# Math 180A Quiz 1 Solutions 

Dr. Gwen McKinley, Eva Loeser, Nicholas Sieger

October 9, 2021

1. If $A$ and $B$ are disjoint events, which of the following are always true?
$\square P(A \mid B)=0$
$\square B=A^{c}$
$\square P(A \cup B)=P(A)+P(B)$
$\square P(A \cap B)=P(A) \cdot P(B)$

Solution: As $A$ and $B$ are disjoint events, $P(A \cap B)=0$. Thus $P(A \cup B)=$ $P(A)+P(B)-P(A \cap B)=P(A)+P(B)$ which allows us to pick the third answer. We also have that $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$, so the first answer is also valid for every $A, B$ for which $P(A \mid B)$ is defined. Thus we pick the first and third answers. For the second answer, we can find disjoint events $A, B$ such as the event that a 6 -sided die rolls a 1 and the event that the same die rolls a 5 , which are certainly disjoint but $B \neq A^{c}$. Finally, as we know that $P(A \cap B)=0$, the same disjoint events show that $P(A \cap B) \neq P(A) P(B)$
2. Suppose $A, B$ and $C$ are events with

$$
P(A)=P(B)=P(C)=.3
$$

and

$$
P(A \cap B)=P(A \cap C)=P(B \cap C)=.1
$$

What is the value of $P(A \cup B \cup C)$ ?


Solution: Using inclusion-exclusion, we can write

$$
P[A \cup B \cup C]=P(A)+P(B)+P(C)-P(A \cap B)-P(A \cap C)-P(B \cap C)+P(A \cap B \cap C)
$$

We have values for the the first six terms, but we do not have any value for $P(A \cap B \cap C)$. Since $P(A \cap B \cap C)$ cannot be determined by the values of of the other events, and we have no other information, we cannot give a value for $P(A \cap B \cap C)$. So we do not have enough information.
3. Of the customers ordering burgers at In-N-Out, suppose that $\mathbf{3 0 \%}$ ask for their burger "animal style," $\mathbf{1 5 \%}$ ask for their burger with chopped chilis, and $\mathbf{1 0 \%}$ ask for both (i.e. they ask for their burger "animal style with chopped chilis").
(a) What is the probability that a randomly chosen customer orders their burger neither animal style nor with chopped chilis?

$$
\begin{aligned}
& P(A)=\text { ask for "animal style' }=0.3 \\
& P(B)=\text { ask for chop pod chats }=0.15 \\
& P(A \cap B)=\text { both }=0.1
\end{aligned} \begin{aligned}
\text { Want to }
\end{aligned}
$$

(b) Given that a customer orders their burger with chopped chilis, what is the conditional probability that they also ask for it "animal style"?

$$
\begin{aligned}
& P(\text { animal style } / \text { chopped chilis })=\frac{P(\text { animalnchilis })}{P(\text { chills })} \\
& =\frac{1}{15}
\end{aligned}
$$


4. You and your friend each choose a number between 1 and 10 uniformly at random (you choose the numbers without consulting each other). We define the following events:

$$
A=\{\text { your number is equal to your friend's number }\}
$$

$B=\{$ the sum of your number and your friend's number is 4$\}$
(a) Give a sample space $\Omega$ and a probability measure $P$ for this experimint.

(b) What is $P(A)$ ?

$$
P(A)=\frac{1 A 1}{100}=\frac{10}{100}=\frac{1}{100} \quad \begin{aligned}
& A=\{(11), \ldots,(10,10)\} \\
& \text { there are } 10 \text { events } \\
& \text { in th/s subect }
\end{aligned}
$$


(c) What is $P(A \mid B)$ ?

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{(1 / 1 \omega)}{(1 / 100)}
$$

$$
P(B)=\frac{3}{10 \cdot 10} \quad(1,3)(31)
$$

$$
P(A \cap B)=\text { Sorme number, adds up to } 4:(2,2)
$$

5. Suppose that among the students in Math 180A, there are:

- 50 Sophomores
- 70 Juniors
- 30 Seniors

A committee of 10 students is chosen uniformly at random from among the students in the class.
(a) What is the probability that exactly 5 sophomores, 3 juniors, and 2 seniors are chosen?

$$
\begin{aligned}
& \binom{50}{5} \cdot\binom{70}{3} \cdot\binom{30}{2} \\
& \binom{50}{5}=\begin{array}{c}
\text { sllthengys to chataie } \\
5 \text { sophemaes from so }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \binom{30}{2}=" \underset{2}{2} \ldots \ldots \text { seniors from chose } \\
& \binom{150}{10} \\
& \text { ( total ways to choiese } \\
& 10 \text { studuts from a class of } 150(\neq \Omega)
\end{aligned}
$$

(b) What is the probability that at least one sophomore is chosen?


