Finding a probability density function from a CDF

In lecture, we defined uniform random variables; in particular, if X is a uniform random variable on the interval $[1,3]$, it has probability density function (PDF)

$$
f_{X}(x)=\left\{\begin{array}{ll}
0 & \text { if } x<1 \\
\frac{1}{2} & \text { if } x \in[1,3] \\
0 & \text { if } x>3
\end{array} .\right.
$$

In words, this just says that X is equally likely to take any value in the interval $[1,3]$.
Now, let $Y=X^{2}$ (i.e., we pick a uniformly random number between 1 and 3, and compute its square). In this note, I'm going to work through how we would find the PDF of Y, which we'll call $f_{Y}(y)$, and how we can use that to find $E(Y)$. Here are a few ingredients from lecture that we'll use:

First, let's remember how/why this came up. One of the examples in lecture was to find the variance of a uniform random variable (this is Example 3.50 in the book). Since $\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}$, we needed to find $E(Y)=E\left(X^{2}\right)$. The easiest approach to this computation is to start this way:

$$
E(Y)=E\left(X^{2}\right)=\int_{-\infty}^{\infty} x^{2} \cdot f_{X}(x) d x
$$

This comes from applying our formula for the expectation of a function of a random variable (Fact 3.33); here the function is $Y=g(X)=X^{2}$. Then, for $X \sim \operatorname{Unif}[1,3]$ specifically, the calculation finishes off as follows:

$$
\begin{aligned}
E(Y) & =\int_{-\infty}^{\infty} x^{2} \cdot f_{X}(x) d x \\
& =\int_{-\infty}^{1} x^{2} \cdot 0 d x+\int_{1}^{3} x^{2} \cdot \frac{1}{2} d x+\int_{3}^{\infty} x^{2} \cdot 0 d x \\
& =\int_{1}^{3} x^{2} \cdot \frac{1}{2} d x \\
& =\frac{13}{3} .
\end{aligned}
$$

However, it is also certainly possible to compute $E(Y)$ directly from the definition of expectation. How do we do this? We would need to evaluate the integral:

$$
E(Y)=\int_{-\infty}^{\infty} y \cdot f_{Y}(y) d y .
$$

In order to finish this computation, we would then need to find $f_{Y}(y)$. In practice, when we're trying to find the PDF of a random variable, it's almost always easiest to start by finding the CDF, then differentiating. This works because

$$
F_{Y}(y)=\int_{-\infty}^{y} f_{Y}(t) d t
$$

which by the Fundamental Theorem of Calculus Part 1, says that

$$
\frac{d}{d y} F_{Y}(y)=f_{Y}(y)
$$

(this is also written in the book as Fact 3.13)
So let's start by finding the CDF of Y, which we'll write as $F_{Y}(y)$. By definition,

$$
F_{Y}(y)=P(Y \leq y)=P\left(X^{2} \leq y\right) .
$$

If $y<0$, this is just 0 , since X^{2} can never be negative. If $y \geq 0$, this is the same as $P(X \leq \sqrt{y})$. And notice, this is just the CDF of X ! (Not a factorial, just excitement...) In lecture, we showed that the CDF of X is:

$$
F_{X}(s)=\left\{\begin{array}{ll}
0 & \text { if } s<1 \\
\frac{1}{2}(s-1) & \text { if } s \in[1,3] \\
1 & \text { if } s>3
\end{array} .\right.
$$

(This example is also in the textbook as Example 3.12 if you'd like to take a second/slower look at it). So putting it all together,

$$
\begin{aligned}
F_{X}(s)=P\left(X^{2}<y\right) & = \begin{cases}0 & \text { if } y<0 \text { or } \sqrt{y}<1 \\
\frac{1}{2}(\sqrt{y}-1) & \text { if } \sqrt{y} \in[1,3] \\
1 & \text { if } \sqrt{y}>3\end{cases} \\
& = \begin{cases}0 & \text { if } y<1 \\
\frac{1}{2}(\sqrt{y}-1) & \text { if } y \in[1,9] \\
1 & \text { if } y>9\end{cases}
\end{aligned}
$$

Then, to find $f_{Y}(y)$, we just take a derivative:

$$
f_{Y}(y)=\frac{d}{d y} F_{Y}(y)= \begin{cases}0 & \text { if } y<1 \\ \frac{1}{4} y^{-1 / 2} & \text { if } y \in[1,9] \\ 0 & \text { if } y>9\end{cases}
$$

And to finish off, we can check that indeed

$$
\begin{aligned}
E(Y) & =\int_{-\infty}^{\infty} y \cdot f_{Y}(y) d y \\
& =\int_{1}^{9} y \cdot \frac{1}{4} y^{-1 / 2} d y \\
& =\frac{13}{3},
\end{aligned}
$$

just like we found earlier using the other (simpler) method.
The main takeaways here are:

- If we already know the PDF of a random variable X, it's much easier to find the expectation of a function $Y=g(X)$ using the formula above (where we only need f_{X}) than by using the definition of expectation directly (which requires us to find f_{Y}).
- If we know stuff about X and want to find f_{Y}, for a function $Y=g(X)$, we will almost always start by finding the CDF of Y, since this is a concrete probability we can get our hands on, and then differentiating F_{Y} to get f_{Y}.

