Announcements:

- HW 1 due tonight - $11: 59$ PM
- 2 oHs after class - Jiagi Liu 5:00 pm-6:30 pm

Pooja Agarwal 6:30 pm - 8:30 pm

- Quiz 1 tomorrow/Wednesday
\longrightarrow Gradescope

Quiz 1 Review
G-sided fair
(1) You flip a coin and roll a die. Describe the sample space of this experiment

$$
\Omega=\left\{(a, i): \quad a \in\{H, T\} \quad \begin{array}{rl}
1 \leq i \leq 6\} \quad H \Omega & =2 \times 6 \\
& =12
\end{array}\right.
$$

for any

$$
\begin{aligned}
& \text { probability } \\
a \in\{H, T\} \quad \mid \leq i \leq 6\} \quad H \Omega & =2 \times 6 \\
& =12
\end{aligned}
$$

$\omega \in \Omega \mathbb{R}(\{\omega\})=\frac{1}{\# \Omega}=\frac{1}{12}$
What is the probability that the flip is head or the roll is a 3?
$A=\{$ Flip is head $\} \quad B=\{$ Roll is 3$\} \rightarrow$ Mot disjoint

$$
\begin{array}{rlrl}
\mathbb{P}(A \cup B) & =\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A B) & A B & =(\text { Flipis head, Roll is 3) } \\
& =\frac{1}{2}+\frac{1}{6}-\frac{1}{12}=\frac{7}{12} & \mathbb{P}(A B)=\frac{1}{12}
\end{array}
$$

We roll a 6-sided unfair die; where even numbers are twice as likely as the odd numbers.

$$
\begin{aligned}
& \Omega=\{1,2,3,4,5,6\} \\
& \mathbb{P}(\{\omega\}) \neq \frac{1}{6} \quad \forall \omega \in \Omega
\end{aligned}
$$

$$
\begin{aligned}
& \text { Solution } \mathbb{P}(\{\omega\})=\frac{2}{9} \text { if } \omega \text { is even } \mathbb{P}(\{\omega\})=\frac{1}{9} \text { if wis odd } \\
& \mathbb{P}(\{\omega)=x \quad \text { if } \omega \text { is odd } \quad \mathbb{P}(\{\omega\})=2 x \text { if } \omega \text { is even } \\
& \mathbb{P}(\Omega)=1=x(3)+2 x(3) \Rightarrow x=1 / 9
\end{aligned}
$$

(2) A bin contains 4 red balls and 3 purple balls.

- You pick 2 balls with replacement. What is the probability you picked at least 1 red ball.

With replacement - Ordered

$$
\Omega=\left\{\left(b_{1}, b_{2}\right): 1 \leqslant b_{1}, b_{2} \leqslant 7\right\} \quad \# \Omega=7 \times 7=49
$$

$A=\{$ at least one red ball $\}$ $A^{c}=\{$ no red ball $\}$ exactly $\mid R$ or exactly $2 R$

$$
\# A^{C}=3 \times 3=9
$$

$$
\mathbb{P}(A)=1-\frac{9}{49}=\frac{40}{49}
$$

$$
\mathbb{P}\left(A^{C}\right)=\frac{9}{49}
$$

(3) A bin contains 4 red balls and 3 purple balls.

- You pick 2 balls without replacement. What is the probability you picked at least 1 red ball or at least 1 purple ball

$$
\begin{aligned}
& \text { Without Replacement } \\
& \text { Without order } \\
& \text { Without Replacement Without order } \left.\quad \Omega=\left\{\left(b_{1}, b_{2}\right): b_{i} \neq b_{1}\right\}\right\} \\
& A=\{\text { at least } 1 \text { red }\} \\
& B=\{\text { at least } 1 \text { purple }\} \quad \# \Omega=\binom{7}{2} \\
& P(A \cup B) \quad(A \cup B)^{c}=\text { no red, no purple } \\
& \text { II } \\
& \mathbb{P}\left((A \cup B)^{C}\right)=0 \\
& A^{C}=\{\text { no red ball }\} \\
& \text { \#A } A^{C}=\binom{3}{2}=3 \\
& \mathbb{P}\left(A^{C}\right)=\frac{\binom{3}{2}}{\binom{7}{2}}
\end{aligned}
$$

(4) A bin contains 4 red balls and 3 purple balls.

- You pick 2 balls without replacement. What is the probability the second ball is red?
(5) You choose a number between 1 and 20. What is the probability that it is divisible by 3 ?

What is the probability that it is divisible by 3 given it is even?
(6) You pick 3 cards from a deck of 52 without replacement. What is the probability that you picked at least 2 queens?

Next - 2.1 Total probability
2.2 Bayes' formula

