
Math 180A, Fall 2005, Prof. Tesler – October 31, 2005
Poisson distribution

Collect rainfall for 1 second on a flat surface. Suppose the average density is λ (in drops per cm2)
and we are interested in a particular region of area A. What is the probability of exactly k drops
in this region? Let X = 0, 1, 2, . . . be a random variable giving the number of drops in this region.

Method using the binomial distribution: Divide the region into n equal cells. If n is large
enough, we can assume that the probability of two or more raindrops hitting the same cell is
essentially 0. (The drawing shows n = 90, which apparently is not large enough.) An “event” at a
cell is a raindrop hitting the cell. We also assume that the events at each cell occur independently
of other cells, with equal probability in each cell. X gives the total number of cells with hits, and
follows a binomial distribution with mean µ = λA = np so p = λA/n = µ/n:
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Suppose that in a very large area, we determine an average intensity λ = 0.01 mm−2. Then we
consider a portion of that region with area A = 123 mm2. The expected number of raindrops in
that area is µ = λ A = (.01 mm−2)(123 mm2) = 1.23 (a pure number with no units). What is
P (X = 3)? We don’t know what to pick for n, but as this table shows, the first several digits
stabilize as n increases:

# cells Probability per cell Binomial pdf at k = 3
n p = µ/n P (X = k) =

(
n
k

)
pk(1 − p)n−k

101 1.23 · 10−1 0.08910328876
102 1.23 · 10−2 0.09058485007
103 1.23 · 10−3 0.09064683438
104 1.23 · 10−4 0.09065233222
105 1.23 · 10−5 0.09065287510
106 1.23 · 10−6 0.09065292933
107 1.23 · 10−7 0.09065293476
108 1.23 · 10−8 0.09065293534

Method using the Poisson limit: The Poisson parameter is µ = λ A = 1.23. Under the Poisson
distribution,

P (X = k) =
e−µµk

k!
P (X = 3) =

e−1.23(1.23)3

3!
= 0.09065293537

This is a limit of the binomial distribution as used in the first method (chapter 2.4).
The probabilities in the first method converge to this value as n → ∞. Even when n = 10, they

are within 2% of each other.



Probabilities of various counts:
For a region of area A = 123 mm2 and average intensity λ = 0.01 mm−2, the Poisson parameter

is µ = λA = 1.23. This table shows the probability of k events. If we look at 100 separate regions
with this area, the expected number of them with exactly k events would be 100P (X = k):

# events Theoretical proportion (pdf) Theoretical frequency

k P (X = k) =
e−1.23(1.23)k

k!
100P (X = k)

0 .2922925777 29.2292577
1 .3595198706 35.95198706
2 .2211047204 22.11047204
3 .09065293537 9.065293537
4 .02787577763 2.787577763
5 .006857441295 0.6857441295
6 .001405775465 0.1405775465
7 .0002470148317 0.02470148317
· · · · · · · · ·

Determining the Poisson parameter from data. Suppose that rainfall is steady at unknown
intensity λ. Do 100 separate trials in which the number of drops in a 10 mm2 region in 1 second is
measured. (It could be the same region at 100 separate times, or 100 separate regions.) Estimate
the Poisson parameter and the intensity λ.

Observed frequency Observed proportion # events accounted for
k # trials with k events frequency/# trials k · (# trials with k events)

0 64 0.64 0
1 29 0.29 29
2 6 0.06 12
3 1 0.01 3

total 100 1.00 44

The total number of events that occurred among all 100 trials is 0(64)+1(29)+2(6)+3(1) = 44 so
the average number of events per trial is 44/100 = 0.44, which we use as an estimate of the Poisson
parameter µ. Since µ = λ A, the average intensity is λ = µ/A = 0.44/(10 mm2) = 0.044 mm−2 (per
second). Check: µ = λ A = 0.44 gives the table

Theoretical proportion (pdf) Theoretical frequency

k P (X = k) =
e−0.44(0.44)k

k!
100P (X = k)

0 .6440364211 64.40364211
1 .2833760253 28.33760253
2 .06234272555 6.234272555
3 .009143599749 .9143599749
4 .001005795973 .1005795973
5 .00008851004558 .008851004558
· · · · · · · · ·

and the entries in the “theoretical frequency” column are close to the corresponding values in the
“observed frequency” column in the previous table.

For some other values not directly in this table: P (X = 1.5) = 0 and P (X = −2) = 0 (not non-
negative integers); P (X ≥ 3) = 1 − P (X = 0) − P (X = 1) − P (X = 2) = .010244821; theoretical
frequency of X ≥ 3 is 100 · P (X ≥ 3) = 1.0244821.


