Math 186, Winter 2005, Prof. Tesler – January 21, 2005 Binomial distribution

Here are the tabulated values and graphs of the discrete probability density function (pdf) and cumulative distribution function (cdf) for the binomial distribution with parameters n = 10 and p = .75.

$$p_X(k) = P(X = k) = \begin{cases} \binom{10}{k} (.75)^k (.25)^{n-k} & \text{if } k = 0, 1, \dots, 10; \\ 0 & \text{otherwise.} \end{cases}$$
$$F_X(k) = P(X \le k) = \begin{cases} 0 & \text{if } k < 0; \\ \sum_{r=0}^{\lfloor k \rfloor} \binom{10}{r} (.75)^r (.25)^{n-r} & \text{if } 0 \le k \le 10; \\ 1 & \text{if } k > 10. \end{cases}$$

Note: $\lfloor x \rfloor$ is the "floor" function (greatest integer $\leq x$), which you may have seen written [x] elsewhere: any real number x can be written uniquely as $x = m + \delta$, where m is an integer and δ is a real number with $0 \leq \delta < 1$, and the floor of x is defined as $\lfloor x \rfloor = m$. For example, $\lfloor 3 \rfloor = 3$, $\lfloor -3 \rfloor = -3$, $\lfloor 3.2 \rfloor = 3$, $\lfloor -3.2 \rfloor = -4$.

		pdf	•			cdf	
	k	$p_X(k$	c)			$F_X(k)$	
					k < 0	0	
	0	0.00000	095	0	$\leq k < 1$	0.000000	95
	1 0.00002861			$1 \le k < 2$		0.00002956	
	2 0.00038624			$2 \le k < 3$		0.00041580	
	3 0.00308990			$3 \le k < 4$		0.00350571	
	4 0.01622200			$4 \le k < 5$		0.01972771	
	5	0.05839	9920	5	$\leq k < 6$	0.0781269	91
	6	0.14599	9800	6	$\leq k < 7$	0.2241249	91
	7 0.25028229			$7 \le k < 8$		0.47440720	
	8 0.28156757			$8 \le k < 9$		0.75597477	
	9 0.18771172			$9 \le k < 10$		0.94368649	
	10 0.05631351			$10 \le k$		1.00000000	
0	ther	0					
Discrete probability density function				Cumulative distribution function			
1-				1		•	•
0.8				0.8			
0.0				0.0		••	
0.6				_ 0.6			
				×)×		•	
0.4				0 .4			
		1	1			•	
0.2		I		0.2			
0				- 0		—	
Ŭ 0		5 k	10	0	0	5 k	10

Sample uses of tables:

p_X(k)

An alternate way to compute these is to take advantage of the discrete values being integers; instead of using " a^{-} " we can go down to a - 1: $P(X < 6) = P(X \le 5) = F_X(5) = 0.07812691$.