You can try this at home: http://www.ruf.rice.edu/~1ane/stat_sim/normal_approx/index.html

k	$P(X=k)=\binom{60}{k}(.75)^{k}(.25)^{60-k}$
43	0.09562
44	0.11083
45	0.11822
46	0.11565
47	0.10335
48	0.08397
49	0.06169
50	0.04071
51	0.02395
total	$\mathbf{0 . 7 5 4 0 4}$

(a) The binomial distribution for $n=60, p=3 / 4$, is shown as vertical lines.

The mean is $\mu=n p=60(3 / 4)=45$. In this case it's an integer, but it doesn't have to be.
The standard deviation is $\sigma=\sqrt{n p(1-p)}=\sqrt{60(3 / 4)(1 / 4)}=\sqrt{11.25} \approx 3.354101966$.
The mode is $\lfloor n p+p\rfloor=\lfloor 60(3 / 4)+(3 / 4)\rfloor=\left\lfloor 45 \frac{3}{4}\right\rfloor=45$. It only agrees with the mean because the mean is an integer. Notice that the mode has the largest probability density: $P(X=45)=\binom{60}{45}(.75)^{45}(.25)^{15} \approx$ 0.1182280046 . Although this is the largest density, it is not even close to 1 . Also, note that this applet only shows the x-axis betwen 34 and 56 , even though X takes on integer values between 0 and 60 . This is because the probabilities outside the range shown are very small; they are still positive, but on this scale you would not be able to tell that they are not zero.

We can compute $P(43 \leq X \leq 51)$ for the binomial distribution by adding up $P(X=43)+P(X=$ 44) $+\cdots+P(X=51) \approx 0.75404$; see the table at top right.
(b) The normal distribution for those same values of μ and $\sigma(\mu=45, \sigma=\sqrt{11.25})$ is shown as a smooth curve with a bell shape. Notice that at integer values of X, the binomial distribution and the normal distribution are nearly the same.

Let's approximate the probability $P(43 \leq X \leq 51)$ we had above by the corresponding one for the normal distribution.
(i) Apply the "continuity correction": the binomial distribution is discrete (inputs are integers) but the normal distribution is continuous. Use $P(43 \leq X \leq 51)=P(42.5 \leq X \leq 51.5)$ for the binomial distribution. There were 9 terms added together in (a), and here, we get $51.5-42.5=9$. The integral under the normal curve from 42.5 to 51.5 could be approximated as summing 9 rectangles of width 1 , centered at $43, \ldots, 51$.
(ii) Convert to z-scores: $z=\frac{x-\mu}{\sigma}=\frac{x-n p}{\sqrt{n p(1-p)}}=\frac{x-45}{\sqrt{11.25}}$

$$
\begin{aligned}
P(42.5 \leq X \leq 51.5) & =P\left(\frac{42.5-n p}{\sqrt{n p(1-p)}} \leq \frac{X-n p}{\sqrt{n p(1-p)}} \leq \frac{51.5-n p}{\sqrt{n p(1-p)}}\right) \\
& =P\left(\frac{42.5-45}{\sqrt{11.25}} \leq Z \leq \frac{51.5-45}{\sqrt{11.25}}\right)=P(-.7453559926 \leq Z \leq 1.937925581)
\end{aligned}
$$

(iii) Approximate this by the standard normal distribution:

$$
P(-.7453559926 \leq Z \leq 1.937925581) \approx \Phi(1.937925581)-\Phi(-.7453559926)
$$

(iv) Look in the table in the book on page 531; it only has z 's to two decimal places, so round them: $\Phi(1.94)=$ 0.9738 and $\Phi(-0.75)=1-\Phi(0.75)=1-0.7734=0.2266$. Then $\Phi(1.937925581)-\Phi(-.7453559926) \approx$ 0.7472 .

If you use a calculator or software that can compute $\Phi(z)$ more accurately than the table in the book, you will get

$$
\Phi(1.937925581)-\Phi(-.7453559926)=0.9736838487-0.2280282702=0.7456555785
$$

