Math 180A, Fall 2005, Prof. Tesler - October 26, 2005
 Normal distribution and long-term averages or sums

1. Mean and standard deviation of sums or averages of i.i.d. variables

Let X be a random variable with $\mu=E(X)$ and $\sigma=\mathrm{SD}(X)$. Let X_{1}, \ldots, X_{n} be n i.i.d. (independent identically distributed) random variables with the distribution of X.

Let $S_{n}=X_{1}+\cdots+X_{n}$ be their sum and $\bar{X}_{n}=\left(X_{1}+\cdots+X_{n}\right) / n=S_{n} / n$ be their average. Then

Sums	Averages
$E\left(S_{n}\right)=E\left(X_{1}\right)+\cdots+E\left(X_{n}\right)=n E\left(X_{1}\right)=n \mu$	$E\left(\bar{X}_{n}\right)=\mu$
$\operatorname{Var}\left(S_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)=n \operatorname{Var}\left(X_{1}\right)=n \sigma^{2}$	$\operatorname{Var}\left(\bar{X}_{n}\right)=\sigma^{2} / n$
$\mathrm{SD}\left(S_{n}\right)=\sigma \sqrt{n}$	$\mathrm{SD}\left(\bar{X}_{n}\right)=\sigma / \sqrt{n}$

To reduce confusion between the different types of standard deviation, we sometimes say "the standard error (SE) of the sum is $\sigma \sqrt{n}$ " and "the standard error (SE) of the average is σ / \sqrt{n}."

2. Limit theorems

When n is large enough, the sum or average of n i.i.d. random variables (for any distribution) closely resembles the normal curve! The details depend on the specific distribution. The proofs of the first 3 results below are in the book, and the 4 th is beyond the scope of the book (but Chap. 2.3 has some details).
(1) Markov's inequality (p. 174): If $X \geq 0$ then $P(X \geq a) \leq E(X) / a$ for every $a>0$.
(a) Example: The average of three nonnegative numbers is 10 . What's the largest that any of them could be? Set two of them to 0 and the third one to 30 .
(b) Redo (a) if a weighted average were used instead of a regular average. Then you can make two numbers be 0 , with combined probability $1-p$ (some $0 \leq p \leq 1$), and set the third number to $30 / p$ with probability p. The third number can be as high as you want, at the expense of reducing its probability.
(c) Instead of just 3 numbers, consider all distributions with $X \geq 0$ and $E(X)=30$. How large can $P(X \geq 200)$ be?

$$
\begin{aligned}
E(X) & =\sum_{0 \leq x<200} x P(X=x)+\sum_{x \geq 200} x P(X=x) \\
& \geq \sum_{0 \leq x<200} 0 P(X=x)+\sum_{x \geq 200} 200 P(X=x) \geq 200 P(X \geq 200)
\end{aligned}
$$

so $P(X \geq 200) \leq E(X) / 200=30 / 200=0.15$.
(2) The Law of Large Numbers (called "The Law of Averages" in our book, p. 195): Define \bar{X}_{n} as above. For any $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} P\left(\left|\bar{X}_{n}-\mu\right|<\epsilon\right)=1
$$

Interpretation: For either example on the back, pick a narrow interval of real numbers centered around the mean. For example, for the die, pick $(3,4)$ or $(3.4,3.6)$ or $(3.49,3.51)$ (corresponding to $\epsilon=1,0.1,0.01)$. As n increases, notice the probability of the average being in that interval increases towards 1 .
(3) Chebyshev's inequality (p. 191): For any random variable X and any (real) $k>0$,

$$
P(|X-E(X)| \geq k \mathrm{SD}(X)) \leq \frac{1}{k^{2}}
$$

Or, in terms of the z-score $Z=(X-E(X)) / \mathrm{SD}(X)=(X-\mu) / \sigma$,

$$
P(|Z| \geq k) \leq \frac{1}{k^{2}} \quad \text { so, } P(|Z| \leq k) \geq 1-\frac{1}{k^{2}}
$$

So for any random variable, the probability of being between $\mu \pm \sigma$ is at least $1-1 / 1^{2}=0$; being within $\mu \pm 2 \sigma$ is at least $1-1 / 2^{2}=0.75$; being within $\mu \pm 3 \sigma$ is at least $1-1 / 3^{2} \approx 0.88$; etc.
(4) Central Limit Theorem (p. 196): For n i.i.d. random variables with sum S_{n} and average \bar{X}_{n} as defined above, and any real numbers $a<b$,

$$
P\left(a \leq \frac{S_{n}-n \mu}{\sigma \sqrt{n}} \leq b\right)=P\left(a \leq \frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \leq b\right) \approx \Phi(b)-\Phi(a)
$$

As $n \rightarrow \infty$, the approximation becomes exact equality.
Interpretation: Notice in the two examples on the back, that as n increases, the pdf more and more closely resembles the normal curve. The mean of \bar{X}_{n} stays the same as for X, while the standard deviation shrinks by the formula $\mathrm{SD}\left(\bar{X}_{n}\right)=\mathrm{SD}(X) / \sqrt{n}$.

Repeated rolls of a die

$$
\text { Initial distribution } \mu=3.5, \sigma=\sqrt{35 / 12} \approx 1.71
$$

$$
\text { Average of } 1 \text { roll of die }
$$

Repeated trials of "sawtooth" distribution
Initial distribution $\mu=4, \sigma \approx 2.24$

