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12.1–12.2. Planar graphs

Definition
A planar embedding of a graph is a drawing of the graph in the
plane without edges crossing.
A graph is planar if a planar embedding of it exists.

Consider two drawings of the graph K4:
V = {1, 2, 3, 4} E =

{
{1, 2} , {1, 3} , {1, 4} , {2, 3} , {2, 4} , {3, 4}

}

Planar embedding
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Non−planar embedding

The abstract graph K4 is planar because it can be drawn in the
plane without crossing edges.
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How about K5?

Both of these drawings of K5 have crossing edges.
We will develop methods to prove that K5 is not a planar graph,
and to characterize what graphs are planar.
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Euler’s formula for planar graphs

Euler’s Theorem on Planar Graphs
Let G be a connected planar graph (drawn without crossing edges).
Define V = number of vertices

E = number of edges
F = number of faces, including the “infinite” face

Then V − E + F = 2.
Note: this notation conflicts with standard graph theory notation
V = set of vertices, E = set of edges.

Example

face 3

face 4 (infinite face)
face 1

face 2

V = 4
E = 6
F = 4

V −E +F = 4− 6+ 4 = 2
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Euler’s formula for planar graphs

V = 10

E = 15

F = 7

V − E + F = 10 − 15 + 7 = 2
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Spanning tree

A spanning tree of a connected graph is a subgraph that’s a tree
reaching all vertices. An example is highlighted in red.

We previously saw we could obtain a spanning tree of any
connected graph by repeatedly picking any cycle and removing an
edge, until there are no cycles remaining.
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Proof of Euler’s formula for planar graphs

4−3+1 = 2V−E+F = 4−6+4 = 2 4−5+3 = 2 4−4+2 = 2

We will do a proof by induction on the number of edges.

Motivation for the proof:
Keep removing one edge at a time from the graph while keeping it
connected, until we obtain a spanning tree.
When we delete an edge:

V is unchanged.
E goes down by 1.
F also goes down by 1 since two faces are joined into one.
V − E + F is unchanged.

When we end at a tree, E = V − 1 and F = 1, so V − E + F = 2.
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Proof of Euler’s formula for planar graphs

Let G be a connected graph on n vertices, drawn without crossing
edges. We will induct on the number of edges.

Base case: The smallest possible number of edges in a connected
graph on n vertices is n − 1, in which case the graph is a tree:

V = n

E = n − 1

F = 1 (no cycles, so the only face is the infinite face)

V − E + F = n − (n − 1) + 1 = 2
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Proof of Euler’s formula for planar graphs

Induction step:
Let G be a connected planar graph on n vertices and k edges,
drawn without edge crossings.
The base case was k = n − 1. Now consider k > n.
Assume Euler’s formula holds for connected graphs with n vertices
and k − 1 edges.
Remove an edge from any cycle to get a connected subgraph G ′.
G ′ has V ′ vertices, E ′ edges, and F ′ faces:

V ′ = V = n
E ′ = E − 1 = k − 1 since we removed one edge.
F ′ = F − 1 since the faces on the two sides of the removed edge
were different but have been merged together.

Since E ′ = k − 1, by induction, G ′ satisfies V ′ − E ′ + F ′ = 2.
Observe that V ′ − E ′ + F ′ = V − (E − 1) + (F − 1) = V − E + F,
so V − E + F = 2 also.
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Graph on a sphere

Consider a graph drawn on a sphere.
Poke a hole inside a face, stretch it out from the hole and flatten it
onto the plane. (Demo)
The face with the hole becomes the outside or infinite face, while
all the other faces are distorted but remain finite.
If a connected graph can be drawn on a surface of a sphere
without edges crossing, it’s a planar graph.
The values of V, E, F are the same whether it’s drawn on a plane
or the surface of a sphere, so V − E + F = 2 still applies.
Figure: http://en.wikipedia.org/wiki/File:Lambert_azimuthal_equal-area_projection_SW.jpg
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3D polyhedra w/o holes are topologically equivalent to spheres

3

5

2

1

4

1

3

24

5

Pyramid with a square or rectangular base:

Poke a pinhole in the base of the pyramid (left).
Stretch it out and flatten it into a planar embedding (right).
The pyramid base (left) corresponds to the infinite face (right).

Euler’s formula (and other formulas we’ll derive for planar
embeddings) apply to polyhedra without holes.

V = 5, E = 8, F = 5, V − E + F = 5 − 8 + 5 = 2
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Convex polyhedra

(not convex)
Sphere Indented sphere

(convex)

A shape in 2D or 3D is convex when the line connecting any two
points in it is completely contained in the shape.
A sphere is convex. An indented sphere is not (red line above).
But we can deform the indented sphere to an ordinary sphere, so
the graphs that can be drawn on their surfaces are the same.
Convex polyhedra are a special case of 3D polyhedra w/o holes.
The book presents results about graphs on convex polyhedra;
more generally, they also apply to 3D polyhedra without holes.
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Beyond spheres – graphs on solids with holes

A torus is a donut shape.
It is not topologically equivalent to a sphere, due to a hole.

Consider a graph drawn on a torus without crossing edges.

Transforming a sphere to a torus requires cutting, stretching, and
pasting. Edges on the torus through the cut can’t be drawn there
on the sphere. When redrawn on the sphere, they may cross.

So, there may be graphs that can be drawn on the surface of a
torus without crossing edges, but which cannot be drawn on the
surface of a sphere without crossing edges.
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Beyond spheres – graphs on solids with holes

An m× n grid on a torus has
V = mn, E = 2mn, F = mn

V − E + F = mn − 2mn + mn = 0

Theorem: for a connected graph on a g-holed torus,
V − E + F = 2(1 − g). (g = 0 for sphere, 1 for donut, etc.)
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More relations on V, E, F in planar graphs

Prof. Tesler Ch. 12: Planar Graphs Math 184A / Winter 2019 15 / 46



Face degrees

A CB

A1

A7

A6

A5

A4

A3

A2

B1

B2

B3

B4

B5
B6

C5

C1

C2 C3

C4

Face degrees
Trace around a face, counting each encounter with an edge.

Face A, has edge encounters A1 through A7, giving deg A = 7.

Face B has edge encounters B1 through B6, including two
encounters with one edge (B5 and B6). So deg B = 6.

deg C = 5.

Prof. Tesler Ch. 12: Planar Graphs Math 184A / Winter 2019 16 / 46



Face degrees

A CB

A1

A7

A6

A5

A4

A3

A2

B1

B2

B3

B4

B5
B6

C5

C1

C2 C3

C4

Total degrees
The sum of the face degrees is 2E, since each edge is
encountered twice:

S = deg A + deg B + deg C = 7 + 6 + 5 = 18
2E = 2(9) = 18

The sum of the vertex degrees is 2E for all graphs.
Going clockwise from the upper left corner, we have

3 + 3 + 2 + 2 + 2 + 3 + 2 + 1 = 18.
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Face degrees

Face degree 0

Empty graph One edge graph

Face degree 2

Face degree 1

Multigraph

Face degree 2

Faces usually have at least 3 sides, but it is possible to have fewer.

In a simple (no loops, no multiedges) connected graph with at
least three vertices, these cases don’t arise, so all faces have face
degree at least 3.

Thus, the sum of the face degrees is S > 3F, so 2E > 3F.

In a bipartite graph, all cycles have even length, so all faces have
even degree. Adding bipartite to the above conditions, each face
has at least 4 sides. Thus, 2E > 4F, which simplifies to E > 2F.
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Inequalities between V, E, F

Theorem
In a connected graph drawn in the plane without crossing edges:

1 V − E + F = 2

2 Additionally, if G is simple (no multiedges) and if V > 3, then
(a) 3F 6 2E (b) E 6 3V − 6 (c) F 6 2V − 4

3 If G is simple and bipartite, these bounds improve to
(a) 2F 6 E (b) E 6 2V − 4 (c) F 6 V − 2

Part 1 is Euler’s formula. We just showed 2(a) and 3(a).
We will prove the other parts, and use them to prove certain
graphs are not planar.
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Inequalities between V, E, F
(a) 3F 6 2E (b) E 6 3V − 6 (c) F 6 2V − 4

Let G be a connected simple graph
with V > 3, drawn in the plane without crossing edges.

(a) So far, we showed V − E + F = 2 and (a) 3F 6 2E.

(b) Thus, F 6 2E/3 and
2 = V − E + F 6 V − E + (2E/3) = V − E/3

so 2 6 V − E/3, or E 6 3V − 6, which is (b).

(c) 3F 6 2E also gives E > 3F/2 and
2 = V − E + F 6 V − (3F/2) + F = V − F/2

so 2 6 V − F/2, or F 6 2V − 4, which is (c).
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Inequalities between V, E, F for a simple bipartite graph
(a) 2F 6 E (b) E 6 2V − 4 (c) F 6 V − 2

Let G be a connected simple bipartite graph
with V > 3, drawn in the plane without crossing edges.

(a) For this case, we showed V − E + F = 2 and (a) 2F 6 E.

(b) Thus, F 6 E/2 and
2 = V − E + F 6 V − E + (E/2) = V − E/2

so 2 6 V − E/2, or E 6 2V − 4, which is (b).

(c) 2F 6 E also gives
2 = V − E + F 6 V − 2F + F = V − F

so 2 6 V − F, or F 6 V − 2, which is (c).
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Characterizing planar graphs

Prof. Tesler Ch. 12: Planar Graphs Math 184A / Winter 2019 22 / 46



Complete bipartite graph Km,n

4,2K

The complete bipartite graph Km,n has
Vertices V = A ∪ B where |A| = m and |B| = n, and A ∩ B = ∅.
Edges E =

{
{a, b} : a ∈ A and b ∈ B

}
All possible edges with one vertex in A and the other in B.
In total, m + n vertices and mn edges.
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K5 and K3,3 are not planar

5
K3,3K

K5 is not planar
V = 5

E =
(5

2

)
= 10

This violates E 6 3V − 6 since 3V − 6 = 15 − 6 = 9 and 10 66 9.

K3,3 is not planar
V = 6

E = 3 · 3 = 9

This is a bipartite graph, so if it has a planar embedding, it
satisfies E 6 2V − 4.
However, 2V − 4 = 2(6) − 4 = 8, and 9 66 8.
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Homeomorphisms (a.k.a. edge equivalency)

A

V

B

A

B

Suppose that we can turn graph G into graph H by repeatedly
applying these two operations:

Split an edge AB into two edges AV and VB by adding a vertex V
somewhere in the middle (not incident with any other edge).
Let V be a vertex of degree 2.
Replace two edges AV and VB by one edge AB and delete vertex V.

Then G and H are homeomorphic (a.k.a. edge equivalent).
The left graph is homeomorphic to K5 (on the right):

Apply the 2nd operation above to every black vertex to get K5.
Repeatedly apply the 1st operation to K5 to get the left graph.
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Characterizing planar graphs

1

2 3

4

5

Theorem (Kuratowski’s Theorem)
G is planar iff it does not have a subgraph homeomorphic to K5 or K3,3.

Necessity: If G is planar, so is every subgraph. But if G has a
subgraph homeomorphic to K5 or K3,3, the subgraph is not planar.
Sufficiency: The proof is too advanced.
The graph shown above has a subgraph (shown in red)
homeomorphic to K5, and thus, it is not a planar graph.
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More properties of planar graphs
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Possible degrees in a planar graph

Theorem
A connected, simple, planar graph has a vertex with degree at most 5.

Proof:
The sum of vertex degrees in any graph equals 2E.

Assume by way of contradiction that all vertices have degree > 6.
Then the sum of vertex degrees is > 6V.

So 2E > 6V, so E > 3V.

This contradicts E 6 3V − 6, so some vertex has degree 6 5.
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Dual graph

(c) Dual graph H(a) Graph G (b) Constructing dual graph

Start with a planar embedding of a graph G (shown in black).
Draw a red vertex inside each face, including the “infinite face.”
For every edge e of G:

Let a, b be the red vertices in the faces on the two sides of e.
Draw a red edge {a, b} crossing e.

Remove the original graph G to obtain the red graph H.
H is a dual graph of G. (It is “a” dual graph instead of “the” dual
graph, since it may depend on how G is drawn.)
If G is connected, then G is also a dual graph of H — just switch
the roles of the colors!
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Dual graph

(c) Dual graph H(a) Graph G (b) Constructing dual graph

G H
V 8 6
E 12 12
F 6 8

G and H have the same number of edges:
Each edge of G crosses exactly one edge of H and vice-versa.

# faces of G = # vertices of H and
# faces of H = # vertices of G:

Bijections: vertices of either graph↔ faces of the other.
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12.2. Classifying regular polyhedra
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Classifying regular polyhedra

Tetrahedron Cube Octahedron

A polyhedron is a 3D solid whose surface consists of polygons.
As a graph, no loops and no multiple edges.
All faces have > 3 edges and all vertices are in > 3 edges.
To be 3D, there must be > 4 vertices, > 4 faces, and > 6 edges.
A regular polyhedron has these symmetries:

All faces are regular `-gons for the same ` > 3.
All vertices have the same degree (r > 3).
All edges have the same length.
All pairs of adjacent faces have the same angle between them.
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Classifying regular polyhedra

Suppose all vertices have the same degree r > 3
and all faces are `-gons (same ` > 3 for all faces).

The sum of vertex degrees is r · V = 2E, so V = 2E/r.

The sum of face degrees is ` · F = 2E, so F = 2E/`.

Plug these into V − E + F = 2:

2E
r

− E +
2E
`

= 2 E ·
(

2
r
− 1 +

2
`

)
= 2 E =

2
2
r +

2
` − 1

We have to find all integers r, ` > 3 for which V, E, F are positive
integers, and then check if polyhedra with those parameters exist.
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Classifying regular polyhedra

Suppose all vertices have the same degree r > 3
and all faces are `-gons (same ` > 3 for all faces).

Compute (V, E, F) using E = 2
2
r +

2
`−1

, V = 2E
r , F = 2E

` :

E.g., r = 3 and ` = 4 gives

E =
2

2
3 + 2

4 − 1
=

2
1/6

= 12

V = 2(12)/3 = 8

F = 2(12)/4 = 6

What shape is it?
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Classifying regular polyhedra
What range of vertex degree (r) and face degree (`) are permitted?

First method
We have r > 3.
Since some vertex has degree 6 5, all do, so r is 3, 4, or 5.
Vertices and faces are swapped in the dual graph, so ` is 3,4, or 5.

Second method: analyze formula of E
E is a positive integer, so its denominator must be positive:

2
r +

2
` − 1 > 0

We have r, ` > 3.
If both r, ` > 4, the denominator of E is 6 2

4 + 2
4 − 1 = 0, which is

invalid. So r and/or ` is 3.
If r = 3, then the denominator of E is 2

3 + 2
` − 1 = 2

` −
1
3 .

To be positive requires ` 6 5.
Similarly, if ` = 3 then r 6 5.
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Classifying regular polyhedra

Suppose all vertices have the same degree r ∈ {3, 4, 5}
and all faces are `-gons (same ` ∈ {3, 4, 5} for all faces).

Compute (V, E, F) using E = 2
2
r +

2
`−1

, V = 2E
r , F = 2E

` :

(V, E, F) ` = 3 ` = 4 ` = 5
r = 3 (4, 6, 4) (8, 12, 6) (20, 30, 12)
r = 4 (6, 12, 8) Division by 0 (−10,−20,−8)
r = 5 (12, 30, 20) (−8,−20,−10) (−4,−10,−4)

If V, E, F are not all positive integers, it can’t work (shown in pink).

We found five possible values of (V, E, F) with graph theory.
Use geometry to actually find the shapes (if they exist).

Prof. Tesler Ch. 12: Planar Graphs Math 184A / Winter 2019 36 / 46



Classifying regular polyhedra

Shape Tetrahedron Cube Octahedron Dodecahedron Icosahedron

r = vertex degree 3 3 4 3 5
` = face degree 3 4 3 5 3
V = # vertices 4 8 6 20 12
E = # edges 6 12 12 30 30
F = # faces 4 6 8 12 20

These are known as the Platonic solids.
The cube and octahedron are dual graphs.
The dodecahedron and icosahedron are dual graphs.
The tetrahedron is its own dual.
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Octahedron and cube are dual

Can draw either one inside the other.
Place a dual vertex at the center of each face.
In 3D, this construction shrinks the dual, vs. in 2D, it did not.
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11.1 and 12.3. Graph colorings
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Graph Colorings

Let G be a graph and C be a set of colors, e.g.,

C = {black, white} C = {a, b} C = {1, 2}

A proper coloring of G by C is to assign a color from C to every
vertex, such that in every edge {v, w}, the vertices v and w have
different colors.
G is k-colorable if it has a proper coloring with k colors
(e.g., C = [k]).
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Coloring a bipartite graph

A bipartite graph is a graph in which:

The set of vertices can be split as V = A ∪ B, where A ∩ B = ∅.
Every edge has the form {a, b} where a ∈ A and b ∈ B.

A graph is bipartite if and only if it is 2-colorable:
set A = black vertices, B = white vertices.
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Color this with as few colors a, b, c, d, e, . . . as possible

The chromatic number , χ(G), of a graph G is the minimum number of
colors needed for a proper coloring of G.

Color this with as few colors as possible:
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Color this with as few colors a, b, c, d, e, . . . as possible

b

a c

b a

a

We’ve shown it’s 3-colorable, so χ(G) 6 3.

It has a triangle as a subgraph, which requires 3 colors.
Other vertices may require additional colors, so χ(G) > 3.

Combining these gives χ(G) = 3.

A triangle is K3.
More generally, if G has Km as a subgraph, then χ(G) > m.

Prof. Tesler Ch. 12: Planar Graphs Math 184A / Winter 2019 43 / 46



Coloring maps

http://en.wikipedia.org/wiki/File:Map_of_USA_with_state_names_2.svg

Color states so that neighboring states have different colors.
This map uses 4 colors for the states.
Assume each state is a contiguous region. Michigan isn’t. All of its
regions have to be colored the same, which could increase the
number of colors required, but we can artificially fill in Lake
Michigan to make Michigan contiguous.
Also assume the states form a contiguous region. Alaska and
Hawaii are isolated, and just added onto the map separately.
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A proper coloring of the faces of a graph
↔ a proper coloring of the vertices of its dual graph

b

c

b

c

a d a c d

b

b

c

Coloring faces of G Coloring vertices of H

The regions/states/countries of the map are faces of a graph, G.
Place a vertex inside each region and form the dual graph, H.
A proper coloring of the vertices of H gives a proper coloring of
the faces of G.
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Four Color Theorem

Theorem (Four Color Theorem)
Every planar graph has a proper coloring with at most four colors.

Map makers have believed this for centuries, but it was not proven.
This was the first major theorem to be proved using a computer
program (Kenneth Appel and Wolfgang Haken, 1976).
The original proof had 1936 cases! Their program determined the
cases and showed they are all 4-colorable.
The proof was controversial because it was the first proof that was
impractical for any human to verify.
Over the years, people have found errors in the proof, but they
have been fixed, and the result still stands. The number of cases
has been cut down to 633.

Prof. Tesler Ch. 12: Planar Graphs Math 184A / Winter 2019 46 / 46


