The depth of \(v \) is the length of the path from the root to \(v \).

The height of the tree is the maximum depth.
An ordered tree puts the children of each node into a specific order (pictorially represented as left-to-right).

The diagrams shown above are the same as unordered trees, but are different as ordered trees.

We’ll be looking at graphs and trees drawn in other ways; there will be other orderings besides left-to-right.
Depth first search of a tree
We will number the vertices by a depth first search (DFS), also called a depth first traversal.
Start at the root r (the top vertex in this diagram), and assign it the number 1.
Visit 1’s first child (in left-to-right order), and assign it the number 2.
Visit 2’s first child (in left-to-right order), and assign it the number 3.
3 is a leaf, with no children!

We explored as far as possible, but now have to backtrack to explore more.

Back up how we came until a vertex (2) with at least one unnumbered child.
The next child of 2 is numbered 4. Continue going down this branch, choosing the leftmost option available.
Visit 4’s first child and assign it the number 5.
5 has no children.

Back up to the first vertex (4) that has a child not yet numbered.

Assign the first remaining child the number 6.
6 has no children.

Back up to the first vertex (4) that has a child not yet numbered.

Assign the first remaining child the number 7.
Depth first search of a tree

- 7 has no children.
- Back up to the first vertex (2) that has a child not yet numbered.
- Assign the first remaining child the number 8.
Depth first search of a tree

Continue in this fashion until all vertices are numbered.
Breadth first search of a tree
While depth first search explores as deep as possible, **Breadth first search** (BFS) works one layer (depth) at a time.

Depth 0: Number the root 1.

Depth 1: Consecutively number all neighbors of 1.

Depth 2: The depth 2 elements are all the neighbors of the depth 1 elements not yet accounted for. Number them consecutively.

Continue in this way for depth 3, 4, etc.
Breadth first search of a tree

Depth first search

Breadth first search
Depth first search (DFS) in a connected graph
Depth first search (DFS) in a connected graph

For trees, we showed the root at the top, and children below in left-to-right order. That doesn’t apply for arbitrary graph drawings.
Set up a counter: \(\text{time} = 0 \)
- We’ll keep adding 1 to it as we number the vertices.

Pick starting vertex: \(a \)
- The starting vertex can be any vertex; \(a \) is just an example.
 - You may get a different tree, depending on where you start.
 - This takes the place of the root in a rooted tree.
 - In some applications, it’s called the source.
Current vertex: \(u = a \)

Color \(u \) red: \(a \) is *discovered*

Time stamp \(u \): \(T(a) = \text{time} = 1 \)

Neighbors of \(u \): \(b, d, e \) (we’ll use alphabetical order)

1st undiscovered neighbor: \(v = b \)

Draw red edge \(\{u, v\} \): \(\{a, b\} \)

Continue exploring: \(\text{DFS}(b) \)
Depth first search (DFS) in a connected graph

- **Current vertex:** \(u = b \)
- **Color \(u \) red:** \(b \) is *discovered*
- **Time stamp \(u \):** \(T(b) = \text{time} = 2 \)
- **Neighbors of \(u \):** \(a, c \)
- **1\text{st} undiscovered neighbor:** \(v = c \)
- **Draw red edge \(\{u, v\} \):** \(\{b, c\} \)
- **Continue exploring:** DFS(c)
Depth first search (DFS) in a connected graph

- Current vertex: $u = c$
- Color u red: c is discovered
- Time stamp u: $T(c) = \text{time} = 3$
- Neighbors of u: b, f, h
- 1st undiscovered neighbor: $v = f$
- Draw red edge $\{u, v\}$: $\{c, f\}$
- Continue exploring: DFS(f)
Depth first search (DFS) in a connected graph

Skipping ahead a few steps...

- Current vertex: $u = g$
- Color u red: g is discovered
- Time stamp u: $T(g) = \text{time} = 6$
- Neighbors of u: d, e, j
- 1st undiscovered neighbor: $v = d$
- Draw red edge $\{u, v\}$: $\{g, d\}$
- Continue exploring: DFS(d)
Current vertex: \(u = d \)
Color \(u \) red: \(d \) is \textit{discovered}
Time stamp \(u \): \(T(d) = \text{time} = 7 \)
Neighbors of \(u \): \(a, f, g \)
But all neighbors of \(u \) have already been discovered!
\textit{Backtrack} to find a vertex \((g)\) with an undiscovered neighbor.
Depth first search (DFS) in a connected graph

Current vertex: \(u = g \)

Neighbors of \(u \): \(d, e, j \)

1st undiscovered neighbor: \(v = e \)

Draw red edge \(\{u, v\} \): \(\{g, e\} \)

Continue exploring: \(\text{DFS}(e) \)
Depth first search (DFS) in a connected graph

- Current vertex: \(u = e \)
- Color \(u \) red: \(e \) is discovered
- Time stamp \(u \): \(T(e) = \text{time} = 8 \)
- Neighbors of \(u \): \(a, g, h \)
- 1st undiscovered neighbor: \(v = h \)
- Draw red edge \(\{u, v\} \): \(\{e, h\} \)
- Continue exploring: DFS(h)
Depth first search (DFS) in a connected graph

- Current vertex: \(u = h \)
- Color \(u \) red: \(h \) is \textit{discovered}
- Time stamp \(u \): \(T(h) = \text{time} = 9 \)
- Neighbors of \(u \): \(c, e, i \)
- 1st undiscovered neighbor: \(v = i \)
- Draw red edge \(\{u, v\} \): \(\{h, i\} \)
- Continue exploring: \(\text{DFS}(i) \)
Depth first search (DFS) in a connected graph

- **Current vertex:** \(u = i \)
- **Color** \(u \) **red:** \(i \) is *discovered*
- **Time stamp** \(u \): \(T(i) = \text{time} = 10 \)
- **Neighbors of** \(u \): \(h, j \)

All neighbors are already discovered.

Backtracking doesn’t give any new branch, so we’re done.
Depth first search pseudocode, using recursion

Initialize: discovered[⋯] ← false
parent[⋯] ← null
$T[⋯] ← \infty$ ▶ Time stamp
time ← 0

Start with: DFS(root)

procedure DFS(u)
1: discovered[u] ← true ▶ We did this by coloring u red
2: time ← time + 1 ▶ Visit u by doing something with it,
3: $T[u] ←$ time ▶ such as recording a time stamp.
4: for all $v \in N(u)$ do
5: if (not discovered[v]) then
6: parent[v] ← u ▶ Add tree edge
7: DFS(v) ▶ Recursively explore further
DFS only finds vertices reachable from the source.

To find a spanning forest for a disconnected graph, loop over all vertices. If a vertex isn’t marked as discovered, do DFS starting there to get a spanning tree for that component. This also lets you count the connected components.

This also applies to breadth first search (BFS), coming up next.

DFS and BFS also work for a directed graph (explore $v \in N^+(u)$). Similar issues arise if it’s not strongly connected.
Breadth first search (BFS) in a connected graph
Queues

- Consider customers waiting in a line, called a queue.
 Queue: B, C, E, A, D, H

- The first customer is B. We dequeue B and process their order.
 Queue: C, E, A, D, H

- While processing B, customer J comes along and is added to the end of the queue (called *enqueueing*); no cuts allowed!
 Queue: C, E, A, D, H, J

- In Computer Science, a queue is a data structure that works in the same way.
 - New items are added to the end of the queue (*enqueued*).
 - Items at the front of the line are *dequeued* and processed.
 - We don't have the complete sequence when we start. The queue grows and shrinks over time as items are enqueued and dequeued.
Breadth first search (BFS) in a connected graph

Pick a starting vertex. We’ll use a.

Add a to the end of the queue, Q, and mark a as **discovered**.

- The undiscovered nodes are white.
- The discovered nodes are pink. By hand, just make a small mark like a dot.
Breadth first search (BFS) in a connected graph

Dequeue a vertex: $u = a.$

Time stamp u: $T(a) = \text{time} = 1$
Breadth first search (BFS) in a connected graph

Add any undiscovered neighbors of u to the end of the queue: b, d, e. This is called enqueueing.

Mark those neighbors as discovered (color them pink).

Add an edge from u to each of those neighbors to the tree (color the edges red).
Breadth first search (BFS) in a connected graph

Mark \(a \) as \textit{finished} (we’ll color it red).

By hand: Don’t literally color vertices. Just make a mark (like a dot) to show discovery, and write the number to show it’s finished.

In software:
 - There’s a variable \textit{discovered} or \textit{visited} for each vertex.
 - Various algorithms using DFS or BFS use 0, 2, or 3 of these states.
Breadth first search (BFS) in a connected graph

Dequeue:

Time stamp u:
$s = b$

Undiscovered neighbors:
c
Dequeue:

Time stamp u:

Undiscovered neighbors:

Append them to queue, mark them discovered (pink), and add tree edges to them (red)
Breadth first search (BFS) in a connected graph

Dequeue:
- $u = b$

Time stamp u:
- $T(b) = \text{time} = 2$

Undiscovered neighbors:
- c

Append them to queue, mark them discovered (pink), and add tree edges to them (red)

Mark u finished (red)
Breadth first search (BFS) in a connected graph

- **Dequeque:**
- **Time stamp** \(u \): \(u = d \)
- **Undiscovered neighbors:** \(f, g \)

Q: \(x, xxx, e, c \)

u: \(d \)
Breadth first search (BFS) in a connected graph

Dequeue: \(u = d \)

Time stamp \(u \): \(T(d) = \text{time} = 3 \)

Undiscovered neighbors: \(f, g \)

Append them to queue, mark them discovered (pink), and add tree edges to them (red)
Breadth first search (BFS) in a connected graph

Q: xxxxx, e, c, f, g
u: d

- Dequeue: \(u = d \)
- Time stamp \(u \): \(T(d) = \text{time} = 3 \)
- Undiscovered neighbors: \(f, g \)
- Append them to queue, mark them discovered (pink), and add tree edges to them (red)
- Mark \(u \) finished (red)
Continue until forced to stop (no element to dequeue).

- All vertices reachable from \(a \) are included in the tree. If it’s a connected graph, then it’s a spanning tree reaching all vertices.
The BFS queue is in weakly increasing order of distance from \(a \).

Instead of marking time stamps, we could have marked the distance from \(a \) (= parent's distance + 1 = depth in tree).

Processing vertices in order by layer assures we get shortest paths from \(a \), although there may be ties for the shortest path to each vertex, e.g., \(a, d, g \) and \(a, e, g \).
Distance (in edges) from a vertex to all other vertices

Let $N_i(v)$ be the set of all vertices of G a distance i from v:

- $N_0(a) = \{a\}$
- $N_1(a) = \{b, d, e\}$
- $N_2(a) = \{c, f, g, h\}$
- $N_3(a) = \{i, j\}$

We used breadth first search to compute that for $v = a$.
DFS vs. BFS

DFS from a

- Depth $= 8$

BFS from a

- Depth $= 3$

- DFS tends to give longer paths, and to branch out less.
- BFS tends to give shorter paths, and to branch out more.
A maze can be represented by a graph.

- Vertex for each cell and for **Start** and **End**.
- Edge between adjacent cells w/o wall in-between.

Pick an ordering of neighbors of the cells:
- Could go up, left, down, or right one cell.
- Or, **best first**: Use a heuristic to guess best neighbor (may not be right). Order neighbors by distance to **End**, using Manhattan distance

\[
d(((x, y), (x', y')) = |x - x'| + |y - y'|
\]

Break ties with a rule like down, left, right, up.

- Use DFS or BFS. But instead of exploring all cells, you can stop when you reach the goal.
- DFS may be better since you need to go deep rather than to find the shortest solution.
Diameter and radius of an undirected graph

The eccentricity of a vertex is the largest distance from the vertex.
- Eccentricity of A is 2.
- Eccentricity of F is 3.

The BFS algorithm we just used gives all the distances from a vertex to the other vertices, so it can be used to compute this.
The **diameter** of a graph is maximum eccentricity: it’s the largest distance between two vertices.

The **radius** of a graph is the minimum eccentricity.

- **Left graph:** diameter 3 (from C to F); radius 2 (using G)
- **Right graph:** diameter 4 (from (0,0) to (2,2)); radius 2 (using (1,1)).
Is a connected graph bipartite?
First solution

- We’ll label all vertices as being in part A or part B.
- Pick a starting vertex and label it A.
- Use DFS, BFS, or any other traversal that adds on one edge at a time to form a spanning tree.
- As you add new vertices, label them A/B opposite of their parent.
- As you explore neighbors of u, if any neighbor v was already discovered and has the same label A/B as u, then it’s not bipartite.
- If it is bipartite, then A and B are its two parts.
Is a connected graph bipartite?

Second solution

- Pick any starting vertex, \(u \).
- Do BFS starting at \(u \), and set
 \[
 A = N_0(u) \cup N_2(u) \cup N_4(u) \cup \cdots \quad \text{(even distance)}
 \]
 \[
 B = N_1(u) \cup N_3(u) \cup N_5(u) \cup \cdots \quad \text{(odd distance)}
 \]
- In BFS, all edges either connect vertices at two consecutive layers, or two vertices in the same layer.
 E.g., if \(d(u, v) = 8 \) and \(\{v, w\} \) is an edge, then \(d(u, w) \in \{7, 8, 9\} \).
- If there is any edge between two vertices of \(A \) (or two vertices of \(B \)), then there is an odd-length cycle, so it’s not bipartite.
- Otherwise, the graph is bipartite and \(A \) and \(B \) are its two parts.
Is a connected graph bipartite?

Second solution

Vertices are marked with their distance from a, found from BFS.

There are edges between vertices at the same level (such as $\{c, f\}$ in $N_2(a)$, as well as others), so it’s not bipartite.
Is a disconnected graph bipartite?

- Apply either procedure starting from any vertex in each component.
- If any component isn’t bipartite, then the graph isn’t bipartite.
- Otherwise, A and B gives a bipartition of the graph.
- Inverting A/B in any component gives other solutions.
Does a graph have a cycle?

- **Undirected simple graph**: In BFS or DFS, when checking the neighbors of a vertex, if any neighbor besides the parent was already discovered, then there’s a cycle.

- **Multigraphs/pseudographs**: Loops are cycles of length 1. Multiple edges give cycles of length 2. If there are no loops or multiple edges, use the test for a simple graph.

- **Directed graph**: DFS can be used to determine if there’s a directed cycle, but it’s more involved.
 - Use DFS with three vertex colors.
 - Initialize all vertices to white (not discovered).
 - When entering a vertex, color it pink (discovered).
 - It stays pink while recursing to its out-neighbors.
 - After returning from the recursion, color it red (finished).
 - When checking out-neighbors of a vertex, if any is pink (discovered), it must be an ancestor in the tree, so there’s a cycle.