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Multiplication rule

Combinatorics is a branch of Mathematics that deals with systematic
methods of counting things.

Example
How many outcomes (x, y, z) are possible, where

x= roll of a 6-sided die;
y= value of a coin flip;
z= card drawn from a 52 card deck?

(6 choices of x) × (2 choices of y) × (52 choices of z) = 624

Multiplication rule
The number of sequences (x1, x2, . . . , xk) where there are

n1 choices of x1, n2 choices of x2, . . . , nk choices of xk

is n1 · n2 · · · nk.
This assumes the number of choices of xi is a constant ni that doesn’t
depend on the other choices.
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Cartesian product
The Cartesian Product of sets A and B is

A× B = { (x, y) : x ∈ A, y ∈ B }

By the Multiplication Rule, this has size |A× B| = |A| · |B|.

Example: {1, 2}× {3, 4, 5} = {(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)}

The Cartesian product of sets A, B, and C is
A× B× C = { (x, y, z) : x ∈ A, y ∈ B, z ∈ C }

This has size |A× B× C| = |A| · |B| · |C|.

This extends to any number of sets.
Example

Roll of a 6-sided die A = {1, 2, 3, 4, 5, 6} |A| = 6
Value of a coin flip B = {H, T} |B| = 2
Cards C = {A♥, 2♥, . . .} |C| = 52

The example on the previous slide becomes
|A× B× C| = 6 · 2 · 52 = 624.
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Notation

We often will need an n-element set. For n > 1, define
[n] = {1, 2, 3, . . . , n}

and also [0] = ∅. E.g.,
[0] = ∅
[1] = {1}

[2] = {1, 2}

[3] = {1, 2, 3}
...

Again, you may have seen [x] used for greatest integer , but we
instead use bxc for floor and dxe for ceiling.
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Powers

Let A be a set.
Ak = A× A× · · · × A (k times)
|Ak| = |A|k

Example
[2] = {1, 2}, with size |[2]| = | {1, 2} | = 2.
[2]3 = {(1,1,1), (1,1,2), (1,2,1), (1,2,2), (2,1,1), (2,1,2), (2,2,1), (2,2,2)}
|[2]3| = 23 = 8

Example
How many k letter strings are there over an n letter alphabet?

3-letter strings over the alphabet {a, b, . . . , z}:
aaa, aab, aac, . . . , zzy, zzz

There are 263 of them.
In general, there are nk strings.
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Power set

The power set of a set is the set of all of its subsets:

P(S) = {A : A ⊆ S }

P([3]) = P({1, 2, 3})

= {∅, {1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3} , {1, 2, 3}}

Be careful on use of ∈ vs. ⊂:

1 < P([3])

∅ ∈ P([3]) {1} ∈ P([3]) {1} , {2} , {1, 2} ∈ P([3])

{∅} ⊂ P([3]) {{1}} ⊂ P([3]) {{1} , {2} , {1, 2}} ⊂ P([3])

How big is |P(S)|?
Equivalently, how many subsets does a set have?
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Number of subsets of an n-element set
First solution

How many subsets does an n element set have?

We’ll use [n]; the solution will work for any set of size n, but it’s
easier to work with a specific set.

Make a sequence of decisions:
Include 1 or not?
Include 2 or not?
· · ·
Include n or not?

Total: (2 choices)(2 choices) · · · (2 choices) = 2n
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Number of subsets of an n-element set
First solution

;

; {1}

; {2} {1} {1, 2}

; {3} {2} {2, 3} {1} {1, 3} {1, 2} {1, 2, 3}

Include 1?

No Yes

Include 2?

Include 3?

P([3])
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Number of subsets of an n-element set
Second solution

Consider a subset S ⊆ [n].

Form the word w1 · · ·wn or a sequence (w1, . . . , wn)

wi =

{
1 if i ∈ S;
0 otherwise.

Example: The subset S = {1, 3, 4} of [5] is encoded as a word
10110 or as a sequence (1, 0, 1, 1, 0).

Each subset of [n] gives a unique word in {0, 1}n and vice-versa.

| {0, 1}n | = 2n, so there are 2n words and thus 2n subsets.

This is called a bijective proof .
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Function terminology

QP

Consider a function f : P→ Q.

For each element x in the set P, the function assigns a value f (x)
in the set Q.

In the diagram,
Each element of P has exactly one arrow going out;
A variable number (> 0) of arrows goes into each element of Q.
We’ll consider some special cases of this.
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Function terminology

QP

f is one-to-one iff for all x, y ∈ P, when f (x) = f (y) then x = y.
This is also called an injection.
This means every element of Q either has exactly one inverse, or
has no inverse.
Each element of Q has 6 1 arrows coming into it.
If f is one-to-one then |P| 6 |Q|.

Prof. Tesler Elementary Counting Problems Math 184A / Winter 2019 11 / 43



Function terminology

QP

f is onto iff for every z ∈ Q, there is at least one x ∈ P with f (x) = z.

This is also called a surjection.
This means every element of Q has at least one inverse.
Each element of Q has > 1 arrows coming into it.
If f is onto then |P| > |Q|.
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Function terminology

QP

f is a bijection iff it is one-to-one and onto.
This means every element of Q has exactly one inverse.
Each element of Q has exactly one arrow coming into it.
If f is a bijection then |P| = |Q|.
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Number of subsets of an n-element set
Second solution, continued

Define f : P([n])→ {0, 1}n as follows:
for S ⊆ [n], form the word f (S) = w = w1 · · ·wn, where

wi =

{
1 if i ∈ S;
0 otherwise.

f is one-to-one:
Suppose f (S) = f (T) = w. We need to show this requires S = T.
Both S and T are subsets of [n]. For each i = 1, . . . , n,

if wi = 1 then i ∈ S and i ∈ T,
while if wi = 0 then i < S and i < T.

Thus, S and T have the exact same elements, so S = T.

f is onto:
Given w ∈ {0, 1}n, we must construct an inverse in the domain.
There may be more than one inverse; we just have to construct one.
S = { i ∈ [n] : wi = 1 } is in the domain and satisfies f (S) = w.

Thus, f is a bijection. So |P([n])| (the number of subsets of an
n-element set) equals | {0, 1}n | = 2n.
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Number of subsets of an n-element set
Third solution

We will use Mathematical Induction (Chapter 2) to prove that the
number of subsets of [n] is 2n, for all integers n > 0:

In general, the goal is to prove that a statement is true for all
integers n > n0. Often, n0 is 0 or 1, but that’s not required.

Base case: Show that the statement is true for n = n0.
Sometimes it’s necessary to prove it specially for several other
small values of n.

Induction step: Assume that the statement holds for n.
Use that to prove that it holds true for n + 1.

Conclusion: the statement holds for all integers n > n0.
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Number of subsets of an n-element set
Third solution

For all integers n > 0, the number of subsets of [n] is 2n.

Base case
First we show the statement is true for the smallest value of n (in this
case, n = 0).

When n = 0, [n] = [0] = ∅ has just one subset, which is ∅.
The formula gives 2n = 20 = 1.
These agree, so the statement holds for the base case.
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Number of subsets of an n-element set
Third solution

Induction step
For some n > 0, assume that the number of subsets of [n] is 2n.
Use that to prove the number of subsets of [n + 1] is 2n+1

Split the subsets of [n + 1] into P ∪ Q, where
P is the set of subsets of [n + 1] that don’t have n + 1, and
Q is the set of subsets of [n + 1] that do have n + 1.

P is the set of subsets of [n]. By the induction hypothesis, |P| = 2n.

Insert n + 1 into each set in P to form Q. Thus, |P| = |Q|.
E.g., for n = 2: P =

{
∅, {1} , {2} , {1, 2}

}
Q =

{
{3} , {1, 3} , {2, 3} , {1, 2, 3}

}
The total number of subsets of [n + 1] is |P|+ |Q| = 2(2n) = 2n+1.
(This is an example of the Addition Rule, to be covered next.)

Conclusion: For all integers n > 0, the number of subsets of [n] is 2n.
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Addition rule

Count the number of days in a year, as follows.

Assume it’s not a leap year.

How many pairs (m, d) are there where
m= month 1, . . . , 12;
d = day of the month?

12 choices of m, but the number of choices of d depends on m
(and if it’s a leap year), so the total is not “12× ”

Split dates into Am = { (m, d) : d is a valid day in month m }:
A = A1 ∪ · · · ∪ A12 = whole year
|A| = |A1|+ · · ·+ |A12|

= 31 + 28 + · · ·+ 31 = 365
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Addition rule

Two sets A and B are disjoint when A ∩ B = ∅.

The set of even integers and set of odd integers are disjoint.
But the set of even integers and the set of positive prime integers
are not disjoint, since their intersection is {2}.

Multiple sets A1, A2, . . . , An are pairwise disjoint (also called
mutually exclusive) if Ai ∩ Aj = ∅ when i , j.

Addition Rule: If A1, . . . , An are pairwise disjoint, then∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =
n∑

i=1

|Ai|

The left side is a generalization of
∑

notation. It means:

|A1 ∪ A2 ∪ · · · ∪ An| = |A1|+ |A2|+ · · ·+ |An|
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Set partitions

Let S be a set. A partition of S is {A1, . . . , An} where
Each Ai is a nonempty subset of S.
A1, . . . , An are pairwise disjoint.

S =

n⋃
i=1

Ai.

This is also called a set partition, to distinguish it from an integer
partition, which we will learn about soon.

Each Ai is called a block or a part .

Examples
We just partitioned the days of a year into 12 sets by month.
Partition integers into even integers and odd integers.
Partition integers into positive integers, negative integers, and {0}.
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Permutations

Here are all the permutations of A, B, C:

ABC ACB BAC BCA CAB CBA

There are 6 of them. We’ll see how to count them systematically.
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Permutations of distinct objects
Decision tree

A CB

B BA AC C

C CB BA A

2nd letter

3rd letter

ACB BAC BCA CAB CBAABC

1st letter

There are 3 items: A, B, C.
There are 3 choices for which item to put first.
There are 2 choices remaining to put second.
There is 1 choice remaining to put third.
Thus, the total number of permutations is 3 · 2 · 1 = 6.

Prof. Tesler Elementary Counting Problems Math 184A / Winter 2019 22 / 43



Permutations of distinct objects

Notice that the specific choices available at each step depend on
the previous steps, but the number of choices does not, so the
multiplication rule applies.
The number of permutations of n distinct items is “n-factorial”:
n! = n(n − 1)(n − 2) · · · 1 for integers n = 1, 2, . . .

Convention: 0! = 1
For integer n > 1, n!= n · (n − 1) · (n − 2) · · · 1

= n · (n − 1)!
so (n − 1)! = n!/n.
E.g., 2! = 3!/3 = 6/3 = 2.
Extend it to 0! = 1!/1 = 1/1 = 1.
Doesn’t extend to negative integers: (−1)! = 0!

0 = 1
0 = undefined.

Prof. Tesler Elementary Counting Problems Math 184A / Winter 2019 23 / 43



Stirling’s Approximation

In how many orders can a deck of 52 cards be shuffled?
52! = 8065817517094387857166063685640376

6975289505440883277824000000000000
(a 68 digit integer when computed exactly)

52! ≈ 8.0658 · 1067

Stirling’s Approximation: For large n,
n! ≈

√
2π n

(n
e

)n
.

Stirling’s approximation gives 52! ≈ 8.0529 · 1067
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Partial permutations of distinct objects

How many ways can you deal out 3 cards from a 52 card deck,
where the order in which the cards are dealt matters?
E.g., dealing the cards in order (A♣, 9♥, 2♦) is counted differently
than the order (2♦, A♣, 9♥).

This is called an ordered 3-card hand, because we keep track of
the order in which the cards are dealt.

52 · 51 · 50 = 132600.

This is also 52!/49!:

52!
49!

=
52 · 51 · 50 · 49 · 48 · · · · 2 · 1

49 · 48 · · · · 2 · 1 = 52 · 51 · 50
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Partial permutations of distinct objects

How many ordered k-card hands can be dealt from an n-card deck?

n(n − 1)(n − 2) · · · (n − k + 1) =
n!

(n − k)!
= nPk = (n)k

52 · 51 · 50 =
52!
49!

= 52P3 = (52)3

General problem: Instead of cards, more generally, this is
“permutations of length k taken from n objects.”

Notation: Our book uses (n)k. Many calculators use nPk.

(n)k = n(n − 1)(n − 2) · · · (n − k + 1) is called a falling factorial .
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Combinations

In an unordered hand, the order in which the cards are dealt does
not matter; only the set of cards matters. E.g., dealing in order
(A♣, 9♥, 2♦) or (2♦, A♣, 9♥) both give the same hand. This is
usually represented by a set: {A♣, 9♥, 2♦}.

How many 3 card hands can be dealt from a 52-card deck if the
order in which the cards are dealt does not matter?

The 3-card hand {A♣, 9♥, 2♦} can be dealt in 3! = 6 different orders:
(A♣, 9♥, 2♦) (9♥, A♣, 2♦) (2♦, 9♥, A♣)
(A♣, 2♦, 9♥) (9♥, 2♦, A♣) (2♦, A♣, 9♥)

Every unordered 3-card hand arises from 6 different orders.
So 52 · 51 · 50 counts each unordered hand 3! times.
Thus, the number of unordered hands is

52 · 51 · 50
3 · 2 · 1 =

52!/49!
3!

=
(52)3

3!
= 22100
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Combinations

The # of unordered k-card hands taken from an n-card deck is

n · (n − 1) · (n − 2) · · · (n − k + 1)
k · (k − 1) · · · 2 · 1 =

(n)k

k!
=

n!
k! (n − k)!

This is denoted
(n

k

)
= n!

k! (n−k)! (or nCk, mostly on calculators).(n
k

)
is the “binomial coefficient” and is pronounced “n choose k.”

The number of unordered 3-card hands is(
52
3

)
= 52C3 = “52 choose 3” =

52 · 51 · 50
3 · 2 · 1 =

52!
3! 49!

= 22100

General problem: Let S be a set with n elements. The number of
k-element subsets of S is

(n
k

)
.

Special cases:
(n

0

)
=
(n

n

)
=1

(n
k

)
=
( n

n−k

) (n
1

)
=
( n

n−1

)
=n
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Binomial Theorem

(x + y)n =
∑n

k=0
(n

k

)
x ky n−k

For n = 4: (x + y)4 = (x + y)(x + y)(x + y)(x + y)

On expanding, each factor contributes an x or a y.
After expanding, we group, simplify, and collect like terms:

(x + y)4 = yyyy
+ yyyx + yyxy + yxyy + xyyy
+ yyxx + yxyx + yxxy + xyyx + xyxy + xxyy
+ yxxx + xyxx + xxyx + xxxy
+ xxxx

= y4 + 4xy3 + 6x2y2 + 4x3y + x4

Exponents of x and y must add up to n (which is 4 here).

For the coefficient of x k y n−k, there are
(n

k

)
ways to choose k

factors to contribute x’s. The other n − k factors contribute y’s.

Thus,
(n

k

)
unsimplified terms simplify to x k y n−k, giving

(n
k

)
x k y n−k.
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Permutations with repetitions

Here are all the permutations of the letters of ALLELE:

EEALLL EELALL EELLAL EELLLA EAELLL EALELL
EALLEL EALLLE ELEALL ELELAL ELELLA ELAELL
ELALEL ELALLE ELLEAL ELLELA ELLAEL ELLALE
ELLLEA ELLLAE AEELLL AELELL AELLEL AELLLE
ALEELL ALELEL ALELLE ALLEEL ALLELE ALLLEE
LEEALL LEELAL LEELLA LEAELL LEALEL LEALLE
LELEAL LELELA LELAEL LELALE LELLEA LELLAE
LAEELL LAELEL LAELLE LALEEL LALELE LALLEE
LLEEAL LLEELA LLEAEL LLEALE LLELEA LLELAE
LLAEEL LLAELE LLALEE LLLEEA LLLEAE LLLAEE

There are 60 of them, not 6! = 720, due to repeated letters.

Prof. Tesler Elementary Counting Problems Math 184A / Winter 2019 30 / 43



Permutations with repetitions

There are 6! = 720 ways to permute the subscripted letters
A1, L1, L2, E1, L3, E2.
Here are all the ways to put subscripts on EALLEL:

E1A1L1L2E2L3 E1A1L1L3E2L2 E2A1L1L2E1L3 E2A1L1L3E1L2

E1A1L2L1E2L3 E1A1L2L3E2L1 E2A1L2L1E1L3 E2A1L2L3E1L1

E1A1L3L1E2L2 E1A1L3L2E2L1 E2A1L3L1E1L2 E2A1L3L2E1L1

Each rearrangement of ALLELE has
1! = 1 way to subscript the A’s;
2! = 2 ways to subscript the E’s; and
3! = 6 ways to subscript the L’s,

giving 1! · 2! · 3! = 1 · 2 · 6 = 12 ways to assign subscripts.
Since each permutation of ALLELE is represented 12 different
ways in permutations of A1L1L2E1L3E2, the number of
permutations of ALLELE is

6!
1! 2! 3! =

720
12 = 60.
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Multinomial coefficients

For a word of length n with k1 of one letter, k2 of a 2nd letter, . . . ,
the number of permutations is given by the multinomial coefficient:(

n
k1, k2, . . . , kr

)
=

n!
k1! k2! · · · kr!

where n, k1, k2, . . . , kr are integers > 0 and n = k1 + · · ·+ kr.

For ALLELE, it’s
( 6

1,2,3

)
= 60. Read

( 6
1,2,3

)
as “6 choose 1, 2, 3.”

For a multinomial coefficient, the numbers on the bottom must add
up to the number on the top (n = k1 + · · ·+ kr), vs. for a binomial
coefficient

(n
k

)
, instead it’s 0 6 k 6 n.
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Binomial coefficient as special case of multinomial coefficient

Binomial coefficient
(

n
k

)
= Multinomial coefficient

(
n

k, n − k

)
=

n!
k! (n − k)!

Binomial coefficient:(n
k

)
= number of k element subsets of an n-element set.

Multinomial coefficient:( n
k, n−k

)
= number of permutations of k 1’s and n − k 0’s.

In any such permutation, the positions of the 1’s determine a
k-element subset of an n-element set.
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Counting permutations with repetitions — 2nd method
Make a template with n blanks:

Choose k1 of the n positions to fill in with the 1st letter:
L L L

( n
k1

)
ways

Choose k2 of the remaining n − k1 positions for the 2nd letter.
L L A L

(n−k1
k2

)
ways

Choose k3 of the remaining n − k1 − k2 positions for the 3rd letter.
L E L E A L

(n−k1−k2
k3

)
ways

Continue in the same way for all letters. Total:( n
k1

)(n−k1
k2

)(n−k1−k2
k3

)
· · · = n!

k1! (n−k1)! ·
(n−k1)!

k2! (n−k1−k2)! ·
(n−k1−k2)!

k3! (n−k1−k2−k3)! · · ·
= n!

k1! k2! ··· kr! (n−k1−k2−···−kr)! =
n!

k1! k2! ··· kr!

Since k1 + · · ·+ kr = n, the factor (n − k1 − k2 − · · ·− kr)! = 0! = 1.
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Multinomial Theorem

Expand and simplify (x + y + z)4:
(x + y + z)4 = (x + y + z) (x + y + z) (x + y + z) (x + y + z)

= x · x · x · x
+ x · x · x · y
+ x · x · x · z
+ · · ·

Each line simplifies to x iy jz k with exponents i, j, k that are
nonnegative integers adding up to 4.
After collecting like terms, we get a coefficient times this.

The coefficient of x2yz is the number of lines that simplify to x2yz.
It’s the number of rearrangements of xxyz (variables contributed by
the 4 factors), which is

( 4
2,1,1

)
= 4!

2! 1! 1! = 12.

Equivalently, split the 4 factors as follows:
choose 2 to contribute x’s; 1 to contribute y; and 1 to contribute z.
This can be done in

( 4
2,1,1

)
= 12 ways.
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Multinomial Theorem
Binomial theorem: For integers n > 0,

(x + y)n =

n∑
k=0

(
n
k

)
x ky n−k

(x + y)3 =
(3

0

)
x0y3 +

(3
1

)
x1y2 +

(3
2

)
x2y1 +

(3
3

)
x3y0 = y3 + 3xy2 + 3x2y + x3

Multinomial theorem: For integers n > 0,

(x + y + z)n =

n∑
i=0

n∑
j=0

n∑
k=0︸         ︷︷         ︸

i+j+k=n

(
n

i, j, k

)
x iy jz k

(x + y + z)2 =
( 2

2,0,0

)
x2y0z0 +

( 2
0,2,0

)
x0y2z0 +

( 2
0,0,2

)
x0y0z2

+
( 2

1,1,0

)
x1y1z0 +

( 2
1,0,1

)
x1y0z1 +

( 2
0,1,1

)
x0y1z1

= x2 + y2 + z2 + 2xy + 2xz + 2yz

(x1 + · · ·+ xm)
n works similarly with m iterated sums.

In (x + y + z)10, the coefficient of x2y3z5 is
( 10

2,3,5

)
= 10!

2! 3! 5! = 2520.
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Multisets
A set is an unordered collection of different objects. Each object is
either in the set or not in the set. For example,

{1, 5, 10} = {1, 10, 5} Order irrelevant
= {1, 10, 5, 1} Repetitions collapse into one element

A list , sequence, or tuple allows repeats, and is ordered.
(1, 5, 10), (5, 1, 10), (5, 1, 5, 10) are different lists.

A multiset allows repeated objects, but still is not ordered.
Multiset {x, y, z, z, y} has one x, two y’s, two z’s.
As a multiset, {x, y, z, z, y} = {x, y, y, z, z} (order irrelevant) but
, {x, x, y, z} (wrong multiplicities).
You need to say it’s a multiset, since the notation looks the same.
This is informal notation for small multisets. It’s better to give a
function/table listing multiplicities.

Element Multiplicity
x 1
y 2
z 2
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Compositions of an integer

Let n be a nonnegative integer.
A strict composition of n into k parts is (i1, . . . , ik) where i1, . . . , ik
are positive integers that add up to n.

The strict compositions of 4 into 3 parts are

(2, 1, 1), (1, 2, 1), (1, 1, 2)

A weak composition uses nonnegative integers instead.
The weak compositions of 4 into 3 parts are

(4, 0, 0), (3, 1, 0), (3, 0, 1), (2, 2, 0), (2, 1, 1), (2, 0, 2), (1, 3, 0), (1, 2, 1),
(1, 1, 2), (1, 0, 3), (0, 4, 0), (0, 3, 1), (0, 2, 2), (0, 1, 3), (0, 0, 4)

In the Multinomial Theorem, the exponents form a weak composition.
The terms of (x + y + z)4 = x4 + 4x3y + 4x3z + 6x2y2 + · · · correspond
to the weak compositions listed above.
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Dots and bars diagram of a weak composition
The dots and bars diagram of a composition (i1, i2, . . . , ik) of n:

(5, 2, 3) = · · · · · | · · | · · ·
(3, 0, 3, 1, 0) = · · · | | · · · | · |

There are n dots and k − 1 bars. This is n + k − 1 characters.

For weak compositions, the dots and bars may go in any order.

There are
(n+k−1

k−1

)
=
(n+k−1

n

)
orders.

Thus, the number of weak compositions of n into k parts is
(n+k−1

k−1

)
.

The # of weak compositions of 4 into 3 parts is
(4+3−1

3−1

)
=
(6

2

)
= 15.

In the Multinomial Theorem, (x1 + · · ·+ xm)
` has

(
`+m−1

m−1

)
terms.

The # of `-element multisets formed from a set of size m is
(
`+m−1

m−1

)
.

E.g., the 3-element multisets over the set {1, 2} are
{1, 1, 1}, {1, 1, 2}, {1, 2, 2}, {2, 2, 2}. Total:

(3+2−1
2−1

)
=
(4

1

)
= 4.
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Dots and bars diagram of a strict composition

For strict compositions, the parts have size at least 1.

There are n − 1 spaces between the n dots; these are the possible
places to place bars in order to ensure that all parts have size > 1:

· | · | · | ·

Choose k − 1 of these spaces for the bars, in one of
(n−1

k−1

)
ways.

Thus, there are
(n−1

k−1

)
strict compositions of n into k parts.

There are
(4−1

3−1

)
=
(3

2

)
= 3 strict compositions of 4 into 3 parts.
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2.2. Strong induction

Theorem
Every integer n > 2 may be written as a product of primes, n = p1 . . . pk.

This is more complicated than going from n to n + 1; we need to
use multiple prior values.

We will use Strong Mathematical Induction:
To prove a statement holds for all integers n > n0:
Base case: Prove it holds for n = n0.
Induction step: For n > n0, assume it holds for all values
n0, n0 + 1, . . . , n − 1 and use that to prove it holds for n.
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Strong induction

Theorem
Every integer n > 2 may be written as a product of primes, n = p1 . . . pk.

Base case: n = 2

2 is a product of primes with just one factor, n = p1 = 2.
Induction step:

Let n > 3.
Assume 2, 3, . . . , n − 1 may each be written as a product of primes.
Use that to prove n may also be written as a product of primes.
If n is prime, then it is a product of one prime factor (itself, p1 = n).
Otherwise, n = ab where 1 < a, b < n.
By the induction hypothesis, a = p1 · · · pk and b = q1 · · · q` are
products of primes.
Then n = p1 · · · pk q1 · · · q` is a product of primes.
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Generalization

In Number Theory, there is a stronger result:

Theorem (The Fundamental Theorem of Arithmetic)
Every integer n > 1 has a unique factorization into primes, in the format

n = p1
a1 · · · pk

ak

where p1 < p2 < · · · < pk are primes and ai are positive integers.

This collects the prime factors (easy) and proves uniqueness
(which is beyond the scope of our proof).

Note that ±1 are units (divisors of 1), not primes, since that would
violate uniqueness (10 = 2 · 5 = 1 · 2 · 5 = (−1)2 · 2 · 5, etc.).
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