Chapter 3.3, 4.1, 4.3. Binomial Coefficient Identities

Prof. Tesler

Math 184A
Winter 2019

Table of binomial coefficients

$\binom{n}{k}$	$k=0$	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$
$n=0$	1	0	0	0	0	0	0
$n=1$	1	1	0	0	0	0	0
$n=2$	1	2	1	0	0	0	0
$n=3$	1	3	3	1	0	0	0
$n=4$	1	4	6	4	1	0	0
$n=5$	1	5	10	10	5	1	0
$n=6$	1	6	15	20	15	6	1

- Compute a table of binomial coefficients using $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.
- We'll look at several patterns. First, the nonzero entries of each row are symmetric; e.g., row $n=4$ is

$$
\binom{4}{0},\binom{4}{1},\binom{4}{2},\binom{4}{3},\binom{4}{4}=1,4,6,4,1,
$$

which reads the same in reverse. Conjecture: $\binom{n}{k}=\binom{n}{n-k}$.

A binomial coefficient identity

Theorem

For nonegative integers $k \leqslant n$,

$$
\binom{n}{k}=\binom{n}{n-k} \quad \text { including }\binom{n}{0}=\binom{n}{n}=1
$$

First proof: Expand using factorials:

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} \quad\binom{n}{n-k}=\frac{n!}{(n-k)!k!}
$$

These are equal.

Theorem

For nonegative integers $k \leqslant n$,

$$
\binom{n}{k}=\binom{n}{n-k} \quad \text { including }\binom{n}{0}=\binom{n}{n}=1
$$

Second proof: A bijective proof.

- We'll give a bijection between two sets, one counted by the left side, $\binom{n}{k}$, and the other by the right side, $\binom{n}{n-k}$. Since there's a bijection, the sets have the same size, giving $\binom{n}{k}=\binom{n}{n-k}$.
- Let \mathcal{P} be the set of k-element subsets of $[n]$. Note that $|\mathcal{P}|=\binom{n}{k}$.
- For example, with $n=4$ and $k=2$, we have

$$
\mathcal{P}=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\} \quad|\mathcal{P}|=\binom{4}{2}=6
$$

- We'll use complements in [n]. For example, with subsets of [4],

$$
\{1,4\}^{c}=\{2,3\} \quad \text { and } \quad\{3\}^{c}=\{1,2,4\} .
$$

Note that for any $A \subset[n]$, we have $\left|A^{c}\right|=n-|A|$ and $\left(A^{c}\right)^{c}=A$.

Theorem

For nonegative integers $k \leqslant n$,

$$
\binom{n}{k}=\binom{n}{n-k} \quad \text { including }\binom{n}{0}=\binom{n}{n}=1
$$

Second proof: A bijective proof.

- Let \mathcal{P} be the set of $\quad k$-element subsets of $[n] . \quad|\mathcal{P}|=\binom{n}{k}$.
- Let Q be the set of $(n-k)$-element subsets of $[n]$. $\quad|\mathcal{Q}|$
- Define $f: \mathcal{P} \rightarrow Q$ by $f(S)=S^{c}$ (complement of set S in $[n]$).
- Show that this is a bijection:
- f is onto: Given $T \in 2$, then $S=T^{c}$ satisfies $f(S)=\left(T^{c}\right)^{c}=T$. Note that $S \subset[n]$ and $|S|=n-|T|=n-(n-k)=k$, so $S \in \mathcal{P}$.
- f is one-to-one: If $f(R)=f(S)$ then $R^{c}=S^{c}$.

The complement of that is $\left(R^{c}\right)^{c}=\left(S^{c}\right)^{c}$, which simplifies to $R=S$.

- Thus, f is a bijection, so $|\mathcal{P}|=|\mathcal{Q}|$. Thus, $\binom{n}{k}=\binom{n}{n-k}$.

Sum of binomial coefficients

$\binom{n}{k}$	$k=0$	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$	Total
$n=0$	1	0	0	0	0	0	0	1
$n=1$	1	1	0	0	0	0	0	2
$n=2$	1	2	1	0	0	0	0	4
$n=3$	1	3	3	1	0	0	0	8
$n=4$	1	4	6	4	1	0	0	16
$n=5$	1	5	10	10	5	1	0	32
$n=6$	1	6	15	20	15	6	1	64

- Compute the total in each row.
- Any conjecture on the formula?
- The sum in row n seems to be $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$.

Sum of binomial coefficients

Theorem

For integers $n \geqslant 0$,

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

First proof: Based on the Binomial Theorem.

- The Binomial Theorem gives $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$.
- Plug in $x=y=1$:
- $(1+1)^{n}=2^{n}$
- $(1+1)^{n}=\sum_{k=0}^{n}\binom{n}{k} 1^{k} \cdot 1^{n-k}=\sum_{k=0}^{n}\binom{n}{k}$.

Sum of binomial coefficients

Theorem

For integers $n \geqslant 0$,

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

Second proof: Counting in two ways (also called "double counting")

- How many subsets are there of $[n]$?
- We'll compute this in two ways. The two ways give different formulas, but since they count the same thing, they must be equal.
- Right side (we already showed this method):
- Choose whether or not to include 1 (2 choices).
- Choose whether or not to include 2 (2 choices).
- Continue that way up to n. In total, there are 2^{n} combinations of choices, leading to 2^{n} subsets.

Sum of binomial coefficients

Theorem

For integers $n \geqslant 0$,

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

Second proof, continued: Left side:

- Subsets of $[n]$ have sizes between 0 and n.
- There are $\binom{n}{k}$ subsets of size k for each $k=0,1, \ldots, n$.
- The total number of subsets is $\sum_{k=0}^{n}\binom{n}{k}$.
- Equating the two ways of counting gives $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$.

Partition $\mathcal{P}([3])$ as $\left\{A_{0}, A_{1}, A_{2}, A_{3}\right\}$,
where A_{k} is the set of subsets of [3] of size k :

$$
\begin{array}{ll}
A_{0}=\{\emptyset\} & A_{2}=\{\{1,2\},\{1,3\},\{2,3\}\} \\
A_{1}=\{\{1\},\{2\},\{3\}\} & A_{3}=\{\{1,2,3\}\}
\end{array}
$$

Recall that parts of a partition should be nonempty.
Note A_{0} is not equal to \emptyset, but rather has \emptyset as an element.

Recursion for binomial coefficients

- A recursion involves solving a problem in terms of smaller instances of the same type of problem.
- Example: Consider 3-element subsets of [5]:

Subsets without 5		Subsets with 5
$\{1,2,3\}$		$\{1,2,5\}$
$\{1,2,4\}$		$\{1,3,5\}$
$\{1,3,4\}$		$\{1,4,5\}$
$\{2,3,4\}$		$\{2,3,5\}$
	$\{2,4,5\}$	
	$\{3,4,5\}$	

- Subsets without 5: These are actually 3-element subsets of [4], so there are $\binom{4}{3}=4$ of them.
- Subsets with 5: Take all 2-element subsets of [4] and insert a 5 into them. So $\binom{4}{2}=6$ of them.
- Thus, $\binom{5}{3}=\binom{4}{3}+\binom{4}{2}$.

Recursion for binomial coefficients

Theorem

For nonnegative integers n, k :

$$
\binom{n+1}{k+1}=\binom{n}{k}+\binom{n}{k+1}
$$

- We will prove this by counting in two ways. It can also be done by expressing binomial coefficients in terms of factorials.
- How many $k+1$ element subsets are there of $[n+1]$?
- $1^{\text {st }}$ way: There are $\binom{n+1}{k+1}$ subsets of $[n+1]$ of size $k+1$.
- $2^{\text {nd }}$ way: Split the subsets into those that do / do not contain $n+1$:
- Subsets without $n+1$ are actually $(k+1)$-element subsets of $[n]$, so there are $\binom{n}{k+1}$ of them.
- Subsets with $n+1$ are obtained by taking k-element subsets of $[n]$ and inserting $n+1$ into them. There are $\binom{n}{k}$ of these.
- In total, there are $\binom{n}{k+1}+\binom{n}{k}$ subsets of $[n+1]$ with $k+1$ elements.
- Equating the two counts gives the theorem.

Recursion for binomial coefficients

Theorem

For nonnegative integers $n, k: \quad\binom{n+1}{k+1}=\binom{n}{k}+\binom{n}{k+1}$

- However, we can't compute $\binom{5}{0}$ from this (uses $k=-1$), nor $\binom{0}{5}$ (uses $n=-1$). We must handle those separately.
- The initial conditions are

$$
\binom{n}{0}=1 \text { for } n \geqslant 0, \quad\binom{0}{k}=0 \text { for } k \geqslant 1
$$

- For $n \geqslant 0$, the only 0 -element subset of $[n]$ is \emptyset, so $\binom{n}{0}=1$.
- For $k \geqslant 1$, there are no k-element subsets of $[0]=\emptyset$, so $\binom{0}{k}=0$.

Recursion for binomial coefficients

Initial conditions:

$\binom{n}{k}$	$k=0$	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$
$n=0$	1	0	0	0	0	0	0
$n=1$	1						
$n=2$	1						
$n=3$	1						
$n=4$	1						
$n=5$	1						
$n=6$	1						

Recursion: $\binom{n+1}{k+1}=\binom{n}{k}+\binom{n}{k+1}$; these are positioned like this:

$$
\begin{aligned}
\binom{n}{k} & \binom{n}{k+1} \\
& \binom{n+1}{k+1}
\end{aligned}
$$

Use the recursion to fill in the table

$\binom{n}{k}$	$k=0$	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$
$n=0$	1	0	0	0	0	0	0
$n=1$	1	1	0	0	0	0	0
$n=2$	1	2	1	0	0	0	0
$n=3$	1	3	3	1	0	0	0
$n=4$	1	4	6	4	1	0	0
$n=5$	1	5	10	10	5	1	0
$n=6$	1	6	15	20	15	6	1

Pascal's triangle

Alternate way to present the table of binomial coefficients $\binom{n}{k}$

$$
\begin{align*}
& \mathfrak{n}=0 \\
& \mathfrak{n}=1 \\
& \mathfrak{n}=2 \\
& \mathfrak{n}=3 \\
& \mathbf{n}=4 \\
& \mathbf{n}=5 \tag{1}
\end{align*}
$$

5

| | | |
| :---: | :---: | :---: | :---: |
| | 1 | |
| 1 | | 2 |
| | 3 | |
| 4 | | 6 |

Diagonal sums

- Form a diagonal from a 1 on the right edge, in direction \swarrow as shown, for any number of cells, and then turn \searrow for one cell.
- Yellow: $1+2+3+4=10$

$$
\begin{aligned}
\binom{1}{1}+\binom{2}{1}+\binom{3}{1}+\binom{4}{1} & =\binom{5}{2} \\
\binom{3}{3}+\binom{4}{3}+\binom{5}{3} & =\binom{6}{4}
\end{aligned}
$$

- Pink: $1+4+10=15$
- Pattern:

$$
\binom{k}{k}+\binom{k+1}{k}+\binom{k+2}{k}+\cdots+\binom{n}{k}=\binom{n+1}{k+1}
$$

Diagonal sums

Theorem

For integers $0 \leqslant k \leqslant n$,

$$
\binom{k}{k}+\binom{k+1}{k}+\binom{k+2}{k}+\cdots+\binom{n}{k}=\binom{n+1}{k+1}
$$

- Prove by counting $(k+1)$-element subsets of $[n+1]$ in two ways.
- First way: The number of such subsets is $\binom{n+1}{k+1}$.

Diagonal sums

Theorem

For integers $0 \leqslant k \leqslant n$,

$$
\binom{k}{k}+\binom{k+1}{k}+\binom{k+2}{k}+\cdots+\binom{n}{k}=\binom{n+1}{k+1}
$$

- Second way: Categorize subsets by their largest element.
- For $k=2$ and $n=4$, the 3-element subsets of [5] are

Largest element 3	4	5
$\{1,2,3\}$	\{1, 2, 4\}	\{1,2,5\}, $\{2,3,5\}$,
	\{1, 3, 4\}	\{1, 3, 5\}, \{2, 4, 5\},
	$\{2,3,4\}$	$\{1,4,5\},\{3,4,5\}$
$\binom{2}{2} 2$-elt subsets of [2], plus a 3	$\binom{3}{2}$ 2-elt subsets of [3], plus a 4	$\binom{4}{2}$ 2-elt subsets of [4], plus a 5

- Thus, $\binom{2}{2}+\binom{3}{2}+\binom{4}{2}=\binom{5}{3}$.

Diagonal sums

Theorem

For integers $0 \leqslant k \leqslant n$,

$$
\binom{k}{k}+\binom{k+1}{k}+\binom{k+2}{k}+\cdots+\binom{n}{k}=\binom{n+1}{k+1}
$$

Partition the $(k+1)$-element subsets of $[n+1]$ by their largest element:

- The largest element ranges from $k+1$ to $n+1$.
- For largest element $j \in\{k+1, k+2, \ldots, n+1\}$, take any k-element subset of $[j-1]$ and insert j. There are $\binom{j-1}{k}$ subsets to choose.
- This gives the left side:

$$
\sum_{j=k+1}^{n+1}\binom{j-1}{k}=\sum_{j=k}^{n}\binom{j}{k}
$$

Special cases of $(x+1)^{n}$

- By the Binomial Theorem,

$$
(x+1)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} 1^{n-k}=\sum_{k=0}^{n}\binom{n}{k} x^{k}
$$

- We will give combinatorial interpretations of these special cases:
- For $n \geqslant 0, \quad 2^{n}=(1+1)^{n}=\sum_{k=0}^{n}\binom{n}{k}$: We already did this.
- For $n>0, \quad 0^{n}=(-1+1)^{n} \quad$ gives $0=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}$
- For $n \geqslant 0, \quad 3^{n}=(2+1)^{n}=\sum_{k=0}^{n}\binom{n}{k} 2^{k}$

Alternating sums

Alternating sum

1	$=1$
$1-1$	$=0$
$1-2+1$	$=0$
$1-3+3-1$	$=0$
$1-4+6-4+1$	$=0$
$1-5+10-10+5-1$	$=0$

- Form an alternating sum in each row of Pascal's Triangle.

It appears that

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}= \begin{cases}1 & \text { for } n=0 \\ 0 & \text { for } n>0\end{cases}
$$

- This is the Binomial Theorem expansion of $(-1+1)^{n}$:
- For $n>0$: it's $0^{n}=0$.
- For $n=0$: In general, 0^{0} is not well-defined. Here, it arises from $(x+y)^{0}=1$, and then setting $x=-1, y=1$.
- We'll also do a bijective proof.

Notation for set differences

Let A and B be sets.

- The set difference $A \backslash B$ is the set of elements that are in A but not in B :

$$
\begin{gathered}
A \backslash B=A \cap B^{c}=\{x: x \in A \text { and } x \notin B\} \\
\{1,3,5,7\} \backslash\{2,3,4,5,6\}=\{1,7\}
\end{gathered}
$$

- The symmetric difference $A \Delta B$ is the set of elements that are in A or in B but not in both:

$$
\begin{aligned}
A \Delta B & =\{x: x \in A \cup B \text { and } x \notin A \cap B\} \\
& =(A \cup B) \backslash(A \cap B) \\
& =(A \backslash B) \cup(B \backslash A)
\end{aligned}
$$

$$
\{1,3,5,7\} \Delta\{2,3,4,5,6\}=\{1,2,4,6,7\}
$$

Alternating sums (bijective proof)

Theorem

For $n \geqslant 1$,

$$
\sum_{\substack{k=0 \\ k \text { even }}}^{n}\binom{n}{k}=\sum_{\substack{k=0 \\ k \text { odd }}}^{n}\binom{n}{k}
$$

- Subtracting the right side from the left gives $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0$.
- Let \mathcal{P} be the even-sized subsets of $[n]$.
- Let Q be the odd-sized subsets of $[n]$.
- This is a bijection $f: \mathcal{P} \rightarrow \mathcal{Q}$. For $A \in \mathcal{P}$,

$$
f(A)=A \Delta\{1\}= \begin{cases}A \cup\{1\} & \text { if } 1 \notin A ; \\ A \backslash\{1\} & \text { if } 1 \in A .\end{cases}
$$

The inverse $f^{-1}: Q \rightarrow \mathcal{P}$ is $f^{-1}(B)=B \Delta\{1\}$.

- Thus, $|\mathcal{P}|=|\mathcal{Q}|$. Substitute $|\mathcal{P}|=\sum_{\substack{k=0 \\ k \text { even }}}^{n}\binom{n}{k}$ and $|\mathcal{Q}|=\sum_{\substack{k=0 \\ k \text { odd }}}^{n}\binom{n}{k}$.

Alternating sums (bijective proof)

Example: $n=4$

Example: Subsets of [4]
\mathcal{P} (even): $\emptyset \quad\{1,2\} \quad\{1,3\} \quad\{1,4\} \quad\{2,3\} \quad\{2,4\} \quad\{3,4\} \quad\{1,2,3,4\}$

| \mid |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\{1\}$ | $\{2\}$ | $\{3\}$ | $\{4\}$ | $\{1,2,3\}$ | $\{1,2,4\}$ | $\{1,3,4\}$ |

Example: $\sum_{k=0}^{n}\binom{n}{k} 2^{k}=3^{n}$

Prove by counting in two ways
Let $n \geqslant 0$. How many pairs of sets (A, B) are there with $A \subset B \subset[n]$?

First count

- Choose the size of $B: k=0, \ldots, n$.
- Choose $B \subset[n]$ of size k in one of $\binom{n}{k}$ ways.
- Choose $A \subset B$ in one of 2^{k} ways.
- Total: $\sum_{k=0}^{n}\binom{n}{k} 2^{k}$

Second count

- For each element $i=1, \ldots, n$, choose one of:
- i is in both A and B
- i is in B only
- i is in neither

Cannot have i in A only, since then $A \not \subset B$.

- There are 3 choices for each i, giving a total 3^{n}.

Thus, $\quad \sum_{k=0}^{n}\binom{n}{k} 2^{k}=3^{n}$

Example: $\sum_{k=1}^{n} k\binom{n}{k}=n \cdot 2^{n-1} \quad($ for $n \geqslant 1)$

- Example of the above identity at $n=4$:

$$
\begin{gathered}
1\binom{4}{1}+2\binom{4}{2}+3\binom{4}{3}+4\binom{4}{4} \\
=1 \cdot 4+2 \cdot 6+3 \cdot 4+4 \cdot 1 \\
=4+12+12+4 \\
=32=4 \cdot 2^{4-1}
\end{gathered}
$$

- We will prove the identity using "Counting in two ways" and also using Calculus.

Example: $\sum_{k=1}^{n} k\binom{n}{k}=n \cdot 2^{n-1} \quad($ for $n \geq 1)$

First method: Counting in two ways

- Scenario: In a group of n people, we want to choose a subset to form a committee, and appoint one committee member as the chair of the committee. How may ways can we do this?
- Write this as follows:

$$
\mathcal{A}=\{(S, x): S \subseteq[n] \text { and } x \in S\}
$$

S represents the committee and x represents the chair.

- We will compute $|\mathcal{A}|$ by counting it in two ways:
- Pick S first and then x.
- Or, pick x first and then S.

Example: $\sum_{k=1}^{n} k\binom{n}{k}=n \cdot 2^{n-1} \quad($ for $n \geqslant 1)$

First method: Counting in two ways

$$
\mathcal{A}=\{(S, x): S \subseteq[n] \text { and } x \in S\}
$$

Pick S first and x second

- Pick the size of the committee (S) first: $k=1, \ldots, n$.

It has to be at least 1, since the committee has a chair.

- Pick k committee members in one of $\binom{n}{k}$ ways.
- Pick one of the k committee members to be the chair, x.
- Total: $\sum_{k=1}^{n}\binom{n}{k} \cdot k$

Pick x first and S second

- Pick any element of $[n]$ to be the chair, x. There are n choices.
- Pick the remaining committee members by taking any subset S^{\prime} of $[n] \backslash\{x\}$; there are 2^{n-1} ways to do this.
- Set $S=\{x\} \cup S^{\prime}$. Total: $n \cdot 2^{n-1}$

Comparing the two totals gives: for $n \geqslant 1, \quad \sum_{k=1}^{n} k\binom{n}{k}=n \cdot 2^{n-1}$.

Example: $\sum_{k=0}^{n} k\binom{n}{k}=n \cdot 2^{n-1} \quad($ for $n \geqslant 0)$

Second method: Calculus

- By the Binomial Theorem, for any integer $n \geqslant 0$:

$$
(x+1)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}
$$

- Differentiate with respect to x :

$$
n(x+1)^{n-1}=\sum_{k=0}^{n}\binom{n}{k} k x^{k-1}
$$

- Set $x=1$:

$$
n(1+1)^{n-1}=n \cdot 2^{n-1}=\sum_{k=0}^{n}\binom{n}{k} k \quad \text { for } n \geqslant 0
$$

- Note that this includes $k=0$ and holds for $n \geqslant 0$, while the first method started at $k=1$ and held for $n \geqslant 1$.
- The $k=0$ term is optional since $\binom{n}{0} \cdot 0=0$.
- We could have done additional steps in either method to prove the other version of the identity.

Taylor series review

Recall the formula for the Taylor Series of $f(x)$ centered at $x=a$:

$$
f(x)=\sum_{k=0}^{\infty} c_{k}(x-a)^{k} \quad \text { where } c_{k}=\frac{f^{(k)}(a)}{k!}
$$

We'll focus on $a=0$ (also called the Maclaurin series).
Compute the $k^{\text {th }}$ derivative as a function of x, and plug in $x=0$:

$$
\begin{aligned}
& f(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+\cdots \\
& f(0)=c_{0}+0+0+0+0+\cdots \quad c_{0}=f(0) \\
& f^{\prime}(x)=\quad c_{1}+2 c_{2} x+3 c_{3} x^{2}+4 c_{4} x^{3}+\cdots \\
& f^{\prime}(0)=c_{1}+0+0+0+\cdots \quad c_{1}=f^{\prime}(0) \\
& f^{\prime \prime}(x)=\quad 2 c_{2}+6 c_{3} x+12 c_{4} x^{2}+\cdots \\
& f^{\prime \prime}(0)= \\
& f^{\prime \prime \prime}(x)= \\
& f^{\prime \prime \prime}(0)= \\
& 2 c_{2}+0+0+\cdots \quad c_{2}=f^{(2)}(0) / 2 \\
& 6 c_{3}+24 c_{4} x+\cdots \\
& 6 c_{3}+0+\cdots c_{3}=f^{(3)}(0) / 6
\end{aligned}
$$

Binomial series $(1+x)^{\alpha}$ when α is a real number

We will compute the Taylor series of $(1+x)^{\alpha}$ for any real number α, not necessarily a positive integer:

$$
f(x)=(1+x)^{\alpha}=\sum_{k=0}^{\infty} c_{k} x^{k}
$$

$$
\begin{aligned}
f(0) & =(1+0)^{\alpha}=1 \\
c_{0} & =f(0) / 0!=1
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}(x) & =\alpha(1+x)^{\alpha-1} \\
f^{\prime}(0) & =\alpha(1+0)^{\alpha-1}=\alpha \\
c_{1} & =f^{\prime}(0) / 1!=\alpha
\end{aligned}
$$

Binomial series $(1+x)^{\alpha}$ when α is a real number

$$
\begin{gathered}
f^{\prime \prime}(x)=\alpha(\alpha-1)(1+x)^{\alpha-2} \\
f^{\prime \prime}(0)=\alpha(\alpha-1)(1+0)^{\alpha-2}=\alpha(\alpha-1) \\
c_{2}=f^{\prime \prime}(0) / 2!=\alpha(\alpha-1) / 2 \\
f^{\prime \prime \prime}(x)=\alpha(\alpha-1)(\alpha-2)(1+x)^{\alpha-3} \\
f^{\prime \prime \prime}(0)=\alpha(\alpha-1)(\alpha-2)(1+0)^{\alpha-3}=\alpha(\alpha-1)(\alpha-2) \\
c_{3}=f^{\prime \prime \prime}(0) / 3!=\alpha(\alpha-1)(\alpha-2) / 6
\end{gathered}
$$

In general:

$$
\begin{gathered}
c_{k}=\frac{\alpha(\alpha-1)(\alpha-2) \cdots(\alpha-k+1)}{k!} \\
(1+x)^{\alpha}=1+\sum_{k=1}^{\infty} \frac{\alpha(\alpha-1)(\alpha-2) \cdots(\alpha-k+1)}{k!} x^{k}
\end{gathered}
$$

Binomial series $(1+x)^{\alpha}$ when α is a real number

- Let α be any real number, or a variable.
- For any integer $k>0$, define the falling factorial

$$
(\alpha)_{k}=\alpha(\alpha-1)(\alpha-2) \cdots(\alpha-k+1)
$$

and the binomial coefficient

$$
\binom{\alpha}{k}=\frac{(\alpha)_{k}}{k!}=\frac{\alpha(\alpha-1)(\alpha-2) \cdots(\alpha-k+1)}{k!}
$$

- For $k=0$, set $(\alpha)_{0}=\binom{\alpha}{0}=1$.
- In this notation,

$$
(1+x)^{\alpha}=\sum_{k=0}^{\infty} \frac{(\alpha)_{k}}{k!} x^{k}=\sum_{k=0}^{\infty}\binom{\alpha}{k} x^{k}
$$

- When α is a nonnegative integer, $(\alpha)_{k}=\binom{\alpha}{k}=0$ for $k>\alpha$. E.g., for $\alpha=3$ and $k \geqslant 4: \quad(\alpha)_{k}=3 \cdot 2 \cdot 1 \cdot 0 \cdots=0$

Thus, the series can be truncated at $k=\alpha$, giving the same result as the Binomial Theorem.

Binomial series $(1+x)^{\alpha}$ when α is a real number

$$
(1+x)^{\alpha}=\sum_{k=0}^{\infty} \frac{(\alpha)_{k}}{k!} x^{k}=\sum_{k=0}^{\infty}\binom{\alpha}{k} x^{k}
$$

For what values of x does this converge?

- If α is a nonnegative integer, the series terminates and gives a polynomial that converges for all x.
- Otherwise, the series doesn't terminate. Use the ratio test:

$$
L=\lim _{k \rightarrow \infty}\left|\frac{\text { Term } k+1}{\text { Term } k}\right|
$$

- Compute the ratio

$$
\frac{\operatorname{Term} k+1}{\operatorname{Term} k}=\frac{\alpha(\alpha-1) \cdots(\alpha-k) /(k+1)!}{\alpha(\alpha-1) \cdots(\alpha-(k-1)) / k!} \cdot \frac{x^{k+1}}{x^{k}}=\frac{(\alpha-k) x}{k+1}
$$

- As $k \rightarrow \infty$, this ratio approaches $-x$, with absolute value $L=|x|$.

Binomial series $(1+x)^{\alpha}$ when α is a real number

$$
(1+x)^{\alpha}=\sum_{k=0}^{\infty} \frac{(\alpha)_{k}}{k!} x^{k}=\sum_{k=0}^{\infty}\binom{\alpha}{k} x^{k}
$$

- Ratio test:
- $L=\lim _{k \rightarrow \infty}\left|\frac{\text { Term } k+1}{\text { Term } k}\right|=|x|$
- If $L<1(|x|<1)$, it converges.

If $L>1(|x|>1)$, it diverges.
If $L=1(|x|=1)$, the test is inconclusive.

- It turns out:
- When α is a nonnegative integer, it converges for all x.
- For $\alpha \geqslant 0$ that isn't an integer, it converges in $-1 \leqslant x \leqslant 1$.
- For $\alpha<0$, it converges in $-1<x<1$.
- We will use this series later in Catalan numbers (Chapter 8).

Summary

We already used these proof methods:

- Induction
- Proof by contradiction

Here we used several additional methods to prove identities:

- Counting in two ways: Find two formulas for the size of a set, and equate them.
- Bijections: Show that there is a bijection between sets P and Q. Then equate formulas for their sizes, $|P|=|Q|$.
- Calculus: Manipulate functions such as polynomials or power series using derivatives and other methods from algebra and calculus.

