Let G be a graph and C be a set of colors, e.g.,

$$C = \{\text{black, white}\} \quad C = \{a, b\} \quad C = \{1, 2\}$$

A *proper coloring* of G by C is to assign a color from C to every vertex, such that in every edge $\{v, w\}$, the vertices v and w have different colors.
Coloring vertices of a graph

Proper 4-coloring

Not a proper coloring

- G is k-colorable if it has a proper coloring with k colors (e.g., $C = \{1, 2, \ldots, k\}$). This is also called a proper k-coloring.

- In some applications, we literally draw the graph with the vertices in different colors. In proofs and algorithms with a variable number of colors, it’s easier to use numbers $1, \ldots, k$.
Color vertices with as few colors a, b, c, \ldots as possible.

- Color the graph above with as few colors as possible.
Color vertices with as few colors a, b, c, \ldots as possible

- The *chromatic number*, $\chi(G)$, of a graph G is the minimum number of colors needed for a proper coloring of G.

- We also say that G is *k-chromatic* if $\chi(G) = k$.

- Note that if G is k-colorable, then $\chi(G) \leq k$.

- This graph is 6-colorable (use a different color on each vertex). We also showed it’s 4-colorable and it’s 3-colorable. So far, $\chi(G) \leq 3$.
We’ve shown it’s 3-colorable, so $\chi(G) \leq 3$.

It has a triangle as a subgraph, which requires 3 colors. Other vertices may require additional colors, so $\chi(G) \geq 3$.

Combining these gives $\chi(G) = 3$.

Clique

- A *clique* is a subset X of the vertices s.t. all vertices in X are adjacent to each other. So the induced subgraph $G[X]$ is a complete graph, K_m.
- If G has a clique of size m, its vertices all need different colors, so $\chi(G) \geq m$.
A **proper edge coloring** is a function assigning a color from C to every edge, such that if two edges share any vertices, the edges must have different colors.

A **proper k-edge-coloring** is a proper edge coloring with k colors. A graph is **k-edge-colorable** if this exists.

This graph is 5-edge-colorable.
Color edges with as few colors a, b, c, \ldots as possible.
The minimum number of colors needed for a proper edge coloring is denoted $\chi'(G)$. This is called the \textit{chromatic index} or the \textit{edge-chromatic number} of G.
We’ve shown it’s 4-edge-colorable, so $\chi'(G) \leq 4$.

There is a vertex of degree 4. All 4 edges on it must have different colors, so $\chi'(G) \geq 4$.

Combining these gives $\chi'(G) = 4$.

In general, $\chi'(G) \geq \Delta(G)$, since all edges on a max degree vertex must have different colors.
Relation of coloring to previous concepts
A graph is bipartite if and only if it is 2-colorable

- \(A = \) black vertices and \(B = \) white vertices.
- **Bipartite:** All edges have one vertex in \(A \) and the other in \(B \).
- **2-colorable:** All edges have 1 black vertex and 1 white vertex.
- This graph has \(\chi(G) = 2 \) and \(\chi'(G) = 4 \).
- In general, a bipartite graph has \(\chi(G) \leq 2 \) (\(\chi(G) = 1 \) for only isolated vertices, and 0 for empty graph).
Independent sets and matchings

- In a proper coloring (vertices), all vertices of the same color form an independent set (since there are no edges between them).

- In a proper edge coloring, all edges of the same color form a matching (since they don’t share vertices).
Results for proper edge colorings
Major results about proper colorings

Proper edge colorings:

König’s Edge Coloring Theorem
For any bipartite graph, $\chi'(G) = \Delta(G)$.

Vizing’s Theorem
For any simple graph, $\chi'(G) = \Delta(G) \text{ or } \Delta(G) + 1$.

Proper vertex colorings:

Brooks’ Theorem
All connected graphs have $\chi(G) \leq \Delta(G)$, except for K_n and odd cycles.
König’s Edge Coloring Theorem

Don’t confuse with König’s Theorem on maximum matchings, nor with the König-Ore Formula

König’s Edge Coloring Theorem

For any bipartite graph, $\chi'(G) = \Delta(G)$.

Proof (first case: regular graphs):

- First, suppose G is k-regular. Then $k = \Delta(G)$.

- We showed that if G is a k-regular bipartite graph, its edges can be partitioned into k perfect matchings, M_1, \ldots, M_k, with every edge of G in exactly one of the matchings.
 - This also holds for bipartite multigraphs!

- Assign all edges of M_i the color i. This is a proper edge coloring of G, since all edges on each vertex are in different matchings.

- So $\chi'(G) \leq k$. We also showed $\chi'(G) \geq \Delta(G) = k$, so $\chi'(G) = k$.
König’s Edge Coloring Theorem

For any bipartite graph, $\chi'(G) = \Delta(G)$.

Proof, continued (second case: graphs that aren’t regular):

Now suppose G is not regular (example above).
König’s Edge Coloring Theorem

For any bipartite graph, \(\chi'(G) = \Delta(G) \).

Proof, continued:

- Make a clone \(G' \) of \(G \).
- **Vertices**: \(G' \) has parts \(A' \) and \(B' \). Name the vertices of \(G' \) after the vertices of \(G \), but add ' symbols to make them different.
- **Edges**: The clone of edge \(\{a, b\} \) in \(G \) is \(\{a', b'\} \) in \(G' \).
König’s Edge Coloring Theorem

For any bipartite graph, \(\chi'(G) = \Delta(G) \).

Proof, continued:

- For each vertex \(x \in A \cup B \), add \(\Delta(G) - d_G(x) \) parallel edges between \(x \) and \(x' \) (shown in red).
- Now all vertices have degree \(\Delta(G)! \) (Here, \(\Delta(G) = 3 \)).
- The new graph, \(H \), is \(\Delta(G) \)-regular.
- \(H \) is bipartite with parts \(A \cup B' \) and \(A' \cup B \).
König’s Edge Coloring Theorem

For any bipartite graph, $\chi'(G) = \Delta(G)$.

Proof, continued:

- Let $k = \Delta(G)$. Here, $k = 3$.
- Since H is bipartite and k-regular, it has a proper k-edge-coloring (shown here in black, red, and blue).
König’s Edge Coloring Theorem

For any bipartite graph, $\chi'(G) = \Delta(G)$.

Proof, continued:

- Remove G' and the edges that were added between G and G'.
- This gives a proper edge coloring of G with $\leq \Delta(G)$ colors, so $\chi'(G) \leq \Delta(G)$.
- Since $\chi'(G) \geq \Delta(G)$ as well, we conclude $\chi'(G) = \Delta(G)$.
Vizing’s Theorem

For any simple graph, \(\chi'(G) = \Delta(G) \) or \(\Delta(G) + 1 \).

Proof outline:

- We showed \(\chi'(G) \geq \Delta(G) \) for any graph.

- We can construct a proper edge coloring with \(\Delta(G) + 1 \) colors. It’s rather detailed, so we’ll skip it; see the text book.

- Then \(\chi'(G) \leq \Delta(G) + 1 \).

- Combining the two inequalities gives \(\chi'(G) = \Delta(G) \) or \(\Delta(G) + 1 \).
Vizing’s Theorem

For any simple graph, $\chi'(G) = \Delta(G)$ or $\Delta(G) + 1$.

- The graphs with $\chi'(G) = \Delta(G)$ are called **class 1**.
- The graphs with $\chi'(G) = \Delta(G) + 1$ are called **class 2**.

Determining whether a graph is class 1 or class 2 is NP-complete.

But it turns out “almost all” graphs are class 1!

- Recall there are $2^{\binom{n}{2}}$ simple graphs on vertices $\{1, \ldots, n\}$.
- Erdös and Wilson (1975) proved:

$$\lim_{n \to \infty} \left(\frac{\text{# class 1 graphs on } n \text{ vertices}}{\text{# simple graphs on } n \text{ vertices}} \right) = 1$$
Vizing’s Theorem — Multigraphs

Consider this multigraph.

All 6 edges touch, so in a proper edge coloring, they must all be different colors. Thus, $\chi'(G) = 6$.

$\Delta(G) = 4$, so $\chi'(G)$ doesn’t equal $\Delta(G)$ or $\Delta(G) + 1$.

Let $\mu(G)$ be the maximum edge multiplicity. For a simple graph, it’s 1, but here, it’s 2.

Vizing’s Theorem for Multigraphs

For any multigraph, $\chi'(G) = \Delta(G) + d$ for some $0 \leq d \leq \mu(G)$.
Results for proper vertex colorings
Proper colorings of certain graphs

Proper coloring of \(K_n \)
- \(\chi(K_n) = n \): All vertices are adjacent, so their colors are all distinct.
- \(\Delta(K_n) = n - 1 \).

Proper coloring of a cycle \(C_n \) (\(n \geq 3 \))
- Any even length cycle has \(\chi(C_n) = 2 \).
- Any odd length cycle has \(\chi(C_n) = 3 \).
- All cycles (whether odd or even) have \(\Delta(C_n) = 2 \).

Brooks’ Theorem
All connected graphs have \(\chi(G) \leq \Delta(G) \), except \(K_n \) and odd length cycles have \(\chi(G) = \Delta(G) + 1 \).
- We’ll do a zillion special cases, building up to a complete proof.
Brooks’ Theorem

Special case: Small values of $\Delta(G)$

$\Delta(G) = 0$ or 1, with G connected

- $\Delta(G) = 0$ gives an isolated vertex, $G = K_1$.
- $\Delta(G) = 1$ gives just one edge, $G = K_2$.
- Complete graphs are one of the exceptions in Brooks’ Theorem.

$\Delta(G) = 2$, with G connected

Then G is a path or a cycle, and $n \geq 3$.

- If G is a path, $\chi(G) = \Delta(G) = 2$.
- If G is an even length cycle, $\chi(G) = \Delta(G) = 2$.
- If G is an odd length cycle, $\chi(G) = 3$ but $\Delta(G) = 2$.
 This is the other exception in Brooks’ Theorem.

For the rest of the cases, assume $\Delta(G) \geq 3$.
Brooks’ Theorem

Lemma

Every graph has a proper coloring with $\Delta(G) + 1$ colors. Thus, $\chi(G) \leq \Delta(G) + 1$.

- **Notation:**
 - **Max degree** $\Delta = \Delta(G)$
 - **Vertices** v_1, \ldots, v_n (ordered arbitrarily)
 - **Colors** $1, 2, \ldots, \Delta + 1$

- Assign a color to v_i as follows (going in order $i = 1, 2, \ldots, n$):
 - v_i has at most Δ neighbors among v_1, \ldots, v_{i-1}.
 - At most Δ different colors are used by those neighbors.
 - With $\Delta + 1$ colors, at least one color different from those is available.
 - Assign the smallest available color to v_i.

- We’ll do several special cases where carefully choosing the vertex order reduces the number of colors needed.
Lemma

If connected graph G has a vertex v with $d(v) < \Delta(G)$, then $\chi(G) \leq \Delta(G)$.

- Again let $\Delta = \Delta(G)$. We will color the vertices with Δ colors.
- Do a breadth first search starting at v.
 The vertices in order of discovery are v_1, \ldots, v_n, with $v_1 = v$.
- Color vertices in reverse order, v_n, \ldots, v_2, as follows:
 - Each v_i ($i \neq 1$) has at least one neighbor v_j with $j < i$, and
 at most $\Delta - 1$ neighbors with $j > i$.
 - So at most $\Delta - 1$ colors have been assigned so far to its neighbors.
 - At least one of the Δ colors is available to assign to v_i.
- Finally, color $v_1 = v$.
 Since $d(v) < \Delta$, at least $\Delta - d(v) \geq 1$ colors are available.
Lemma

If G is connected and has a cut vertex, then $\chi(G) \leq \Delta(G)$.

Proof:

- Let v be a cut vertex.
- $G - \{v\}$ has $r \geq 2$ components. Let G_1, \ldots, G_r be those components but with v and its edges to vertices of G_i included.
- We’ll show each G_i can be colored with $\leq \Delta(G)$ colors.
Lemma

If G is connected and has a cut vertex, then $\chi(G) \leq \Delta(G)$.

Proof, continued: In G_i,

- All vertices still have degree $\leq \Delta(G)$.
- Additionally, $d_{G_i}(v) \leq \Delta(G) - (r - 1) \leq \Delta(G) - 1$.
 So if $\Delta(G_i) = \Delta(G)$, then G_i can be $\Delta(G)$-colored.
- If $\Delta(G_i) < \Delta(G)$, it can be colored with $\Delta(G_i) + 1 \leq \Delta(G)$ colors.

Recall previous lemmas

- If conn. graph G has vertex v with $d(v) < \Delta(G)$, then $\chi(G) \leq \Delta(G)$.
- Every graph has $\chi(G) \leq \Delta(G) + 1$.
Brooks’ Theorem
Special case: G has a cut vertex — proof continued

Lemma

If G is connected and has a cut vertex, then $\chi(G) \leq \Delta(G)$.

Proof, continued:

- Rename colors in G_1, \ldots, G_r so v has the same color in all of them.
- Combine proper colorings of G_1, \ldots, G_r to get a proper coloring of G with $\Delta(G)$ colors.
Brooks’ Theorem

Special case: G has a vertex cut of size 2

Lemma

*If G is connected, has $\Delta(G) \geq 3$, and has a vertex cut $\{u, v\}$ with $uv \notin E(G)$, then $\chi(G) \leq \Delta(G)$."

Proof:

- Now $G - \{u, v\}$ has two or more components.
- Split G into G_1 (one component) and G_2 (all others), each including u, v and the edges to the other vertices of that component.
- In each of $G_1 \& G_2$, both $u \& v$ have degrees between 1 and $\Delta(G) - 1$.
Brooks’ Theorem
Special case: \(G \) has a vertex cut of size 2 — proof continued

Lemma

If \(G \) is connected, has \(\Delta(G) \geq 3 \), and has a vertex cut \(\{u, v\} \) with \(uv \notin E(G) \), then \(\chi(G) \leq \Delta(G) \).

Proof, continued:

Case 1: In both \(G_1 \) and \(G_2 \), either \(u \) or \(v \) has degree \(\leq \Delta(G) - 2 \).

- \(G_1 \) and \(G_2 \) can each be \(\Delta \)-colored with different colors for \(u \) & \(v \).
- For example, say in \(G_1 \): \(d(u) \leq \Delta(G) - 2 \)
 - By previous cases, we can color \(G_1 \) with \(\Delta \) colors.
 - If \(u \) and \(v \) have the same color in \(G_1 \) on our first try, then \(u \) and its neighbors in \(G_1 \) use at most \((\Delta - 2) + 1 = \Delta - 1 \) colors, so there’s still a color remaining (out of \(\Delta \) colors) to change \(u \)'s color.
- Rename colors in \(G_1 \) and \(G_2 \) so that \(u \) and \(v \) match in each.
- Combine the \(\Delta \)-colorings of \(G_1 \) and \(G_2 \) into a \(\Delta \)-coloring of \(G \).
Brooks’ Theorem

Special case: \(G \) has a vertex cut of size 2 — proof continued

1. Initial colorings:

\[
\begin{align*}
G_1 & \quad \begin{array}{c}
2 \\
1 \\
v
2
\end{array} & \quad u & \quad \begin{array}{c}
1 \\
3 \\
2 \\
1
\end{array} \\
G_2 & \quad \begin{array}{c}
2 \\
1 \\
v
2
\end{array} & \quad \begin{array}{c}
1 \\
2 \\
1 \\
2
\end{array}
\end{align*}
\]

2. Make \(u \), \(v \) different in each part

\[
\begin{align*}
G_1 & \quad \begin{array}{c}
2 \\
1 \\
v
2
\end{array} & \quad \begin{array}{c}
1 \\
3 \\
2 \\
1
\end{array} \\
G_2 & \quad \begin{array}{c}
2 \\
1 \\
v
2
\end{array} & \quad \begin{array}{c}
1 \\
2 \\
1 \\
2
\end{array}
\end{align*}
\]

3. Permute colors to match \(u \)'s & \(v \)'s

\[
\begin{align*}
G_1 & \quad \begin{array}{c}
2 \\
1 \\
v
2
\end{array} & \quad \begin{array}{c}
1 \\
3 \\
2 \\
1
\end{array} \\
G_2 & \quad \begin{array}{c}
2 \\
1 \\
v
2
\end{array} & \quad \begin{array}{c}
1 \\
2 \\
1 \\
2
\end{array}
\end{align*}
\]

4. Combine

\[
\begin{align*}
G_1 & \quad \begin{array}{c}
2 \\
1 \\
v
2
\end{array} & \quad \begin{array}{c}
1 \\
3 \\
2 \\
1
\end{array} \\
G_2 & \quad \begin{array}{c}
2 \\
1 \\
v
2
\end{array} & \quad \begin{array}{c}
1 \\
2 \\
1 \\
2
\end{array}
\end{align*}
\]

Initial colorings:

1. Initial colorings:
2. Make \(u \), \(v \) different in each part
3. Permute colors to match \(u \)'s & \(v \)'s
4. Combine
Lemma

If G is connected, has $\Delta(G) \geq 3$, and has a vertex cut $\{u, v\}$ with $uv \notin E(G)$, then $\chi(G) \leq \Delta(G)$.

Proof, continued:

Case 2: In G_1 or G_2, both u and v have degree $> \Delta(G) - 2$.

- Assume it’s G_1 (G_2 works similarly). Then
 $$d_{G_1}(u) = d_{G_1}(v) = \Delta(G) - 1 \quad d_{G_2}(u) = d_{G_2}(v) = 1$$

- So in G_2, both u and v are in one edge each: ua and vb. Note it can’t be uv since we assumed uv is not an edge.

- $\{a, v\}$ is also a vertex cut, and gives Case 1.
Brooks’ Theorem

All connected graphs have $\chi(G) \leq \Delta(G)$, except for K_n and odd cycles.

Proof: If any special case applies, we’re done. But if none apply, then:

- $\Delta \geq 3$.
- It’s not a complete graph or odd cycle.
- There are no cut vertices.
- There are no vertex cuts $\{u, v\}$ with uv not an edge.
- There is no vertex with $d(v) < \Delta(G)$; thus, G is Δ-regular.

This is the “case” we’re in: ALL of the above at once.
Brooks’ Theorem
All connected graphs have $\chi(G) \leq \Delta(G)$, except for K_n and odd cycles.

Proof of Brooks’ Theorem, continued:

- Let x be any vertex in G.

- x must have neighbors y, z where xy and xz are edges but yz isn’t:
 - If all of x’s neighbors are adjacent to each other, then x and its neighbors form a clique of size $\Delta + 1$.
 - This accounts for Δ neighbors of each of those vertices. G is Δ-regular, so that’s all of their neighbors, making this clique a connected component of G.

- G is connected, so that’s the whole graph.

- Thus, $G = K_{\Delta+1}$, contradicting that it’s not a complete graph.
Brooks’ Theorem

All connected graphs have $\chi(G) \leq \Delta(G)$, except for K_n and odd cycles.

Proof of Brooks’ Theorem, continued:

- We have vertices x, y, z where xy and xz are edges but yz isn’t.

- $G - \{y, z\}$ is connected (since that’s the case we’re in).
 - Do BFS in $G - \{y, z\}$ starting at x.
 - List vertices in order of discovery v_1, \ldots, v_{n-2}, with $v_1 = x$.
 - Then set $v_{n-1} = y$ and $v_n = z$.

- Color the vertices in reverse order $v_n, v_{n-1}, \ldots, v_1$:
 - $v_n = z$ and $v_{n-1} = y$ both get color 1.
 - Each v_i (for $i = n - 2, \ldots, 2$) has $\leq \Delta - 1$ neighbors already colored (v_j with $j > i$), so at least one of the Δ colors is available for each.
 - When we reach v_1, all Δ of its neighbors were already colored. But y and z both got color 1!
 So at most $\Delta - 1$ colors were used on v_1’s neighbors.
 So at least one of the Δ colors is available for v_1.
A graph is \textit{k-degenerate} if all subgraphs have min. degree \(\leq k \).

This graph has minimum degree \(\delta(G) = 2 \), but subgraphs \(\square \) have higher minimum degree, so it’s not 2-degenerate.

All subgraphs have min degree \(\leq \Delta(G) = 5 \), so it’s 5-degenerate.

What’s the smallest \(k \) for which it’s \(k \)-degenerate? \(3 \)

The \textit{degeneracy} (or \textit{degeneracy number}) of a graph is the smallest \(k \) for which it’s \(k \)-degenerate. Here, it’s 3.

\textbf{Theorem:} \textit{If} \(G \) \textit{is} \(k \)-\textit{degenerate}, \textit{then} \(\chi(G) \leq k + 1 \).

This is often an improvement over \(\chi(G) \leq \Delta(G) \).
Repeatedly choose a vertex of minimum degree (in the remaining graph) and remove it, getting a sequence of vertices v_1, \ldots, v_n.

Let d_i be the degree of v_i just before it’s removed (so it’s the degree in $G - \{v_1, \ldots, v_{i-1}\} = G[v_i, \ldots, v_n]$).

Every edge is accounted for in exactly one d_i (whichever of it’s vertices is removed first), so $\sum_i d_i = |E(G)|$ (here it equals 13).

If G is k-degenerate, then every v_i has $\leq k$ neighbors in v_{i+1}, \ldots, v_n (since v_i has degree $\leq k$ in every subgraph, including $G[v_i, \ldots, v_n]$).
Degenerate graphs
Computing degeneracy number

Sometimes we’ll use that a graph is k-degenerate for a particular value of k, even if it’s not the smallest number possible.

But you can also compute the degeneracy number by this algorithm! It’s

$$\max \{ d_i : i = 1, \ldots, n \}.$$
Degenerate graphs

Theorem: Every k-degenerate graph has $\chi(G) \leq k + 1$.

![Diagram](image)

Proof: We’ll show G can be colored with $k + 1$ colors.

- Form the order v_1, \ldots, v_n just described.
- Color vertices in reverse order v_n, \ldots, v_1:
 - When considering v_i, at most k of its neighbors (among v_{i+1}, \ldots, v_n) have been colored, so at least one color remains out of $k + 1$ colors.
 - Assign the smallest available color to v_i.
 - This gives a proper $(k + 1)$-coloring of G.
While we have bounds on $\chi(G)$ and can compute it in special cases, computing it for an arbitrary graph is NP-hard.
Scheduling Problem
Students want to take certain classes, shown in the table above.

How can we schedule the classes in so that students can take all the classes on their wishlist without any conflicts?

We could schedule them at 5 different times. How about fewer?

<table>
<thead>
<tr>
<th>Student</th>
<th>Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1,2,4</td>
</tr>
<tr>
<td>b</td>
<td>2,3,5</td>
</tr>
<tr>
<td>c</td>
<td>3,4</td>
</tr>
<tr>
<td>d</td>
<td>1,5</td>
</tr>
</tbody>
</table>
Make an *interference graph*:

- **Vertices**: One vertex for each class.
- **Edges**: Add edge uv if classes u and v *interfere* (a student wants to take both of them).
- Any proper coloring of the graph gives a schedule w/o anyone having a conflict (colors correspond to time slots).
- Find a solution with a minimum number of colors (to minimize the number of time slots).
Above is a proper coloring with the minimum number of colors (denoted x, y, z).

- 9am (color x): Classes 1 and 3
- 10am (color y): Class 2
- 11am (color z): Classes 4 and 5
Scheduling Problem:
Register allocation in compilers
Register allocation in compilers

- A *compiler* translates a high level programming language (C, C++, ...) to assembly language for a particular CPU instruction set architecture (like x86, AMD, etc.).

- C/C++ instruction `n++` compiled for an x86_64 processor:

  ```
  movl -20(%rbp), %eax  # copy n from RAM to register %eax
  addl $1, %eax         # add 1 to register %eax
  movl %eax, -20(%rbp)  # copy result back to n in RAM
  ```

- A C/C++ program may have 1000s of variables, stored in memory (RAM), and you choose their names.

- A CPU has a very small number of *registers*: special variables stored in the CPU with fixed names.
 - x86_64 CPUs (on many laptops in the last decade) have 8 general purpose registers in 32-bit mode / 16 in 64-bit mode.

- C/C++ variables are copied from RAM to a CPU register for arithmetic, comparisons, ... and back to RAM if needed.
Register allocation in compilers

Code

\[
\begin{align*}
w &= \\
x &= \\
\text{FOO}(x) \\
y &= \\
\text{BAR}(w,y) \\
z &= \\
\text{BAZ}(y,z)
\end{align*}
\]

• The code above has four variables, \(w, x, y, z\).
Register allocation in compilers

<table>
<thead>
<tr>
<th>Code</th>
<th>Variable duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>w = ...</td>
<td>w</td>
</tr>
<tr>
<td>x = ...</td>
<td>x</td>
</tr>
<tr>
<td>FOO(x)</td>
<td>y</td>
</tr>
<tr>
<td>y = ...</td>
<td>z</td>
</tr>
<tr>
<td>BAR(w,y)</td>
<td></td>
</tr>
<tr>
<td>z = ...</td>
<td></td>
</tr>
<tr>
<td>BAZ(y,z)</td>
<td></td>
</tr>
</tbody>
</table>

- Determine duration of each variable’s use.
Make an interference graph with vertices = variables, and an edge between variables in use at the same time.

Find a proper coloring of the graph (ideally with a min # colors).
Assign variables to registers based on the coloring; here, R1 (white) and R2 (black).

R1 and R2 represent different variables at different times.