
Finding a probability density function from a CDF

In lecture, we defined uniform random variables; in particular, if X is a uniform random
variable on the interval [1, 3], it has probability density function (PDF)

fX(x) =


0 if x < 1
1
2 if x ∈ [1, 3]

0 if x > 3

.

In words, this just says that X is equally likely to take any value in the interval [1, 3].
Now, let Y = X2 (i.e., we pick a uniformly random number between 1 and 3, and

compute its square). In this note, I’m going to work through how we would find the PDF
of Y , which we’ll call fY (y), and how we can use that to find E(Y ). Here are a few
ingredients from lecture that we’ll use:

First, let’s remember how/why this came up. One of the examples in lecture was to
find the variance of a uniform random variable (this is Example 3.50 in the book). Since
Var(X) = E(X2) − [E(X)]2, we needed to find E(Y ) = E(X2). The easiest approach to
this computation is to start this way:

E(Y ) = E(X2) =

∫ ∞

−∞
x2 · fX(x) dx

This comes from applying our formula for the expectation of a function of a random variable
(Fact 3.33); here the function is Y = g(X) = X2. Then, for X ∼ Unif[1, 3] specifically, the
calculation finishes off as follows:

E(Y ) =

∫ ∞

−∞
x2 · fX(x) dx

=
�
���

���*
0∫ 1

−∞
x2 · 0 dx+

∫ 3

1
x2 · 1

2
dx+

��
���

��*
0∫ ∞

3
x2 · 0 dx

=

∫ 3

1
x2 · 1

2
dx

= 13
3 .

However, it is also certainly possible to compute E(Y ) directly from the definition of
expectation. How do we do this? We would need to evaluate the integral:

E(Y ) =

∫ ∞

−∞
y · fY (y) dy.

In order to finish this computation, we would then need to find fY (y). In practice, when
we’re trying to find the PDF of a random variable, it’s almost always easiest to start by
finding the CDF, then differentiating. This works because

FY (y) =

∫ y

−∞
fY (t) dt,

1



which by the Fundamental Theorem of Calculus Part 1, says that

d

dy
FY (y) = fY (y).

(this is also written in the book as Fact 3.13)
So let’s start by finding the CDF of Y , which we’ll write as FY (y). By definition,

FY (y) = P (Y ≤ y) = P (X2 ≤ y).

If y < 0, this is just 0, since X2 can never be negative. If y ≥ 0, this is the same as
P (X ≤ √

y). And notice, this is just the CDF of X! (Not a factorial, just excitement...) In
lecture, we showed that the CDF of X is:

FX(s) =


0 if s < 1
1
2(s− 1) if s ∈ [1, 3]

1 if s > 3

.

(This example is also in the textbook as Example 3.12 if you’d like to take a second/slower
look at it). So putting it all together,

FX(s) = P (X2 < y) =


0 if y < 0 or

√
y < 1

1
2(
√
y − 1) if

√
y ∈ [1, 3]

1 if
√
y > 3

=


0 if y < 1
1
2(
√
y − 1) if y ∈ [1, 9]

1 if y > 9

.

Then, to find fY (y), we just take a derivative:

fY (y) =
d

dy
FY (y) =


0 if y < 1
1
4y

−1/2 if y ∈ [1, 9]

0 if y > 9

And to finish off, we can check that indeed

E(Y ) =

∫ ∞

−∞
y · fY (y) dy

=

∫ 9

1
y · 1

4y
−1/2 dy

= 13
3 ,

just like we found earlier using the other (simpler) method.
The main takeaways here are:

� If we already know the PDF of a random variable X, it’s much easier to find the
expectation of a function Y = g(X) using the formula above (where we only need fX)
than by using the definition of expectation directly (which requires us to find fY ).

� If we know stuff about X and want to find fY , for a function Y = g(X), we will
almost always start by finding the CDF of Y , since this is a concrete probability we
can get our hands on, and then differentiating FY to get fY .
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