Here are the tabulated values and graphs of the discrete probability density function (pdf) and cumulative distribution function (cdf) for the binomial distribution with parameters $n=10$ and $p=.75$.

$$
\begin{gathered}
p_{X}(k)=P(X=k)= \begin{cases}\binom{10}{k}(.75)^{k}(.25)^{n-k} & \text { if } k=0,1, \ldots, 10 \\
0 & \text { otherwise }\end{cases} \\
F_{X}(k)=P(X \leq k)= \begin{cases}0 & \text { if } k<0 \\
\sum_{r=0}^{\lfloor k\rfloor}\binom{10}{r}(.75)^{r}(.25)^{n-r} & \text { if } 0 \leq k \leq 10 \\
1 & \text { if } k \geq 10\end{cases}
\end{gathered}
$$

Note: $\lfloor x\rfloor$ is the "floor" function (greatest integer $\leq x$), which you may have seen written $[x]$ elsewhere: any real number x can be written uniquely as $x=m+\delta$, where m is an integer and δ is a real number with $0 \leq \delta<1$, and the floor of x is defined as $\lfloor x\rfloor=m$. For example, $\lfloor 3\rfloor=3,\lfloor-3\rfloor=-3,\lfloor 3.2\rfloor=3,\lfloor-3.2\rfloor=-4$.

pdf k			
		cdf $p_{X}(k)$	
0	0.00000095	$k<0$	0
1	0.00002861	$0 \leq k<1$	0.00000095
2	0.00038624	$2 \leq k<2$	0.00002956
3	0.00308990	$3 \leq k<4$	0.00041580
4	0.01622200	$4 \leq k<5$	0.00350571
5	0.05839920	$5 \leq k<6$	0.01972771
6	0.14599800	$6 \leq k<7$	0.22412691
7	0.25028229	$7 \leq k<8$	0.47440720
8	0.28156757	$8 \leq k<9$	0.75597477
9	0.18771172	$9 \leq k<10$	0.94368649
10	0.05631351	$10 \leq k$	1.00000000
other	0		

Sample uses of tables:

$$
\begin{array}{rll}
P(X \leq-3.2) & =0 \\
P(X \leq 12.8) & =1 & \\
P(X \leq 6.5) & =F_{X}(6.5)=0.22412491 & P(X=6.5)=p_{X}(6.5)=0 \\
P(X \leq 6) & =F_{X}(6)=0.22412491 & P(X=6)=p_{X}(6)=0.14599800 \\
P(X<6) & =F_{X}\left(6^{-}\right)=0.07812691 & \left.\quad \text { Convert } P(X<a) \text { into " } P\left(X \leq a^{-}\right) "=F_{X}\left(a^{-}\right)\right) \\
P(X>6) & =1-P(X \leq 6)=1-F_{X}(6)=1-0.22412491=0.77587508 \\
& & \\
& & \\
P(4<X \leq 8) & =P(X \leq 8)-P(X \leq 4) & \text { Note: } X \leq 4 \text { is contained in the event } X \leq 8) \\
& =F_{X}(8)-F_{X}(4)=0.75597477-0.01972771=0.55869767 \\
P(4 \leq X \leq 8) & =" P\left(4^{-}<X \leq 8\right) "=F_{X}(8)-F_{X}\left(4^{-}\right)=0.75597477-0.00350571=0.75246906 \\
P(4<X<8) & =" P\left(4<X \leq 8^{-}\right) "=F_{X}\left(8^{-}\right)-F_{X}(4)=.47440720-0.01972771=.45467949 \\
P(4 \leq X<8) & =" P\left(4^{-}<X \leq 8^{-}\right) "=F_{X}\left(8^{-}\right)-F_{X}\left(4^{-}\right) \\
& =0.47440720-0.00350571=0.47090149
\end{array}
$$

An alternate way to compute these is to take advantage of the discrete values being integers; instead of using " a^{-}" we can go down to $a-1$: $P(X<6)=P(X \leq 5)=F_{X}(5)=0.07812691$.

