Chapter 3.3, 4.1, 4.3. Binomial Coefficient Identities

Prof. Tesler

Math 184A Winter 2019

Table of binomial coefficients

$\binom{n}{k}$	k = 0	k = 1	k = 2	k = 3	<i>k</i> = 4	k = 5	<i>k</i> = 6
n = 0	1	0	0	0	0	0	0
n = 1	1	1	0	0	0	0	0
n = 2	1	2	1	0	0	0	0
n = 3	1	3	3	1	0	0	0
n = 4	1	4	6	4	1	0	0
<i>n</i> = 5	1	5	10	10	5	1	0
n = 6	1	6	15	20	15	6	1

• Compute a table of binomial coefficients using $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.

• We'll look at several patterns. First, the nonzero entries of each row are symmetric; e.g., row n = 4 is

 $\binom{4}{0}, \binom{4}{1}, \binom{4}{2}, \binom{4}{3}, \binom{4}{4} = 1, 4, 6, 4, 1,$

which reads the same in reverse. **Conjecture:** $\binom{n}{k} = \binom{n}{n-k}$.

For nonegative integers $k \leq n$,

$$\binom{n}{k} = \binom{n}{n-k}$$
 including $\binom{n}{0} = \binom{n}{n} = 1$

First proof: Expand using factorials:

$$\binom{n}{k} = \frac{n!}{k! (n-k)!} \qquad \qquad \binom{n}{n-k} = \frac{n!}{(n-k)! k!}$$

These are equal.

For nonegative integers $k \leq n$,

$$\binom{n}{k} = \binom{n}{n-k} \quad \text{including } \binom{n}{0} = \binom{n}{n} = 1$$

Second proof: A bijective proof.

- We'll give a bijection between two sets, one counted by the left side, $\binom{n}{k}$, and the other by the right side, $\binom{n}{n-k}$. Since there's a bijection, the sets have the same size, giving $\binom{n}{k} = \binom{n}{n-k}$.
- Let \mathcal{P} be the set of *k*-element subsets of [n]. Note that $|\mathcal{P}| = \binom{n}{k}$.
- For example, with n = 4 and k = 2, we have

$$\mathcal{P} = \left\{ \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\} \right\} \qquad |\mathcal{P}| = \binom{4}{2} = 6$$

• We'll use complements in [n]. For example, with subsets of [4],

$$\{1,4\}^c = \{2,3\}$$
 and $\{3\}^c = \{1,2,4\}.$

Note that for any $A \subset [n]$, we have $|A^c| = n - |A|$ and $(A^c)^c = A$.

For nonegative integers $k \leq n$,

$$\binom{n}{k} = \binom{n}{n-k} \quad \text{including } \binom{n}{0} = \binom{n}{n} = 1$$

Second proof: A bijective proof.

- Let \mathcal{P} be the set of k-element subsets of [n]. $|\mathcal{P}| = {n \choose k}$.
- Let Ω be the set of (n k)-element subsets of [n].
- Define $f : \mathcal{P} \to \mathcal{Q}$ by $f(S) = S^c$ (complement of set S in [n]).
- Show that this is a bijection:
 - *f* is onto: Given $T \in \mathbb{Q}$, then $S = T^c$ satisfies $f(S) = (T^c)^c = T$. Note that $S \subset [n]$ and |S| = n - |T| = n - (n - k) = k, so $S \in \mathcal{P}$.
 - *f* is one-to-one: If f(R) = f(S) then $R^c = S^c$. The complement of that is $(R^c)^c = (S^c)^c$, which simplifies to R = S.
- Thus, *f* is a bijection, so $|\mathcal{P}| = |\mathcal{Q}|$. Thus, $\binom{n}{k} = \binom{n}{n-k}$.

 $|\mathbb{Q}| = \binom{n}{n-k}$

Sum of binomial coefficients

$\binom{n}{k}$	k = 0	k = 1	k = 2	k = 3	k = 4	<i>k</i> = 5	<i>k</i> = 6	Total
n = 0	1	0	0	0	0	0	0	1
n = 1	1	1	0	0	0	0	0	2
n = 2	1	2	1	0	0	0	0	4
n = 3	1	3	3	1	0	0	0	8
n = 4	1	4	6	4	1	0	0	16
n = 5	1	5	10	10	5	1	0	32
n = 6	1	6	15	20	15	6	1	64

- Compute the total in each row.
- Any conjecture on the formula?
- The sum in row *n* seems to be $\sum_{k=0}^{n} {n \choose k} = 2^{n}$.

For integers $n \ge 0$,

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

First proof: Based on the Binomial Theorem.

• The Binomial Theorem gives $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$.

• Plug in
$$x = y = 1$$
:

•
$$(1+1)^n = 2^n$$

• $(1+1)^n = \sum_{k=0}^n \binom{n}{k} 1^k \cdot 1^{n-k} = \sum_{k=0}^n \binom{n}{k}$.

Sum of binomial coefficients

Theorem

For integers $n \ge 0$,

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

Second proof: Counting in two ways (also called "double counting")

- How many subsets are there of [n]?
- We'll compute this in two ways. The two ways give different formulas, but since they count the same thing, they must be equal.
- Right side (we already showed this method):
 - Choose whether or not to include 1 (2 choices).
 - Choose whether or not to include 2 (2 choices).
 - Continue that way up to n. In total, there are 2^n combinations of choices, leading to 2^n subsets.

Sum of binomial coefficients

Theorem

For integers
$$n \ge 0$$
,

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

Second proof, continued: Left side:

- Subsets of [n] have sizes between 0 and n.
- There are $\binom{n}{k}$ subsets of size k for each k = 0, 1, ..., n.
- The total number of subsets is $\sum_{k=0}^{n} \binom{n}{k}$.
- Equating the two ways of counting gives $\sum_{k=0}^{n} {n \choose k} = 2^{n}$.

Partition $\mathcal{P}([3])$ as $\{A_0, A_1, A_2, A_3\}$, where A_k is the set of subsets of [3] of size k: $A_0 = \{\emptyset\}$ $A_2 = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\}$ $A_1 = \{\{1\}, \{2\}, \{3\}\}$ $A_3 = \{\{1, 2, 3\}\}$ Recall that parts of a partition should be nonempty. Note A_0 is not equal to \emptyset , but rather has \emptyset as an element.

Recursion for binomial coefficients

- A recursion involves solving a problem in terms of smaller instances of the same type of problem.
- **Example:** Consider 3-element subsets of [5]:

Subsets without 5	Subsets with 5
{1,2,3}	{1,2,5}
$\{1, 2, 4\}$	$\{1, 3, 5\}$
$\{1, 3, 4\}$	$\{1, 4, 5\}$
$\{2, 3, 4\}$	$\{2, 3, 5\}$
	$\{2, 4, 5\}$
	$\{3, 4, 5\}$

- Subsets without 5: These are actually 3-element subsets of [4], so there are $\binom{4}{3} = 4$ of them.
- Subsets with 5: Take all 2-element subsets of [4] and insert a 5 into them. So $\binom{4}{2} = 6$ of them.
- Thus, $\binom{5}{3} = \binom{4}{3} + \binom{4}{2}$.

Recursion for binomial coefficients

Theorem

For nonnegative integers *n*, *k*:

$$\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$$

- We will prove this by counting in two ways. It can also be done by expressing binomial coefficients in terms of factorials.
- How many k + 1 element subsets are there of [n + 1]?
- 1st way: There are $\binom{n+1}{k+1}$ subsets of [n+1] of size k+1.
- 2^{nd} way: Split the subsets into those that do / do not contain n + 1:
 - Subsets without n + 1 are actually (k + 1)-element subsets of [n], so there are $\binom{n}{k+1}$ of them.
 - Subsets with n + 1 are obtained by taking k-element subsets of [n] and inserting n + 1 into them. There are $\binom{n}{k}$ of these.
 - In total, there are $\binom{n}{k+1} + \binom{n}{k}$ subsets of [n+1] with k+1 elements.
- Equating the two counts gives the theorem.

For nonnegative integers n, k:

$$\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$$

- However, we can't compute $\binom{5}{0}$ from this (uses k = -1), nor $\binom{0}{5}$ (uses n = -1). We must handle those separately.
- The *initial conditions* are

$$\binom{n}{0} = 1 \text{ for } n \ge 0, \qquad \binom{0}{k} = 0 \text{ for } k \ge 1$$

• For $n \ge 0$, the only 0-element subset of [n] is \emptyset , so $\binom{n}{0} = 1$.

• For $k \ge 1$, there are no k-element subsets of $[0] = \emptyset$, so $\binom{0}{k} = 0$.

Recursion for binomial coefficients

Initial conditions:

Recursion: $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$; these are positioned like this:

$$\binom{n}{k} \quad \binom{n}{k+1} \\ \binom{n+1}{k+1}$$

Use the recursion to fill in the table

$\binom{n}{k}$	k = 0	k = 1	k = 2	k = 3	<i>k</i> = 4	k = 5	k = 6
n = 0	1	0	0	0	0	0	0
n = 1	1	1	0	0	0	0	0
n = 2	1	2	1	0	0	0	0
n = 3	1	3	3	1	0	0	0
n = 4	1	4	6	4	1	0	0
n = 5	1	5	10	10	5	1	0
n = 6	1	6	15	20	15	6	1

Pascal's triangle

Alternate way to present the table of binomial coefficients $\binom{n}{k}$

Initial conditions: Each row starts with ⁿ₀=1 and ends with ⁿ_n=1.
 Recursion: For the rest, each entry is the sum of the two numbers it's in-between on the row above. E.g., 6 + 4 = 10:

$$\begin{pmatrix} n \\ k \end{pmatrix} \begin{pmatrix} n \\ k+1 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
$$\begin{pmatrix} \binom{n+1}{k+1} \end{pmatrix} \begin{pmatrix} \binom{n+1}{k+1} \end{pmatrix} \begin{pmatrix} \binom{n+1}{k+1} \end{pmatrix} \begin{pmatrix} \binom{n+1}{k+1} \end{pmatrix}$$

• Form a diagonal from a 1 on the right edge, in direction \swarrow as shown, for any number of cells, and then turn \searrow for one cell.

• Yellow:
$$1 + 2 + 3 + 4 = 10$$

• Pink: $1 + 4 + 10 = 15$
• Pattern: $\binom{k}{k} + \binom{k+1}{k} + \binom{k+2}{k} + \dots + \binom{n}{k} = \binom{n+1}{k+1}$

For integers $0 \leq k \leq n$,

$$\binom{k}{k} + \binom{k+1}{k} + \binom{k+2}{k} + \dots + \binom{n}{k} = \binom{n+1}{k+1}$$

- Prove by counting (k+1)-element subsets of [n+1] in two ways.
- **First way:** The number of such subsets is $\binom{n+1}{k+1}$.

Diagonal sums

Theorem

For integers $0 \leq k \leq n$,

$$\binom{k}{k} + \binom{k+1}{k} + \binom{k+2}{k} + \dots + \binom{n}{k} = \binom{n+1}{k+1}$$

• Second way: Categorize subsets by their largest element.

• For k = 2 and n = 4, the 3-element subsets of [5] are

Largest element 3	4	5	
{1, 2, 3}	$\{1, 2, 4\}$	$\{1, 2, 5\}, \{2, 3, 5\},\$	
	$\{1, 3, 4\}$	$\{1, 3, 5\}, \{2, 4, 5\},\$	
	{2, 3, 4}	$\{1,4,5\}, \{3,4,5\}$	
$\binom{2}{2}$ 2-elt subsets	$\binom{3}{2}$ 2-elt subsets	$\binom{4}{2}$ 2-elt subsets	
of [2], plus a 3	of [3], plus a 4	of [4], plus a 5	

• Thus, $\binom{2}{2} + \binom{3}{2} + \binom{4}{2} = \binom{5}{3}$.

Diagonal sums

Theorem

For integers $0 \leq k \leq n$,

$$\binom{k}{k} + \binom{k+1}{k} + \binom{k+2}{k} + \dots + \binom{n}{k} = \binom{n+1}{k+1}$$

Partition the (k + 1)-element subsets of [n + 1] by their largest element:

- The largest element ranges from k + 1 to n + 1.
- For largest element *j* ∈ {*k* + 1, *k* + 2, ..., *n* + 1}, take any *k*-element subset of [*j* − 1] and insert *j*. There are (^{*j*−1}/_{*k*}) subsets to choose.
- This gives the left side:

$$\sum_{j=k+1}^{n+1} \binom{j-1}{k} = \sum_{j=k}^n \binom{j}{k}.$$

Special cases of $(x+1)^n$

• By the Binomial Theorem,

$$(x+1)^{n} = \sum_{k=0}^{n} \binom{n}{k} x^{k} 1^{n-k} = \sum_{k=0}^{n} \binom{n}{k} x^{k}$$

• We will give combinatorial interpretations of these special cases:

• For
$$n \ge 0$$
, $2^n = (1+1)^n = \sum_{k=0}^n \binom{n}{k}$: We already did this.

• For
$$n > 0$$
, $0^n = (-1+1)^n$ gives $0 = \sum_{k=0}^n \binom{n}{k} (-1)^k$

• For
$$n \ge 0$$
, $3^n = (2+1)^n = \sum_{k=0}^n \binom{n}{k} 2^k$

Alternating sums

Alternating sum

 Form an alternating sum in each row of Pascal's Triangle. It appears that

$$\sum_{k=0}^{n} (-1)^{k} \binom{n}{k} = \begin{cases} 1 & \text{for } n = 0; \\ 0 & \text{for } n > 0. \end{cases}$$

- This is the Binomial Theorem expansion of $(-1+1)^n$:
 - For n > 0: it's $0^n = 0$.
 - For n = 0: In general, 0^0 is not well-defined. Here, it arises from $(x + y)^0 = 1$, and then setting x = -1, y = 1.
- We'll also do a bijective proof.

Notation for set differences

Let A and B be sets.

• The *set difference* $A \setminus B$ is the set of elements that are in A but not in B:

 $A \setminus B = A \cap B^c = \{x : x \in A \text{ and } x \notin B\}$ $\{1, 3, 5, 7\} \setminus \{2, 3, 4, 5, 6\} = \{1, 7\}$

 The symmetric difference A Δ B is the set of elements that are in A or in B but not in both:

$$A \Delta B = \{x : x \in A \cup B \text{ and } x \notin A \cap B\}$$

= $(A \cup B) \setminus (A \cap B)$
= $(A \setminus B) \cup (B \setminus A)$
 $\{1, 3, 5, 7\} \Delta \{2, 3, 4, 5, 6\} = \{1, 2, 4, 6, 7\}$

Alternating sums (bijective proof)

Theorem

For $n \ge 1$,

$$\sum_{\substack{k=0\\k \text{ even}}}^{n} \binom{n}{k} = \sum_{\substack{k=0\\k \text{ odd}}}^{n} \binom{n}{k}$$

- Subtracting the right side from the left gives $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$.
- Let \mathcal{P} be the even-sized subsets of [n].
- Let Ω be the odd-sized subsets of [n].
- This is a bijection $f : \mathcal{P} \to \mathcal{Q}$. For $A \in \mathcal{P}$,

$$f(A) = A \Delta \{1\} = \begin{cases} A \cup \{1\} & \text{if } 1 \notin A; \\ A \setminus \{1\} & \text{if } 1 \in A. \end{cases}$$

The inverse $f^{-1} : \Omega \to \mathcal{P}$ is $f^{-1}(B) = B \Delta \{1\}$.

• Thus, $|\mathcal{P}| = |\mathcal{Q}|$. Substitute $|\mathcal{P}| = \sum_{k=0}^{n} \binom{n}{k}$ and $|\mathcal{Q}| = \sum_{k=0}^{n} \binom{n}{k}$.

k even

k odd

Example: Subsets of [4]

Example: $\sum_{k=0}^{n} \binom{n}{k} 2^{k} = 3^{n}$ Prove by counting in two ways

Let $n \ge 0$. How many pairs of sets (A, B) are there with $A \subset B \subset [n]$?

First count

- Choose the size of B: k = 0, ..., n.
- Choose $B \subset [n]$ of size k in one of $\binom{n}{k}$ ways.
- Choose $A \subset B$ in one of 2^k ways.

• Total:
$$\sum_{k=0}^{n} \binom{n}{k} 2^k$$

Second count

- For each element i = 1, ..., n, choose one of:
 - i is in both A and B
 - *i* is in *B* only
 - *i* is in neither

Cannot have *i* in *A* only, since then $A \not\subset B$.

• There are 3 choices for each *i*, giving a total 3^n .

Thus,
$$\sum_{k=0}^{n} \binom{n}{k} 2^k = 3^n$$

Example: $\sum_{k=1}^{n} k \binom{n}{k} = n \cdot 2^{n-1}$ (for $n \ge 1$)

• Example of the above identity at n = 4:

$$1\binom{4}{1} + 2\binom{4}{2} + 3\binom{4}{3} + 4\binom{4}{4}$$

= 1 \cdot 4 + 2 \cdot 6 + 3 \cdot 4 + 4 \cdot 1
= 4 + 12 + 12 + 4
= 32 = 4 \cdot 2^{4-1}

 We will prove the identity using "Counting in two ways" and also using Calculus.

- Scenario: In a group of *n* people, we want to choose a subset to form a committee, and appoint one committee member as the chair of the committee. How may ways can we do this?
- Write this as follows:

$$\mathcal{A} = \{ (S, x) : S \subseteq [n] \text{ and } x \in S \}$$

S represents the committee and x represents the chair.

- We will compute |A| by counting it in two ways:
 - Pick *S* first and then *x*.
 - Or, pick *x* first and then *S*.

Example: $\sum_{k=1}^{n} k \binom{n}{k} = n \cdot 2^{n-1}$ (for $n \ge 1$) First method: Counting in two ways

$\mathcal{A} = \{ (S, x) : S \subseteq [n] \text{ and } x \in S \}$

Pick *S* first and *x* second

- Pick the size of the committee (S) first: k = 1, ..., n.
 It has to be at least 1, since the committee has a chair.
- Pick k committee members in one of $\binom{n}{k}$ ways.
- Pick one of the k committee members to be the chair, x.

• Total:
$$\sum_{k=1}^{n} \binom{n}{k} \cdot k$$

Pick *x* first and *S* second

- Pick any element of [n] to be the chair, x. There are n choices.
- Pick the remaining committee members by taking any subset S' of $[n] \setminus \{x\}$; there are 2^{n-1} ways to do this.
- Set $S = \{x\} \cup S'$. Total: $n \cdot 2^{n-1}$

Comparing the two totals gives: for $n \ge 1$, $\sum_{k=1}^{n} k \binom{n}{k} = n \cdot 2^{n-1}$.

Example: $\sum_{k=0}^{n} k \binom{n}{k} = n \cdot 2^{n-1}$ (for $n \ge 0$) Second method: Calculus

• By the Binomial Theorem, for any integer $n \ge 0$:

$$(x+1)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

• Differentiate with respect to *x*:

$$n(x+1)^{n-1} = \sum_{k=0}^{n} \binom{n}{k} k x^{k-1}$$

• Set x = 1: $n(1+1)^{n-1} = n \cdot 2^{n-1} = \sum_{k=0}^{n} \binom{n}{k} k$ for $n \ge 0$.

- Note that this includes k = 0 and holds for $n \ge 0$, while the first method started at k = 1 and held for $n \ge 1$.
 - The k = 0 term is optional since $\binom{n}{0} \cdot 0 = 0$.
 - We could have done additional steps in either method to prove the other version of the identity.

Taylor series review

Recall the formula for the Taylor Series of f(x) centered at x = a:

$$f(x) = \sum_{k=0}^{\infty} c_k (x-a)^k$$
 where $c_k = \frac{f^{(k)}(a)}{k!}$

We'll focus on a = 0 (also called the *Maclaurin series*). Compute the k^{th} derivative as a function of x, and plug in x = 0:

We will compute the Taylor series of $(1 + x)^{\alpha}$ for any real number α , not necessarily a positive integer:

$$f(x) = (1+x)^{\alpha} = \sum_{k=0}^{\infty} c_k x^k$$

$$f(0) = (1+0)^{\alpha} = 1$$

 $c_0 = f(0)/0! = 1$

$$f'(x) = \alpha (1+x)^{\alpha - 1}$$

 $f'(0) = \alpha (1+0)^{\alpha - 1} = \alpha$
 $c_1 = f'(0)/1! = \alpha$

$$f''(x) = \alpha(\alpha - 1)(1 + x)^{\alpha - 2}$$

$$f''(0) = \alpha(\alpha - 1)(1 + 0)^{\alpha - 2} = \alpha(\alpha - 1)$$

$$c_2 = f''(0)/2! = \alpha(\alpha - 1)/2$$

$$f'''(x) = \alpha(\alpha - 1)(\alpha - 2)(1 + x)^{\alpha - 3}$$

$$f'''(0) = \alpha(\alpha - 1)(\alpha - 2)(1 + 0)^{\alpha - 3} = \alpha(\alpha - 1)(\alpha - 2)$$

$$c_3 = f'''(0)/3! = \alpha(\alpha - 1)(\alpha - 2)/6$$

In general:

$$c_k = \frac{\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-k+1)}{k!}$$

$$(1+x)^{\alpha} = 1 + \sum_{k=1}^{\infty} \frac{\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-k+1)}{k!} x^k$$

- Let α be any real number, or a variable.
- For any integer k > 0, define the *falling factorial*

$$(\alpha)_k = \alpha(\alpha - 1)(\alpha - 2) \cdots (\alpha - k + 1)$$

and the *binomial coefficient*

$$\binom{\alpha}{k} = \frac{(\alpha)_k}{k!} = \frac{\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-k+1)}{k!}$$

- For k = 0, set $(\alpha)_0 = {\binom{\alpha}{0}} = 1$.
- In this notation,

$$(1+x)^{\alpha} = \sum_{k=0}^{\infty} \frac{(\alpha)_k}{k!} x^k = \sum_{k=0}^{\infty} {\alpha \choose k} x^k$$

• When α is a nonnegative integer, $(\alpha)_k = {\alpha \choose k} = 0$ for $k > \alpha$. E.g., for $\alpha = 3$ and $k \ge 4$: $(\alpha)_k = 3 \cdot 2 \cdot 1 \cdot 0 \cdots = 0$

Thus, the series can be truncated at $k = \alpha$, giving the same result as the Binomial Theorem.

Prof. Tesler

Binomial Coefficient Identities

$$(1+x)^{\alpha} = \sum_{k=0}^{\infty} \frac{(\alpha)_k}{k!} x^k = \sum_{k=0}^{\infty} {\alpha \choose k} x^k$$

For what values of *x* does this converge?

- If α is a nonnegative integer, the series terminates and gives a polynomial that converges for all x.
- Otherwise, the series doesn't terminate. Use the ratio test:

$$L = \lim_{k \to \infty} \left| \frac{\operatorname{Term} k + 1}{\operatorname{Term} k} \right|$$

• Compute the ratio

$$\frac{\operatorname{\mathsf{Term}} k+1}{\operatorname{\mathsf{Term}} k} = \frac{\alpha(\alpha-1)\cdots(\alpha-k)/(k+1)!}{\alpha(\alpha-1)\cdots(\alpha-(k-1))/k!} \cdot \frac{x^{k+1}}{x^k} = \frac{(\alpha-k)x}{k+1}$$

• As $k \to \infty$, this ratio approaches -x, with absolute value L = |x|.

$$(1+x)^{\alpha} = \sum_{k=0}^{\infty} \frac{(\alpha)_k}{k!} x^k = \sum_{k=0}^{\infty} {\alpha \choose k} x^k$$

Ratio test:

•
$$L = \lim_{k \to \infty} \left| \frac{\operatorname{Term} k + 1}{\operatorname{Term} k} \right| = |x|$$

• It turns out:

- When α is a nonnegative integer, it converges for all x.
- For $\alpha \ge 0$ that isn't an integer, it converges in $-1 \le x \le 1$.
- For $\alpha < 0$, it converges in -1 < x < 1.
- We will use this series later in Catalan numbers (Chapter 8).

Summary

We already used these proof methods:

- Induction
- Proof by contradiction

Here we used several additional methods to prove identities:

- **Counting in two ways:** Find two formulas for the size of a set, and equate them.
- **Bijections:** Show that there is a bijection between sets *P* and *Q*. Then equate formulas for their sizes, |P| = |Q|.
- Calculus: Manipulate functions such as polynomials or power series using derivatives and other methods from algebra and calculus.