an integral vector with all components ≥ 1
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Now, recalling the deÞnition in 2.3.17 of the composition p(w) corresponding to the descent set of a word w, we
see that the identity in 3.1.15 may be simply written as

FP,ω(x1, x2, . . . , xN ) =
∑

σ∈STω(P)

Qp(σ)(x1, x2, . . . , xN ) 3.1.19

Remark 3.1.2
In view of the deÞnition in 3.1.1, we see that for the example given in in 3.1.8 the labeling forces the

elements of FP,ω(N) to be strictly increasing as we go NORTH-WEST and weakly increasing as we go NORTH-

EAST. In particular, in this case, the familyFP,ω can be identiÞed with the collection of all column-strict tableaux
of shape (3, 3, 2). Recalling the deÞnition of a Schur function Sλ as a sum of monomials corresponding to
column-strict tableaux of shape λwe see that in this case we have

FP,ω(x1, x2, . . . , xN ) = S3,3,2(x1, x2, . . . , xN ) .

Clearly this is not an accident but a particular case of a general method for obtaining expansions of Schur
functions in terms of quasi-symmetric functions. To state the result which follows, we need to make some
notational conventions. Given a French skew diagram D with n cells and a standard Þlling τ of D we shall
denote by w(τ) the permutation obtained by reading τ from from left to right, by rows starting from the top row.
For instance if D = 5442/311 and

τ =

2 10
3 7 9
1 4 8

5 6

3.1.20

then
w(τ) = 2 10 3 7 9 1 4 8 5 6 3.1.21

Now we can construct from any skew diagram D a poset PD by tilting the diagram 45o counterclockwise and
for two cells x, y set x ≺ y if and only if we can go from x to y by a sequence of NORTH-WEST and NORTH-EAST

steps. In the display below we have illustrated the poset PD corresponding to the shape D = 5442/311

Fig. 3.1.22

In this display the numbers in circles are obtained by labeling the cells ofDwith 1, 2, . . . , n = 10 from left to right
and from top to bottom. We shall here and after assume that the posets PD are given an ω labeling constructed
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in this manner. This will be referred as the ÒNatural Labeling of PDÓ. It should then be noted that every
standard standard tableau τ of shape D will then give raise to a linear extension of PD. This should be quite
clear from Fig. 3.1.22 where we have placed above the circles the corresponding entries of the tableau τ of 3.1.20.
This given, to each standard tableau of shape D there will correspond an element σ(τ) ∈ STω(PD) obtained by
reading the labels in the circles in the order given by the linear extension corresponding to τ . For instance in the
case illustrated in Fig 3.1.22 we obtain the permutation

σ(τ) =
[

1 2 3 4 5 6 7 8 9 10
6 1 3 7 9 10 4 8 5 2

]
3.1.23

We are now in a position to state and prove a basic expansion result for skew Schur functions.

Theorem 3.1.3
For any skew diagram D we have

SD(x1, x2, . . . , xn) =
∑

τ∈ST (D)

Qp(τ)(x1, x2, . . . , xn) 3.1.24

Proof
LetPD be theposet corresponding toD and letω be thenatural labelingofPD obtainedby the construction

given above. We can easily see from the example displayed in 3.1.8 that the column strict tableaux of shape D

may be identiÞed with the ω-compatible PD-partitions. It thus follows from Theorem 3.1.2 that

SD(x1, x2, . . . , xn) =
∑

σ∈STω(PD)

Qp(σ)(x1, x2, . . . , xn) .

Now from what we have observed it follows that this identity can be rewritten as

SD(x1, x2, . . . , xn) =
∑

τ∈ST (D)

Qp(σ(τ))(x1, x2, . . . , xn) . 3.1.25

However, a glimpse at Fig. 3.1.22 and the permutation in 3.1.23 should reveal that the descents of σ(τ) occur
precisely at the indices i of τ where i + 1 is strongly NORTH and weakly WEST of i. But these are precisely the
descents of τ itself. In other words by the notation we introduced in section 2.3 we have

p(σ(τ)) = p(τ) .

Substituting this in 3.1.25 gives 3.1.24 as desired, completing the proof.

Given two words a = a1a2 · · · ah and b = b1b2 · · · bk, the collection of all words obtained by shufßing the
letters of a and b (as if they were card decks) is called the Òshuffle of a and bÓ and is denoted

“a tt b ”.

For instance if a = a1a2 and b = b1b2b3 then

a tt b = {a1a2b1b2b3 , a1b1a2b2b3 , a1b1b2a2b3 , a1b1b2b3a2 , b1a1a2b2b3 ,

b1a1b2a2b3 , b1a1b2b3a2 , b1b2a1a2b3 , b1b2a1b3a2 , b1b2b3a1a2 }
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The following result shows the peculiar way by which quasisymmetric functions multiply.

Theorem 3.1.4
For α = α1α2 · · ·αh ∈ Sh and β = β1β2 · · ·βk ∈ Sk we have (for sufficiently large N)

Qp(α)(x1, x2, . . . , xN )Qp(β)(x1, x2, . . . , xN ) =
∑

σ∈αtt 1h⊗β

Qp(σ)(x1, x2, . . . , xN ) 3.1.26

Proof
Let Ph denote the ordinary chain

Ph = ({1, 2, . . . , h},≤) .

and let us label the elements 1, 2, . . . , h by α1, α2, . . . , αh respectively. Since Ph is linearly ordered the collection
STα(Ph) reduces to the single permutation α. Thus from 3.1.19 we derive that

FPh,α(x1, x2, . . . , xN ) = Qp(α)(x1, x2, . . . , xN ) . 3.1.27

Similarly, if Pk = ({1, 2, . . . , k},≤) and we label its elements β1, β2, . . . , βk we get

FPk,β(x1, x2, . . . , xN ) = Qp(β)(x1, x2, . . . , xN ) . 3.1.28

Now let P = Ph ∪ Pk be the poset consisting of the simple disjoint union of these two chains and let ω be the
labeling of P obtained by giving the elements of Ph the labels α1, α2, . . . , αh and the elements of Pk the labels

h + β1 , h + β2 , . . . , h + βk . 3.1.29

This given it is easy to see that every ω-compatible P-partition f ∈ FP,ω is simply obtained by choosing a pair
f1 ∈ FPh,α(N) and f2 ∈ FPk,β(N) and transplanting them onto the Ph and Pk portions of P . In fact, the ω-
compatibility of f1 is trivial and that of f2 follows from the fact that the labeling in 3.1.29 has the same descent
set as the labeling β1, β2, . . . , βk. Thus it follows that in this case

FP,ω(x1, x2, . . . , xN ) = Qp(α)(x1, x2, . . . , xN ) Qp(β)(x1, x2, . . . , xN ) . 3.1.30

Now it turns out that the desired identity in 3.1.26 is obtained by computing the same polynomial by means
of formula 3.1.19. In fact, it is easy to see that here the elements of STω(P) are none other than the shufßes of
α1, α2, . . . , αh with the labels in 3.1.29. In our notation these are simply the permutations in

α tt 1h ⊗ β

Thus in this case 3.1.19 may be rewritten as

FP,ω(x1, x2, . . . , xN ) =
∑

σ∈αtt 1h⊗β

Qp(σ)(x1, x2, . . . , xN ) .

This completes our argument.
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3.2. The Stanley Symmetric Function of a Permutation.

Early in the summer of 1982Richard Stanley started an investigation aimed at the enumeration of reduced
decompositions. This was prompted by his discovery that data gathered in previous work [] showed that the
number of reduced decomposition of the the top element of Sn for n = 2, 3, 4, 5, 6 is equal to the number of
standard tableaux of corresponding staircase shape. Given his previous work, in particular formula 3.1.19, he
was led to the bold step of setting for any given σ ∈ Sn and N > l(σ)

Fσ(x1, x2, . . . , xN ) =
∑

w∈RED(σ)

Qp(w)(x1, x2, . . . , xN ) . 3.2.1

Unbeknown to him at the time, he was essentially discovering a natural generalization of ÒSkew Schur Func-
tionsÓ. Experimentations with examples that can be obtained by hand computations led him to conjecture that
Fσ is a Symmetric Function with a Schur Function expansion of the form

Fσ(x1, x2, . . . , xN ) =
∑

λ∈C(σ)

aλ(σ) Sλ(x1, x2, . . . , xN ) . 3.2.2

with C(σ) a suitable collection of shapes and the aλ(σ) certain positive integers. His investigations led him to
a seminal publication [] where he presented a number of results supporting his conjectures. In particular he
proved the symmetry and showed the containement

C(σ) ⊆
{
λ : λ(σ−1) ≤ λ ≤ λ′(σ)

}
. 3.2.3

In particular he derived (see 2.3.12 and Theorem 3.2.3 below) that for σ vexillary

Fσ(x1, x2, . . . , xN ) = Sλ′(σ)(x1, x2, . . . , xN ) . 3.2.4

This allowed him to completely settle the case of the top element of Sn. However he was not able to
prove Schur positivity (i.e. aλ(σ) > 0 in 3.2.2) nor identify the collection C(σ). In subsequent years all of his
conjectures were proved and even some analogous results were established for other Coxeter groups, in a variety
of papers [],[],[]. Themethods used ranged frompurely combinatorial, to representation theoretical and algebraic
geometrical. In reviewing this literature we discovered that a relatively simple and very accessible proof of the
Schur positivity of Fσ can be obtained by suitably combining a number of results from a variety of sources. To
be precise, note that as a corollary of Theorem 2.4.4 we obtain the following remarkably beautiful solution of the
Schur positivity problem for Fσ .

Theorem 3.2.1
On the validity of Theorem 2.4.1, for any permutation σ we have

Fσ(x1, x2, . . . , xN ) =
∑

σ′∈LeavesLS(σ)

Sλ′(σ′)(x1, x2, . . . , xN ) 3.2.5

In particular, for the collection of shapes occurring in 3.2.2 we obtain that

C(σ) =
{
λ : λ = λ′(σ′) for some σ′ ∈ LeavesLS(σ)

}
3.2.6

Moreover, form 3.2.5 we derive that the multiplicities aλ(σ) have a very simple combinatorial
interpretation, namely

aλ(σ) = #
{
σ′ ∈ LeavesLS(σ) : λ′(σ′) = λ

}
3.2.7
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Proof
From the deÞnitions of Ξ(σ) and Σ(λ) given in 2.3.19 we see that

Fσ(x1, x2, . . . , xn) = Ξ(σ)
∣∣∣
xp→Qp(x1,x2,...,xn)

. 3.2.8

Now using 2.4.36 we derive that

Fσ(x1, x2, . . . , xn) =
∑

σ′∈LeavesLS(σ)

Σ
(
λ′(σ′)

) ∣∣∣
xp→Qp(x1,x2,...,xn)

. 3.2.9

Now note that from the deÞnition in 2.3.21 and Theorem 3.1.3 we get that for any partition λwe have

Sλ(x1, x2, . . . , xn) = Σ(λ)
∣∣∣
xp→Qp(x1,x2,...,xn)

. 3.2.10

This given we see that 3.2.5 follows from 3.2.9. This completes the proof since 3.2.6 1nd 3.2.7 are immediate
consequences of 3.2.5.

Remark 3.2.1
It should be noted that also the containement in 3.2.3 follows from Theorem 3.2.1. Indeed we see from

Lemma 2.4.1 that for every regular child σ′ of a permutation σ we have

λ(σ) ≤ λ(σ′) ≤ λ′(σ′−1) ≤ λ′(σ−1)

and since λ(σ) = λ(1 × σ) we see that these inequalities must hold also for a lateral child. Applying them
recursively yields that they will have to hold as well for any leaf σ′ of the LS tree of σ. Thus 3.2.3 follows from
3.2.6.

Our proof of Theorem 2.4.1, on which the validity of Theorem 3.2.1 depends, will be given in the next
section. It will be based on the Theory of Schubert polynomials together with some of the identities proved in [],
[] and []. In the remainder of this section we shall present some results and proofs given in [] and []. In particular
we shall include here the very beautiful argument given by Fomin and Stanley in [] proving the symmetry of Fσ .
Of course, also this symmetry is a consequence of 3.2.5. However, even though most of what we ever wanted to
show follows from Theorem 3.2.1, there are a number of beautiful arguments and results in this theory that are
worth relating. So it will be worthwhile to include some of them here, even at the expense of ending up with
more than one proof of the same result.

In [] Fomin and Stanley base their arguments on the so called ÒNil-Coxeter Ó algebra NCn . Using this
device they were not only able to prove the symmetry of Fσ but also could derive in a very efÞcient way some of
the basic properties of Schubert polynomials. This given it will bemost appropriate to introduce it in this section.
The deÞnition of NCn is quite immediate. It is simply aK-algebra with generators

u1, u2, . . . , un−1 , 3.2.11

together with an identity Ò1Ó, and relations

a) u2
i = 0 ,

b) ui uj = uj ui when |i− j| > 1 ,

c) ui ui+1 ui = ui+1 ui ui+1 for 1 ≤ i ≤ n− 2 .

3.2.12
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HereK needs only be the ring of polynomialswith integer coefÞcients in the variables x1, x2, . . . xN , x, y. We shall
see that such an algebra has a natural faithful representation in terms of the Lascoux-Sch ¬utzenberger divided
difference operators δi introduced in the next section.

The relations in 3.2.12 assure that for any word w = a1a2 · · · al we shall have

ua1ua2 · · ·ual 6= 0

if and only if w is a reduced word of some permutation σ. Moreover, using b) and c) we can show that if
w = a1a2 · · · al and w′ = a′1a

′
2 · · · a′l are both reduced words for the same permutation σ then we necessarily have

ua1ua2 · · ·ual = ua′1
ua′2
· · ·ua′

l
.

This means that to any σ ∈ Sn we can associate a well deÞned element uσ ∈ NCn simply by setting for any
reduced word w = a1a2 · · · al ∈ RED(σ)

uσ = ua1ua2 · · ·ual . 3.2.13

This given, Fomin and Stanley set

Ai(x) = (1 + x un−1)(1 + x un−2) · · · (1 + x ui) . 3.2.14

and obtain the following basic commutativity relations.

Proposition 3.2.1

Ai(x)Ai(y) = Ai(y)Ai(x) ( for i = 1, 2, . . . , n− 1 ) 3.2.14

Proof
Note that for i = n− 1 the identity in 3.2.14 reduces to

(1 + x un−1)(1 + y un−1) = (1 + y un−1)(1 + x un−1) . 3.2.15

This is trivially true since setting
hi(x) = (1 + x ui) 3.2.16

from a) of 3.2.12 we derive that

hi(x)hi(y) = hi(x + y) = hi(y)hi(x) . 3.2.17

So the idea is to prove 3.2.14 by descent induction on i. Now the crucial identity here is a beautiful extension of
3.2.12 c), namely

hi(x)hi+1(x + y)hi(y) = hi+1(y)hi(x + y)hi+1(x) . 3.2.18

This can be easily veriÞed by means of a) and c) of 3.2.12. Now, assume that we have shown

Ai+1(x)Ai+1(y) = Ai+1(y)Ai+1(x) 3.2.19



Topics in Algebraic Combinatorics LECTURE NOTES may 3, 2001 71

This given, we have

Ai(x)Ai(y) = Ai+1(x)hi(x)Ai+2(y)hi+1(y)hi(y)(
using 3.2.12 b)

)
= Ai+1(x)Ai+2(y)hi(x)hi+1(y)hi(y)(

using 3.2.17
)

= Ai+1(x)Ai+2(y)hi(x)hi+1(y)hi(y − x)hi(x)(
using 3.2.18

)
= Ai+1(x)Ai+2(y)hi+1(y − x)hi(y)hi+1(x)hi(x)(

using 3.2.17
)

= Ai+1(x)Ai+1(y)hi+1(−x)hi(y)hi+1(x)hi(x)(
using 3.2.19

)
= Ai+1(y)Ai+1(x)hi+1(−x)hi(y)hi+1(x)hi(x)(

using 3.2.17
)

= Ai+1(y)Ai+2(x)hi(y)hi+1(x)hi(x)(
using 3.2.12 b)

)
= Ai+1(y)hi(y)Ai+2(x)hi+1(x)hi(x) = Ai(y)Ai(x)

completing the induction and the proof of the proposition.

The relevance of these computations in our context stems from the following remarkable identities

Proposition 3.2.2
Given a permutation σ = σ1σ2 · · ·σn set

σ∗ = σ∗1σ∗2 · · ·σ∗n 3.2.20

with
σ∗i = n + 1− σn+1−i ( for i = 1, 2, . . . , n ) 3.2.21

Then for N > l = l(σ) we have

Fσ∗(x1, x2, . . . , xn) =
∑

a1a2···al∈RED(σ)

∑
1≤β1≤β2≤···≤βl≤N

ai<ai+1 ⇒ βi<βi+1

xβ1xβ2 · · ·xβl 3.2.22

in particular
Fσ∗(x1, x2, . . . , xn) = A1(x1)A1(x2) · · · A1(xN )

∣∣∣
uσ

3.2.23

Proof
Note Þrst that ifwe turn upside down the line diagramof a reduced decomposition a1a2 · · · al and replace

each label ÒiÓ by the label Òn + 1− iÓ the result will simply be the line diagram of n− a1n− a2 · · ·n− al. Since
this replacement changes the target permutation σ into σ∗ we deduce that we have

a1a2 · · · al ∈ RED(σ) ⇐⇒ n− a1n− a2 · · ·n− al ∈ RED(σ∗) . 3.2.24

This means that if
w = a1a2 · · · al and w∗ = n− a1n− a2 · · ·n− al

Then the descent sets of w and w∗ are complements of one another. In symbols

D(w∗) = cD(w) = {1, 2, . . . , l − 1} −D(w) 3.2.25
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Now the deÞnition in 3.2.1 may also be written as

Fσ(x1, x2, . . . , xn) =
∑

a1a2···al∈RED(σ)

∑
1≤β1≤β2≤···≤βl≤N

ai>ai+1 ⇒ βi<βi+1

xβ1xβ2 · · ·xβl 3.2.26

In particular, using 3.2.24 we derive that for Fσ∗ we have the expansion

Fσ∗(x1, x2, . . . , xn) =
∑

a1a2···al∈RED(σ)

∑
1≤β1≤β2≤···≤βl≤N

n−ai>n−ai+1 ⇒ βi<βi+1

xβ1xβ2 · · ·xβl

and this is simply another way of writing 3.2.22.
Finally, note that when we expand the product in the right hand side of 3.2.23, we obtain terms of the

form
xβ1xβ2 · · ·xβm ua1ua2 · · ·uam

∣∣∣
uσ

with
β1 ≤ β2 ≤ · · · ≤ βm

satisfying
ai < ai+1 =⇒ βi < βi+1 .

This is because from the deÞnition in 3.2.14 we get that two successive factors xβiuai and xβi+1uai+1 with βi =
βi+1 = r coming form the same Ar(xr) in 3.2.23 will necessarily also have ai > ai+1.

Now because of 3.2.12 a) the only terms that survive are those for which m = l ,

ua1ua2 · · ·ual = uσ .

and
a1a2 · · · al ∈ RED(σ) .

Thus 3.2.23 follows from 3.2.22. This completes our argument.

As a corollary of Proposition 3.2.2 we obtain

Theorem 3.2.2
For any permutation σ the Stanley polynomial Fσ(x1, x2, . . . , xn) is a symmetric fumction

of x1, x2, . . . , xn

Proof
From 3.2.23 we derive that

Fσ(x1, x2, . . . , xn) = A1(x1)A1(x2) · · · A1(xN )
∣∣∣
uσ∗

. 3.2.27

Thus the assertion is a simple consequence of Proposition 3.2.1.

StanleyÕs proof of the inclusion in 3.2.3 is based on the following two auxiliary results.
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Proposition 3.2.2

C(σ) ⊆
{

λ : λ ⊆ λ′(σ)
}

3.2.28

Proof
Since we have proved that Fσ is symmetric we shall have an expansion of the form

Fσ(x1, x2, . . . , xn) =
∑

µ

bµ(σ) mµ(x1, x2, . . . , xn) 3.2.29

where ÒmµÓ denotes themonomial symmetric funtion corresponding toµ and the bµ(σ) are suitable non-negative
integer coefÞcients. In view of the expansion in 3.2.26 we see that bµ(σ) > 0 if and only if at least one of the
summands in 3.2.26 yields the leading monomial ofmµ. In other words, if bµ(σ) > 0 for

µ = ( µ1 ≥ µ2 ≥ · · · ≥ µk > 0 ) ` l

then from some word w = a1a2 · · · al ∈ RED(σ)we have

xβ1xβ2 · · ·xβl = xµ1
1 xµ2

2 · · ·xµk
k

with β1 ≤ β2 · · · ≤ βl and βi < βi+1when ai > ai+1. Now this implies that the descents ofwmust be all contained
in the set {

µ1 , µ1 + µ2 , µ1 + µ2 + µ3 , . . . , µ1 + µ2 + · · ·+ µk−1

}
.

Equivalently, we must have the inequalities

a1 < a2 < · · · < aµ1 , aµ1+1 < aµ1+2 < · · · < aµ1+µ2 , · · · , aµ1+···+µk−1+1 < aµ1+···+µk−1+2 < · · · < al

To see what this tells us about the circle diagram of σ we only need to have a look at the corresponding line
diagram M(a1a2 · · · al). To this end we have depicted below the case w = 23456 · 2345 · 1234 · 123 · 12 and
µ = (5, 4, 4, 3, 2) ,

Let us imagine that we break up the construction of our diagram into k stages containing µ1, µ2, . . . , µk steps
respectively. In this case we obtain the successsion of diagrams

M(a1, a2, . . . , a5)→M(a1, a2, . . . , a9)→M(a1, a2, . . . , a13)→M(a1, a2, . . . , a16)→M(a1, a2, . . . , a18)

Now recall that, according to deÞnition, 2.1 an Ò×Ó at the kth step contributes a circle labelled ÒkÓ in position (i, j)
of CD(σ) if that Ò×Ó interchanges the i-line with the σj-line. In this particular example, the Þrst stage creates
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5 labelled circles. Due to the fact that a1 < a2 < · · · < a5 our deÞnition implies that these circles will fall in 5
different columns. Proceeding with our construction, in the second stage we add 4 more circles some of which
could land in the same column as the ones created in the Þrst stage, but due to the fact that a6 < a7 < · · · < a9

they themselves will fall in 4 different columns. Similarly in the third stage we add 4 more circles in 4 different
columns. Here some of these circles could land in the same column as one or two circles created in the two
previous stages.

In the general case after r ≤ k stages we will have created

µ1 + µ2 + · · ·+ µr 3.2.30

labelled circles and, due to the fact that during each stage the ai increase the circles created within a stage will
land in separate columns. This causes circles appearing in the same column to come from different stages.
Consequently, after r stages there will be at most r circles in any given column. This means that if we push these
circles up along their column until they are tightly packed, they will necessarily fall in the Þrst r lines of the circle
diagram. On the other hand, if, after we Þnish the construction, we tightly pack all the circles of CD(σ) in the
same manner, we see from the deÞntion 2.3.3 of the code of σ, that the number of circles that will be packed in
the Þrst r rows is given by the expression

n∑
i=1

ci(σ) ∧ r ,

where a ∧ b = min(a, b). But since the shape (see deÞnition 2.3.1) is only a rearrangement of the code we
necessarily have the equalities

n∑
i=1

ci(σ) ∧ r , =
∑

i

λi(σ) ∧ r = λ′1(σ) + λ′2(σ) + · · ·+ λ′r(σ) . 3.2.31

Since in the process of constructing the corresponding sequence of balanced tableaux

T (a1a2 · · · aµ1) −→ T (a1a2 · · · aµ2) −→ · · · −→ T (a1a2 · · · al)

pairs of circles in different columns remain in different columns and pairs of cicles in the same column remain
in the same column, it follows that the circles counted by 3.2.30 will be a subset of those counted by 3.2.31, and
thus we must necessarily have

µ1 + µ2 + · · ·+ µr ≤ λ′1(σ) + λ′2(σ) + · · ·+ λ′r(σ) .

In summary we have shown that

bµ(σ) > 0 =⇒ µ ≤ λ′(σ) .

Thus the expansion in 3.2.29 may be rewritten as

Fσ(x1, x2, . . . , xn) =
∑

µ≤λ′(σ)

bµ(σ) mµ(x1, x2, . . . , xn) . 3.2.32
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Now recall from Symmetric Function Theory that the ÒmonomialÓ and ÒSchurÓ bases are related by upper
unitriangular matrices. Thus we may write

mµ(x1, x2, . . . , xn) =
∑
λ≤µ

Sλ(x1, x2, . . . , xn) Hλµ . 3.2.33

Substituting this in 3.2.32 gives

Fσ(x1, x2, . . . , xn) =
∑

µ≤λ′(σ)

bµ(σ)
∑
λ≤µ

Sλ(x1, x2, . . . , xn) Hλµ .

=
∑

λ

Sλ(x1, x2, . . . , xn)
∑

λ≤µ≤λ′(σ)

bµ(σ) Hλµ .

This shows that the coefÞcients aλ(σ) in the expansion 3.2.2 satisfy

aλ(σ) =

{∑
λ≤µ≤λ′(σ) bµ(σ) Hλµ if λ ≤ λ′(σ) ,

0 otherwise.

This proves 3.2.28 and completes our proof.

We now need two further properties of the permutation σ∗.

Proposition 3.2.3
For any permutation σ we have for N ≥ l(σ)

λ(σ∗) = λ(σ−1) 3.2.34

Fσ(x1, x2, . . . , xn) = ωFσ∗(x1, x2, . . . , xn) 3.2.35

where ω denotes the fundamental symmetric function involution.
Proof

Note that from 3.2.21 we get that the code of σ∗ is given by the equalities

ci(σ∗) = #
{

j > i : n + 1− σn+1−i > n + 1− σn+1−j

}
= #

{
j > i : σn+1−j > σn+1−i

}
.

Now this may be rewritten as

cn+1−i(σ∗) = #
{

n + 1− j > n + 1− i : σj > σi

}
= #

{
j < i : σj > σi

}
.

This proves 3.2.34 since

#
{

j < i : σj > σi

}
= ci(σ−1) .
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To prove 3.2.35 note that from 3.2.25 and 3.2.1 it follows that we may write for l(σ) = l

Fσ∗(x1, x2, . . . , xn) =
∑

w∈RED(σ)

Qp( cD(w),l)(x1, x2, . . . , xn) .

Now using 3.2.2 and 3.1.24 this may also be rewritten as

Fσ∗(x1, x2, . . . , xn) =
∑

λ∈C(σ)

aλ(σ)
∑

τ∈ST (λ)

Qp( cD(τ),l)(x1, x2, . . . , xn) 3.2.36

On the other hand, since transposing a standard tableau complements its descent set, again from 3.1.24 we obtain
that for any partition λ ` l we have (for N ≥ l)∑

τ∈ST (λ)

Qp( cD(τ),l)(x1, x2, . . . , xn) = Sλ′(x1, x2, . . . , xn) = ωSλ(x1, x2, . . . , xn) .

Substituting this in 3.2.36 gives 3.2.35 precisely as asserted.

We now have all we need to give StanleyÕs proof of 3.2.3. More precisely he obtains.

Theorem 3.2.3
For any permutation σ we have

Fσ(x1, x2, . . . , xn) =
∑

λ(σ−1)≤λ≤λ′(σ)

aλ(σ)Sλ(x1, x2, . . . , xn) 3.2.37

with
a) aλ(σ)(σ−1) = 1 and b) aλ′(σ)(σ) = 1 3.2.38

Proof
Applying 3.2.28 to σ∗ we can write

Fσ∗(x1, x2, . . . , xn) =
∑

λ≤λ′(σ∗)

aλ(σ∗)Sλ(x1, x2, . . . , xn) ,

and from 3.2.35 we get that

Fσ(x1, x2, . . . , xn) =
∑

λ≤λ′(σ∗)

aλ(σ∗)Sλ′(x1, x2, . . . , xn) .

Changing variable of summation from λ to λ′ yields that this may also be rewritten as

Fσ(x1, x2, . . . , xn) =
∑

λ′≤λ′(σ∗)

aλ′(σ∗)Sλ(x1, x2, . . . , xn) ,

and using 3.2.34 together with the fact that conjugating reverses dominance we Þnally get that

Fσ(x1, x2, . . . , xn) =
∑

λ≥λ(σ−1)

aλ′(σ∗)Sλ(x1, x2, . . . , xn) .
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Since Proposition 3.2.2 gives also

Fσ(x1, x2, . . . , xn) =
∑

λ≤λ′(σ)

aλ(σ)Sλ(x1, x2, . . . , xn) ,

we see that 3.2.37 must necessarily hold true as well.
It is easily seen from the above argument that 3.2.38 a) for σ implies 3.2.38 b) for σ∗. Thus we need to

establish only one of these equalities. We shall prove 3.2.38 b). To this end we must show that in the expansion
3.2.26 there is one and only way to obtain the equality

xβ1xβ2 · · ·xβl = xµ1
1 xµ2

2 · · ·xµk
k , 3.2.39

when
µi = λ′i(σ) ( for i = 1, 2, . . . , k ) 3.2.40

and k is the number of parts of λ′(σ). This implies that in the expansion 3.2.32 we must have bλ′1(σ) = 1 and then
3.2.38 follows since Hµµ = 1 in 3.2.33.

As we noted in the proof of Proposition 3.2.2, we may have the equality in 3.2.39 only if the associated
reduced word w = a1a2 · · · al satisÞes the inequalities

a1 < a2 < · · · < aµ1 , aµ1+1 < aµ1+2 < · · · < aµ1+µ2 , · · · , aµ1+···+µk−1+1 < aµ1+···+µk−1+2 < · · · < al 3.2.41

To see that 3.2.40 and 3.2.41 determine the ai uniquelywe need onlymake one fundamental observation. Namely
that in any column of a line diagram one ÒhighÓ label gets interchanged with a ÒlowÓ label.

Now if we construct the line diagramM(a1, a2, · · · , al) in stages

· · · −→M(a1, a2, · · · , aµ1+···+µr−1) −→M(a1, a2, · · · , aµ1+···+µr ) −→ · · ·

for r = 2, 3, . . . , k, it follows that at the rth stage exactly µr distinct high labels are interchangedwith µr low labels
(not necessarily distinct). We claim that the requirements in 3.2.40 and 3.2.41 force the high labels involved at the
rth stage to be the collection

M≥r(σ) =
{
σi : ci(σ) ≥ r

}
, 3.2.42

consisting of the entries of σ that have at least r smaller labels to their right. The reason for this is best understood
by working on an example. Note that for σ = 72381645we have the following circle diagram
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For convenience we have placed the entries of σ on top of their columns. From this it is easy to see that we have

M≥1 =
{

2, 3, 6, 7, 8
}
, M≥2 =

{
6, 7, 8

}
, M≥3 =

{
7, 8
}
, M≥4 =

{
7, 8
}
, M≥5 =

{
7
}
, M≥6 =

{
7
}

Note also that in this case

λ(σ) = (6, 4, 2, 1, 1) , λ′(σ) = (5, 3, 2, 2, 1, 1) and l(σ) = 14 .

Since in general
λ′i(σ) =

∑
j

χ
(
λj(σ) ≥ r

)
we see that the successive sizes of the collectionsM≥r(σ) give the components of λ′(σ). Now in this case for the
word w = a1a2 · · · a14 ∈ RED(σ) to produce the monomial

xβ1xβ2 · · ·xβ14 = x5
1 x3

2 x2
3 x2

4 x1
5 x1

6 3.2.43

we must have
a1 < a2 < a3 < a4 < a5 , a6 < a7 < a8 , a9 < a10 , a11 < a12 ,

Thus at the end of the Þrst stage, 5 high labels will be involved. Each these labels will then have at least one
smaller label to their right in the target permutation. But there are altogether only 5 such labels in our σ and they
are precisely 2, 3, 6, 7, 8. So the high labels involved in the Þrst stage must be the elements ofM≥1(σ). Similarly,
the second stage must involve 3 high labels. Moreover, these labels must be a subset of the previous ones for
otherwise there would be more than 5 entries of σ with at least one smaller element on their right. This means
that each of the high labels involved in the second stage will have at least 2 smaller labels to their right in the
target permutation. But σ has only 3 entries with this property and they are 6, 7, 8. Thus again we see that the
high labels involved in the second stage must be the elements ofM≥2(σ). This reasonning forces the high labels
involved in each stage to be a subset of the high labels involved in the previous stage. This forces the high labels
involved in the rth stage to be the elements ofM≥r(σ) precisely as asserted. It is easy to see that this argument,
in full generality yields that there can be one and only one word w ∈ RED(σ) yielding the monomial in 3.2.39
when µ = λ′(σ). This completes our proof.

For sake of completeness we include below the line diagram of the word that produces the monomial in
3.2.43 for the permuation 72681645

We terminate this section with a result that can be used to compute the Schur function expansion of the
product of two or more Stanley symmetric functions.
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Theorem 3.2.4
For α = α1α2 · · ·αh ∈ Sh and β = β1β2 · · ·βk ∈ Sk we have

Fα × Fβ = Fα⊗β 3.2.44

with
α⊗ β = α1α2 · · ·αh(h + β1)(h + β2) · · · (h + βk) 3.2.45

Proof
Note that from3.2.45 we derive that we can obtain the reduced words of α⊗ β by taking pairs u, v with

u ∈ RED(α) and v ∈ RED(β) and then shufßing uwith h + v. In symbols

RED
(
α⊗ β)

)
=

⋃
u∈RED(α)

⋃
v∈RED(β)

u tt (h + v) .

Thus the deÞnition in 3.2.1 gives

Fα⊗β =
∑

u∈RED(α)

∑
v∈RED(β)

∑
w∈utt (h+v)

Qp(w) . 3.2.45

The last summation should remind us of the expression occurring in 3.1.26. It develops that we can still use
Theorem 3.2.4 here even though we are shufßing pairs of words rather than pairs of permutations. Brießy, the
idea is to replace u and v by permutations of 1, 2, . . . , l(α) and 1, 2, . . . , l(β) respectively by the standard procedure
that preserves descents and then apply formula 3.1.26 to the resulting pair. In this manner we derive that∑

w∈utt (h+v)

Qp(w) = Qp(u) ×Qp(v)

Substituting this into 3.2.45 gives

Fα⊗β =
∑

u∈RED(α)

∑
v∈RED(β)

Qp(u) ×Qp(v) =
( ∑

u∈RED(α)

Qp(u)

)
×
( ∑

v∈RED(β)

Qp(v)

)
and thus 3.2.44 follows from the deÞnition in 3.2.1.

Remark 3.2.2
Note that by taking α and β both Grassmanian we can use Theorem 3.2.4 in conjunction with Theorem

2.4.4 to obtain the Schur function expansion of the product of Sλ′(α) by Sλ′(β). On the basis of this fact Stanley
observed in [] that there could not be a rule simpler that that of Littlewood-Richardson to compute the Schur
function expansion of an arbitrary Fσ . We believe however that the LR tree construction is conceptionally
and algorithmically simpler (although not necessarily more efÞcient) than the LR-rule. What appears to have
escaped from StanleyÕs reasoning is that the computation of product of Schur functions within the family of
Stanley symmetric functions should in fact be easier since it may go through inductive steps involving a wider
collection of functions. Indeed, the variety of possible circle diagrams is considerably wider than that of skew
diagrams since all of the latter can be already be obtained from a circle diagrams of 321-avoiding permutations.
What is also rather curious is that Lascoux and Sch ¬utzenberger in [] herald their tree algorithmas an improvement
(in efÞciency) over the LR rule (which is quite untrue) and fail to notice that it is more elementary (see []) and
that it applies to a wider class of symmetric functions, namely the Stanley symmetric functions.
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3.3. Divided Differences and Schubert Polynomials.

We shall deal here with a family of divided difference operators δi (for i = 1, 2, 3, . . .) acting on poly-
nomials (or formal power series ) in the variables x1, x2, x3, . . .. The deÞnition of δi is quite simple. Namely we
set

δi = δxixi+1 , 3.3.1

where for any polynomial P in the variables x, y

δxyP (x, y) =
P (x, y)− P (y, x)

x− y
. 3.3.2

Note that we may also write this in the form

δxy =
1

x− y

(
1− sxy) 3.3.3

where sxy is the operator that interchanges x and y. In particular we have

δi =
1

xi − xi+1

(
1− si) 3.3.4

where si = sxixi+1 interchanges xi and xi+1.

Since δi acts only on the variables xi, xi+1 to compute its action we only need to know the following
identity

Proposition 3.3.1

δi xa
i xb

i+1 =

xa−1
i xb

i+1 + · · ·+ xa−r−1
i xb+r

i+1 + · · ·+ xb
ix

a−1
i+1 if a > b

= 0 if a = b
xa

i xb−1
i+1 + · · ·+ xa+r

i xb−r−1
i+1 + · · ·+ xb−1

i xa
i+1 if b > a

3.3.5

Proof

If a > bwe may write

δi xa
i xb

i+1 =
xa

i xb
i+1 − xb

ix
a
i+1

xi − xi+1
= (xixi+1)b xa−b

i − xa−b
i+1

xi − xi+1

Thus

δi xa
i xb

i+1 = (xixi+1)b
(
xa−b−1

i + · · ·+ xa−b−r−1
i xr

i+1 + · · ·+ xa−b−1
i+1

)
.

This proves the Þrst identity in 3.3.5. The third identity follows in a similar way. The second one is trivial.



Topics in Algebraic Combinatorics LECTURE NOTES may 3, 2001 81

Proposition 3.3.2
These operators satisfy the following version of the ”Leibnitz rule: ”

a) δi (f g) = (δi f) g + (si f) δi g

In particular for f homogeneous of degree 1 we get

b) δa1δa2 · · · δak (f g) =
k∑

i=1

(
δaisai+1 · · · sakf

)
δa1 · · · [δai ] · · · δakg +

(
sa1sa2 · · · sakf

)
δa1δa2 · · · δakg 3.3.6

where [δai ] indicates omission of the factor “δai”.

Proof
From 3.3.5 we derive that

δi (f g) =
1

xi − xi+1

((
(1− si)f

)
g + (sif) (1− si) g

)
,

and this is another way of writing 3.3.6. This proves 3.3.6 a) and the case k = 1 of 3.3.6 b). Proceeding by
induction on k assume 3.3.6 b) true for k. This given note that from 3.3.6 a) we get that

δa1δa2 · · · δak+1 (f g) = δa1δa2 · · · δak

(
(δak+1f) g + (sak+1f) δak+1g

)
=

= (δak+1f) δa1δa2 · · · δakg +
k∑

i=1

(
δaisai+1 · · · sak(sak+1f)

)
δa1 · · · [δai ] · · · δakδak+1g

+
(
sa1sa2 · · · sak(sak+1f)

)
δa1δa2 · · · δakδak+1g

This completes the induction and the proof of case b).

Most importantly we also have the so-called ÒNil CoxeterÓ relations:

Proposition 3.3.3

i) δi δi = 0 (∀ i ≥ 1 )

ii) δi δi+1δi = δi+1 δi δi+1

iii) δi δj = δj δi ( ∀ |i− j| ≥ 2)

3.3.7

Proof
It follows immediately from the deÞnition in 3.3.4 that δi kills every symmetric function of xi, xi+1. Thus,

since in each of the three cases in 3.3.5 the result is symmetric, we derive that

δ2
i xa

i xb
i+1 = 0 .

This proves 3.3.7 i). The identity in 3.3.7 iii) is trivial since when |i − j| ≥ 2 the two operators δi and δj act on
disjoint sets of indices. The identity in 3.3.5 ii) is proved by noticing that repeated uses of 3.3.4 give

δ1δ2δ1 = δ2δ1δ2 =
1

(x1 − x2)(x1 − x3)(x2 − x3)

∑
σ∈S3

sign(σ)σ . 3.3.8
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It follows from 3.3.7 i) that for w = a1a2 · · · al we shall have

δa1δa2 · · · δal 6= 0

if and only if w is a reduced word of some permutation σ. Moreover, using ii) and iii) of 3.3.7 we can show that
if w = a1a2 · · · al and w′ = a′1a

′
2 · · · a′l are both reduced words for the same permutation σ then we necessarily

have
δa1δa2 · · · δal = δa′1

δa′2
· · · δa′

l
.

This means that to any σ ∈ Sn we can associate a well deÞned divided difference operator δσ simply by setting
for any reduced word w = a1a2 · · · al ∈ RED(σ)

δσ = δa1δa2 · · · δal .

Here and after the symbol σ(n) will denote the top permutation of sn. That is

σ(n) =
[

1 2 · · · n
n n− 1 · · · 1

]
. 3.3.9

Remarkably, the operator corresponding to the top element is a version of complete ÒsymmetrizationÓ. More
precisely we have the following general form of 3.3.8.

Proposition 3.3.4

δσ(n) =
1∏

1≤i<j≤n(xi − xj)

∑
σ∈Sn

sign(σ) σ 3.3.10

Proof
The canonical factorization of σ(n) and 3.3.4 gives

δσ(n) =
n−1∏
i=1

δn−1δn−2 · · · δi =
n−1∏
i=1

1
xn−1 − xn

(1− sn−1)
1

xn−2 − xn−1
(1− sn−2) · · · 1

xi − xi+1
(1− si) 3.3.11

where the factors are to be taken from left to right. This given we see that δσ(n) is of the form

δσ(n) =
∑

σ∈Sn

aσ(x) σ 3.3.12

with the coefÞcients aσ(x) rational functions of x1, x2, . . . , xn. Now note that since the product

δj

n−1∏
i=1

δn−1δn−2 · · · δi

has
(
n
2

)
+ 1 factors, it does not correspond to any reduced factorization. Consequently we must have

δj δσ(n) = 0. (for j = 1, 2, . . . , n− 1 ) .
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In view of 3.3.4 this may also be written as

δσ(n) = sj δσ(n) (for j = 1, 2, . . . , n− 1 ) .

It thus follows that we must also have

δσ(n) = α δσ(n) ( ∀α ∈ Sn )

Using 3.3.12 this becomes ∑
σ∈Sn

(α aσ(x)) α σ =
∑

σ∈Sn

aσ(x) σ .

Equating coefÞcients of α β we get
α aβ(x) = aαβ(x) 3.3.13

This means that we only need to compute one of these coefÞcients. Now we see from 3.3.11 that

aσ(n)(x) σ(n) =
n−1∏
i=1

1
xn−1 − xn

(−sn−1)
1

xn−2 − xn−1
(−sn−2) · · · 1

xi − xi+1
(−si)

= (−1)(
n
2)
( n−1∏

i=1

1
xn−i − xn−i+1

· · · 1
x1 − xn−i+1

) n−1∏
i=1

sn−1sn−2 · · · si

=
(−1)(

n
2)∏

1≤i<j≤n(xi − xj)
σ(n)

So from 3.3.13 for αβ = σ and β = σ(n) we get

aσ(x) = σσ(n)
( (−1)(

n
2)∏

1≤i<j≤n(xi − xj)

)
=

sign(σ)∏
1≤i<j≤n(xi − xj)

.

This proves 3.3.10.

This proposition has the following immediate corollary

Theorem 3.3.1
For any partition λ = (λ1, λ2, . . . , λn) we have

δσ(n)

(
xλ1+n−1

1 xλ2+n−2
2 · · ·xλn+n−n

1

)
= Sλ(x1, x2, . . . , xn) . 3.3.14

The fact that a Schur function can be obtained by the action of the difference operator δσ(n) on amonomial
should suggest that an interesting family of polynomials might be obtained by the action of the general operators
δσ . This is precisely the discovery of Lascoux and Sch ¬utzenberger in []. In fact for a σ ∈ Sn the Schubert
polynomial SCσ(x) is deÞned by setting

SCσ(x) = δσ−1σ(n) xn−1
1 xn−2

2 · · ·x1
n−1 . 3.3.15
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In particular we get
SCσ(n)(x) = xn−1

1 xn−2
2 · · ·x1

n−1 . 3.3.16

The polynomials SCσ(x) have been shown to have remarkable properties The reader will Þnd a detailed presen-
tation of basic results of theory of Schubert polynomials in MacdonaldÕs book []. For sake of completeness we
shall reproduce here the statements and proofs of the results that we will need in our proof of Theorem 1.4.1.

Remark 3.3.1
Note that for any σ ∈ Sn we have

l
(
σ−1σ(n)

)
=
(
n
2

)
− l(σ) 3.17

the reason for this is that all the inversions of σ−1 are transformed into non-inversions after right multiplication
by σ(n). Thus l

(
σ−1σ(n)

)
=
(
n
2

)
− l(σ−1), and then 3.3.17 follows since l(σ) = l(σ−1).

Note next that we can always Þnd a sequence of indices a1a2 · · · ak with 1 ≤ ai ≤ n− 1 such that

l(σsa1sa2 · · · sai) = l(σ) + i for i = 1, 2, . . . , k 3.18

and
σsa1sa2 · · · sak = σ(n) 3.19

To do this we simply choose sai to be any of the transpositions that interchanges two adjacent elements of
σsa1sa2 · · · sai−1 that are in the right order. This will eventually bring us to the top element of Sn at which time
we stop. Now 3.17, 3.18 for i = k and 3.19 give

a) k =
(
n
2

)
− l(σ) and b) σ−1σ(n) = sa1sa2 · · · sak 3.20

In particular from 3.20 a) we derive that

a1a2 · · · ak ∈ RED(σ−1σ(n)) .

This given, the deÞnition in 3.3.15 yields

SCσ(x) = δa1δa2 · · · δak xn−1
1 xn−2

2 · · ·x1
n−1 . 3.3.21

These observations immediately yield us the following two basic facts.

Theorem 3.3.2
For σ ∈ Sn, SCσ(x) is a homogeneous polynomial of degree l(σ) in x1, x2, . . . , xn−1 .

Proof
We see from 3.3.5 that each δi preserves homogeneity and lowers degrees by 1. This given the statement

follows from 3.20 a) and formula 3.3.21.

We shall here and after denote by An the collection of monomials

An =
{
xε1

1 xε1
1 · · ·x

εn−1
n−1 : 0 ≤ εi ≤ n− i for i = 1, 2, . . . , n− 1

}
.
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It is well known that An is a basis for the quotient

Q[x1, x2, . . . , xn]/(e1, e2, . . . , en)

where e1, e2, . . . , en are the elementary symmetric functions. It develops that Schubert polynomials may be
integrally expanded in terms of these monomials. More precisely

Theorem 3.3.3
For σ ∈ Sn

SCσ(x) =
∑

xp∈An
ap xp 3.3.22

where the coefficients ap are non-negative integers. For the identity permutation this reduces to

SCI(x) = 1 3.3.23

Proof
In view of formula 3.3.21, to prove 3.3.24 we need only show that each δi sends any element ofAn into a

N-linear combination of elements of An. However this follows immediately from formula 3.3.5. In fact, if a = εi

and b = εi+1 we get that
δi xεi

i x
εi+1
i+1

is a sum of monomials of the form

xεi−r−1
i x

εi+1+r
i+1 (with r ≥ 0 and εi+1 + r ≤ εi − 1)

if εi > εi+1 or a sum of monomials of the form

xεi+r
i x

εi+1−r−1
i+1 (with r ≥ 0 and εi + r ≤ εi+1 − 1)

if εi < εi+1. In either case we see that εi ≤ n− i and εi+1 ≤ n− i− 1 force all these summands to be of the form

xpi
i x

pi+1
i+1 (with pi ≤ n− i and pi+1 ≤ n− i− 1

and this is all that is needed to show the Þrst assertion of the Theorem. To complete the proof we note that by
deÞnition we have

SCI(x) = δσ(n)xn−1
1 xn−1

2 · · ·x1
n−1 ,

but then 3.3.10 gives

SCI(x) =
1∏

1≤i<j≤n(xi − xj)

∑
σ∈Sn

sign(σ) xn−1
σ1

xn−1
σ2
· · ·x1

σn−1
=

∏
1≤i<j≤n(xi − xj)∏
1≤i<j≤n(xi − xj)

= 1

This proves the second assertion.

The following identities enable us to obtain explicit expressions for some Schubert polynomials.
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Proposition 3.3.4
For u, σ ∈ Sn

δu SCσ(x) =

{SCσu−1(x) if l(σu−1) = l(σ)− l(u)

0 otherwise
3.3.24

In particular when 1 ≤ i ≤ n− 1

δi SCσ(x) =

{SCσsi(x) if σi > σi+1

0 otherwise
3.3.25

Proof
From the deÞnition we get

δu SCσ(x) = δu δσ−1σ(n) xn−1
1 xn−2

2 · · ·x2

Now clearly δu δσ−1σ(n) = 0 unless

l(u) + l
(
σ−1σ(n)

)
= l

(
u σ−1σ(n)

)
= l

(
(σ u−1)−1σ(n)

)
3.3.26

in which case
δu δσ−1σ(n) = δ(σ u−1)−1σ(n) .

However, from 3.17 we derive that 3.3.26 is equivalent to

l(u) +
(

n

2

)
− l(σ) =

(
n

2

)
− l

(
σ u−1

)
,

or better
l
(
σ u−1

)
= l(σ) − l(u) .

This proves 3.24. In particular we get

δi SCσ(x) =

{SCσsi(x) if l(σsi) = l(σ)− 1

0 otherwise

and 3.3.25 then follows since l(σsi) = l(σ)− 1 holds if and only if σi > σi+1. This completes the proof.

Schubert polynomials have several interesting properties the following two are worth mentioning here

Theorem 3.3.4
For any σ ∈ Sn

a) SCσ(x) is symmetric in xi , xi+1 if and only if σi < σi+1

b) If 1 ≤ r < n is the last descent of σ then SCσ(x) ∈ N[x1, x2, . . . , xr]
Proof

Formula 3.3.24 yields that
δi SCσ(x) = 0 3.3.27
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if and only if σi < σi+1 . However 3.3.4 shows that 3.3.27 is equivalent to

SCσ(x) = si SCσ(x) .

This proves the assertion in a). Note next that if r is the last descent, then

σr+1 < σr+2 < · · · < σn

So part a) gives that SCσ(x) is symmetric in xr+1, xr+2, . . . , xn. But from Theorem 3.3.2 it follows that SCσ(x)
does not depend on xn, Therefore it cannot depend on xr+1, xr+2, . . . , xn−1 as well. This proves part b).

LetHn denote the linear span of the monomials in An, in symbols

Hn = L
[
xε1

1 xε1
2 · · ·x

εn−1
n−1 : 0 ≤ εi ≤ n− i

]
. 3.3.28

This given we have the following useful result.

Theorem 3.3.5
The collection

{
SCσ(x)

}
σ∈Sn

is a basis of Hn and for any polynomial P ∈ Hn we have the
expansion formula

P (x1, x2, . . . , xn−1) =
∑

σ∈Sn

δσP
∣∣
x=0
SCσ(x1, x2, . . . , xn−1) 3.3.29

Proof
The deÞnition in 3.28 gives that

dimHn = n! = #
{
SCσ(x)

}
σ∈Sn

.

Since Theorem 3.3.2 gives
{
SCσ(x)

}
σ∈Sn

⊆ Hn, we need only show independence. To this end let

P (x) =
∑

σ∈Sn

aσ SCσ(x) 3.3.30

Note that the homogeneity of SCσ(x) coupled with formulas 3.3.23 and 3.3.24 give

δα SCσ(x)
∣∣
x=0

=

{
1 if α = σ,

0 otherwise.
3.3.31

Applying δα to 3.3.30 and setting x = 0we get

aα = δα P
∣∣
x=0

. 3.3.32

Thus P = 0 ⇒ aα = 0, proving independence. This given, 3.29 follows from 3.3.32.
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The following beautiful result of Billey, Jockusch and Stanley reveals the intimate relationship between
Schubert polynomials and Stanley symmetric functions.

Theorem 3.3.5
For any permutation σ ∈ Sn of length l we have

SCσ(x) =
∑

a1a2···al∈RED(σ)

∑
1≤β1≤β2≤···≤βl≤n−1

ai<ai+1 ⇒ βi<βi+1

βi≤ai

xβ1xβ2 · · ·xβl 3.3.33

We shall give here the remarkably simple proof of this result due to Fomin and Stanley []. To this end
we need to present some auxiliary material. To begin we note that the right hand side of this identity has a very
simple expression in terms of the Nil-Coxeter algebra.

Proposition 3.3.5
For any σ ∈ Sn we have

A1(x1)A2(x2) · · ·An−1(xn−1)
∣∣∣
uσ

=
∑

a1a2···al∈RED(σ)

∑
1≤β1≤β2≤···≤βl≤n−1

ai<ai+1 ⇒ βi<βi+1

βi≤ai

xβ1xβ2 · · ·xβl 3.3.34

Proof
It is easily seen from the deÞnition in 3.2.14 that the expansion of the product on the left hand side

produces terms of the form

xβ1xβ2 · · ·xβm ua1ua2 · · ·uam

∣∣∣
uσ

with

β1 ≤ β2 ≤ · · · ≤ βm

satisfying

ai < ai+1 =⇒ βi < βi+1

this is for the same reason as in the proof of 3.2.22. However in this case we have the additional feature that the
factor Aβ(xβ) contributes only terms xβ ua with a ≥ β. This shows that we must also have the inequalities

βi ≤ ai ( for i = 1, 2, . . . , m ).

Now theNil-Coxeter relations in 3.2.12 again guarantee that the only terms that survive are those forwhichm = l

and

ua1ua2 · · ·ual = uσ .

This completes the proof of 3.3.34.

To proceed we need one more identity of the Nil-Coxeter algebra.
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Proposition 3.3.6
For any 1 ≤ i < n we have

δxy Ai(x)Ai+1(y) = Ai(x)Ai+1(y) ui 3.3.35

Proof
Note that from the deÞnition in 3.2.14 we get that

Ai(x)Ai(y) = Ai(x)Ai+1(y) + yAi(x)Ai+1(y) ui 3.3.36

Interchanging x and y gives

Ai(y)Ai(x) = Ai(y)Ai+1(x) + xAi(y)Ai+1(x) ui 3.3.37

Subtracting 3.3.37 from 3.3.36 and using Proposition 3.2.1 we get

δxy Ai(x)Ai+1(y) =

(
xAi(y)Ai+1(x) ui − yAi(x)Ai+1(y) ui

)
x− y

3.3.38

But we have

Ai(x)Ai+1(y) ui = Ai+1(x)(1 + xui)Ai+1(y) ui

= Ai+1(x)Ai+1(y) + xAi+1(x) uiAi+1(y) ui

= Ai+1(x)Ai+1(y) + xAi+1(x)Ai+2(y) ui (1 + y ui+1) ui

= Ai+1(x)Ai+1(y) + xyAi+1(x)Ai+2(y) ui ui+1 ui

= Ai+1(x)Ai+1(y) + xyAi+1(x)Ai+2(y) ui+1 ui ui+1

= Ai+1(x)Ai+1(y) + xyAi+1(x)Ai+2(y)(1 + y ui+1) ui+1 ui ui+1

= Ai+1(x)Ai+1(y) + xyAi+1(x)Ai+1(y) ui+1 ui ui+1

Since this last expression is completely symmetric in x and y (again by Proposition 3.2.1) we deduce that

Ai(y)Ai+1(x) ui = Ai(x)Ai+1(y) ui .

Using this in 3.3.38 gives that

δxy Ai(x)Ai+1(y) =

(
xAi(x)Ai+1(y) ui − yAi(x)Ai+1(y) ui

)
x− y

which is easily seen to simplify to 3.3.35.

We now have all the ingredients we need to establish the Billey-Jockusch-Stanley formula.
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Proof of Theorem 3.3.5

For convenience, let us for a moment denote by Gσ(x) the right hand side of 3.3.33. Recalling in extent
the deÞnition in 3.2.14, 3.3.34 gives

Gσ(x) = (1+x1un−1)(1 + x1un−2) · · · (1 + x1u1)×
(1 + x2un−1)(1 + x2un−2) · · · (1 + x2u2)×

· · · · · · · · ·
(1 + xn−2un−1)(1 + xn−2un−2)×

(1 + xn−1un−1)
∣∣∣
uσ

3.3.39

A view at this display makes it palpably clear that the only way to obtain a term involving uσ(n) from this
expression is to pick the ÒxÓ part in every one of the factors. Thus we must have

Gσ(n)(x) = xn−1
1 xn−2

2 · · ·x1
n−1 .

This proves 3.3.33 for the top permutation. We can thus proceed by descent induction on the length of σ. Let us
then assume that we have proved Gσ(x) = SCσ(x) for all σ ∈ Sn of length l + 1 and let α ∈ Sn be of length l.
Since α is not the top element there will be an index i < n for which αi < αi+1. This gives that the permutation
αsi has length l + 1 so by the induction hypothesis we have

Gαsi(x) = SCαsi(x) .

Now 3.3.25 can be applied to σ = αsi and obtain

SCα(x) = δi SCαsi(x) = δi Gαsi(x) .

Now, using 3.3.39 we get that

SCα(x) = δiA1(x1) · · · Ai(xi)Ai+1(xi+1) · · · An−1(xn−1)
∣∣∣
uαui

= A1(x1) · · · (δiAi(xi)Ai+1(xi+1)) · · · An−1(xn−1)
∣∣∣
uαui(

using 3.3.35
)

= A1(x1) · · · (Ai(xi)Ai+1(xi+1)ui) · · · An−1(xn−1)
∣∣∣
uαui(

using 3.2.12 b)
)

= A1(x1) · · · Ai(xi)Ai+1(xi+1) · · · An−1(xn−1) ui

∣∣∣
uαui

= A1(x1)A2(x2) · · · An−1(xn−1)
∣∣∣
uα

= Gα(x) .

This completes the induction and the proof of the Theorem.

An immediate corollary of Theorem 3.3.5 is the following important identity.

Theorem 3.3.6
If σ ∈ Sn is any permutation of length l then

SC1m⊗σ (x1, x2, . . . , xn) = Fσ(x1, x2, . . . , xn) (∀ m ≥ n ) 3.3.40
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Proof
Note that we have

a1a2 · · · al ∈ RED(σ) ←→ a1 + m a2 + m · · · al + m ∈ RED(1m⊗ σ) .

Thus formula 3.3.33 for 1m⊗ σ may be written in the form

SC1m⊗σ (x1, x2, . . . , xm+n−1) =
∑

a1a2···al∈RED(σ)

∑
1≤β1≤β2≤···≤βl≤m+n−1

ai+m<ai+1+m ⇒ βi<βi+1

βi≤ai+m

xβ1xβ2 · · ·xβl . 3.3.41

But if all the variables xn+1, xn+2, . . . , xm+n−1 are set to zero the condition βi ≤ αi + m becomes vacuous when
m ≥ n, and so 3.3.41 yields

SC1m⊗σ (x1, x2, . . . , xm+n−1)
∣∣∣
xn+1,...,xm+n−1=0

=
∑

a1a2···al∈RED(σ)

∑
1≤β1≤β2≤···≤βl≤n

ai<ai+1 ⇒ βi<βi+1

xβ1xβ2 · · ·xβl .

This proves 3.3.40.

Before we proceed any further it will be good to note that Schubert polynomials are stable under the
natural embedding of Sn into Sn+m. To be precise we have the following general result.

Proposition 3.3.7
If σ = σ1σ2 · · ·σn ∈ Sn has last descent at r then for any m ≥ 0 we have

SCσ⊗1m(x1, x2, . . . , xr) = SCσ(x1, x2, . . . , xr) . 3.3.42

Proof
By deÞnition

σ ⊗ 1m =
[

1 2 · · · n n + 1 n + 2 · · · n + m
σ1 σ2 · · · σn n + 1 n + 2 · · · n + m

]
,

In particular also σ ⊗ 1m has last descent at r. Thus from Theorem 3.3.4 we derive that both sides of 3.3.42 are
polynomials in x1, x2, . . . , xr. Moreover we see that we also trivially have

RED(σ) = RED(σ ⊗ 1m) .

Thus 3.3.42 follows immediately from Theorem 3.3.5.

This given, here and after we will make replacements σ → σ ⊗ 1m, whenever necessary to keep all
the permutations, indexing Schubert polynomials appearing in a given identity, in the same Symmetric Group.
Keeping this in mind we have the following basic result.

Theorem 3.3.7
For any u ∈ Sn we have

(α1x1 + α2x2 + · · ·+ αnxn)SCu(x1, x2, . . . , xn−1) =
∑

1≤a<b≤n+1

l(u×tab)=l(u)+1

(αa − αb) SCu×tab(x1, x2, . . . , xn) 3.3.43
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Proof
Since by Theorem 3.3.3 we have SCu(x1, x2, . . . , xn−1) ∈ Hn, it follows that the left hand side of 3.3.43 is

inHn+1. We can thus apply Theorem 3.3.35 and obtain the expansion

f SCu(x1, x2, . . . , xn−1) =
∑

σ∈Sn+1

δσ(fSCu)
∣∣
x=0
SCσ(x1, x2, . . . , xn) 3.3.44

where for convenience we have set
f = α1x1 + α2x2 + · · ·+ αnxn . 3.3.45

Assuming that l(u) = l − 1, it follows that the product fSCu is a homogeneous polynomial of degree l and
therefore the summation in 3.3.44 need only be carried out over permutations σ of length l. This given assuming
that

a1a2 · · · al ∈ RED(σ)

we may compute the coefÞcient of SCσ in 3.3.34 by means of formula 3.3.6 with g = SCu and k = l. We thus
obtain

δσ(fSCu)
∣∣
x=0

=
l∑

i=1

(
δaisai+1···sal f

)
δa1 · · · [δai ] · · · δalSCu . 3.3.46

Note that we need not evaluate at x = 0 on the right hand side here since SCu is homogeneous of degree l − 1.
For the same reason we have

δa1δa2 · · · δal SCu = 0 ,

so no additional term is needed in 3.3.46. Now it follows from formula 3.3.24 that we have

δa1 · · · [δai ] · · · δal SCu =

{
1 if a1 · · · [ai] · · · al ∈ RED(u) ,

0 otherwise .
3.3.47

Now it is easy to see that if
(a, b) = sal · · · sai+1 (ai , ai + 1) 3.3.48

then
tab = sal · · · sai · · · sal and sa1 · · · [sai ] · · · sal = σ × tab 3.3.49

and thus from 3.3.47 we deduce that the only terms that survive in 3.3.44 are those for which

σ = u× tab and l(u× tab) = 1 .

for some 1 ≤ a < b ≤ n + 1. This given note that 3.3.48 gives that

sal · · · sai+1δaisai+1···sal = δxa,xb

Thus from 3.3.45 we get that

δaisai+1···sal f = sal · · · sai+1δaisai+1···sal f = δxa,xbf = αa − αb .
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In summary when we have 3.3.49 the summation in 3.3.46 reduces to the single term αa−αb. This proves 3.3.43.

For our purposes we only need the special case f = xr of the identity in 3.3.43. This may be written as

xr SCu(x1, x2, . . . , xn−1) =
∑

1≤a<b≤n+1

l(u×tab)=l(u)+1

(
χ(a = r)− χ(b = r)

)
SCu×tab(x1, x2, . . . , xn)

or better ∑
r<b≤n+1

l(u×trb)=l(u)+1

SCu×trb(x1, x2, . . . , xn) = xr SCu(x1, x2, . . . , xn−1) +
∑

1≤a<r

l(u×tar)=l(u)+1

SCu×tar (x1, x2, . . . , xn) . 3.3.50

We are Þnally in a position to prove the crucial identity in 2.4.17 . To this end note that comparing the
deÞnition ofΞ(σ) given in 2.3.19 and of the Stanley symmetric functionFσ(x1, x2, . . . , xn) given in 3.2.1 it is easily
seen that Theorem 2.4.1 is equivalent to the following result.

Theorem 3.3.8
For u ∈ Sn and 1 < r < n set

Ψ(u, r) =
{

α ∈ Sn : α = u× trb & l(α) = l(u) + 1 with n ≥ b > r
}

,

Φ(u, r) =
{

β ∈ Sn : β = u× tar & l(β) = l(u) + 1 with 1 ≤ a < r
}

.
3.3.51

Then for every 1 < r < n for which both Ψ(u, r) and Φ(u, r) are not empty we have∑
α∈Ψ(u,r)

Fα(x1, x2, . . . , xn) =
∑

β∈Φ(u,r)

Fβ(x1, x2, . . . , xn) 3.3.52

Proof
We begin by rewriting 3.3.50 with u→ 1m ⊗ u and r→r + m in the form∑
r+m<b≤n+m+1

l((1m⊗u)×tr+m,b)=l(u)+1

SC(1m⊗u)×tr+m,b(x1, x2, . . . , xn+m) =

xr+m SC1m⊗u(x1, x2, . . . , xn+m−1) +
∑

1≤a<r+m

l((1m⊗u)×ta,r+m)=l(u)+1

SC(1m⊗u)×ta,r+m(x1, x2, . . . , xn+m) .

3.3.53
Nownote thatΨ(u, r) is not empty if and only if we have ub > ur for some index n ≥ b > r. Under this condition,
we have ur +m < ub +m < m+n+1 and then the length of the permutation (1m⊗u)×tr+m,n+m+1 is necessarily
greater than l(u) + 1. Likewise, Φ(u, r) is not empty if and only if we have ua < ur for some index 1 ≤ a < r.
Now under this condition, we havem < ua + m < ur + m and the length of the permutation (1m ⊗ u)× tm′,r+m

is greater than l(u) + 1 for all m′ ≤ m. This given, when Ψ(u, r) and Φ(u, r) are both non empty 3.3.53 can be
rewritten as ∑

r<b≤n

l((1m⊗u)×tr+m,b+m)=l(u)+1

SC(1m⊗u)×tr+m,b+m(x1, x2, . . . , xn+m) =

xr+m SC1m⊗u(x1, x2, . . . , xn+m−1) +
∑

1≤a<r

l((1m⊗u)×ta+m,r+m)=l(u)+1

SC(1m⊗u)×ta+m,r+m(x1, x2, . . . , xn+m) .
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But since (1m⊗u)× tr+m,b+m = 1m⊗ (u× tr,b) and likewise (1m⊗u)× ta+m,r+m = 1m⊗ (u× ta,r) this equation
simpliÞes to ∑

r<b≤n

l(u×tr,b)=l(u)+1

SC1m⊗(u×tr,b)(x1, x2, . . . , xn+m) =

xr+m SC1m⊗u(x1, x2, . . . , xn+m−1) +
∑

1≤a<r

l(u×ta,r)=l(u)+1

SC1m⊗(u×ta,r)(x1, x2, . . . , xn+m) .

Now setting xn+1 = xn+2 = · · · = xn+m = 0 and using Theorem 3.3.6 we see that form ≥ nwe must have∑
r<b≤n

l(u×tr,b)=l(u)+1

Fu×tr,b(x1, x2, . . . , xn) =
∑

1≤a<r

l(u×ta,r)=l(u)+1

Fu×ta,r (x1, x2, . . . , xn) ,

and this is simply another way of writing the equation in 3.3.52. Our proof is thus complete.

Now that we have Þnally established the identity in 2.4.17, (and with quite some effort we must say), a
natural question arises whether or not there is a simpler, purely combinatorial explanation of this identity. To be
precise, purely esthetical considerations lead us to the following conjecture.

For each u ∈ Sn and 1 < r < n, when Φ(u, r), Ψ(u, r) 6= ∅, there is a natural bijection Θu,r

between the following two collections of reduced words⋃
α∈Ψ(u,r)

RED(α) and
⋃

β∈Φ(u,r)

RED(β)

with the property that

p
(
Θu,rw) = p(w) for all w ∈

⋃
α∈Ψ(u,r) RED(α)

Now it develops that as this writing was about to be completed, David Little was able to prove this
conjecture by constructing a bijection based on simplemanipulations of line diagrams. In fact, for anyα ∈ Ψ(u, r),
David LittleÕs Θu,r sends a reduced word w = a1a2 · · · al ∈ RED(α) into a word w′ = b1b2 · · · bl = Θu,rw ∈
RED(β) for some β ∈ Φ(u, r)with the property that

ai − bi = 1 or 0 .

It is easy to see that this assures the preservation of ÒdescentsÓ in the simplest possible way.

Of courseDavidLittleÕs constructionproves the identity in 2.4.17, completely bypassing all themachinery
we have developped in these notes. David LittleÕs discovery yields the simplest andmost elementary proof of the
Schur positivity of the Stanley symmetric functions that could ever have been conceived. Moreover, by iterations
of the Little bijection we can obtain a very elementary algorithm that converts a reduced factorization of any
given permutation σ into a standard tableau. To do this we simply go down the Lascoux-Sch ¬utzenberger tree of
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σ, starting from a word w ∈ RED(σ) then proceed from parent to child until we reach a Grassmanian leaf σ′.
At that point all we are left to do is convert the target word w′ into the standard tableau obtained by reading
the corresponding labelled circle diagram of σ′. A bijection between reduced words of the top permutation σ(n)

and standard tableaux was in fact one of the important results of the Edelman and Greene paper []. It is quite
possible that the algorithm we have just described may yield the same Þnal tableau. Nevertheless, we should
add that the proof of the validity of the David Little bijection is considerably simpler than what is required to
validate the Edelman and GreeneÕs correspondence.

We should also add that another byproduct of David LittleÕs discovery is a completely elementary proof
of the validity of the Lascoux-Sch ¬utzenberger tree as a tool for the computation of the Littlewood-Richardson
coefÞcients. It is simply astounding that so many time proven very difÞcult achievements can be derived from
such a surprisingly simple construction.
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