Chapter 5: Integer Compositions and Partitions and Set Partitions

Prof. Tesler

Math 184A
Winter 2019

5.1. Compositions

- A strict composition of n is a tuple of positive integers that sum to n. The strict compositions of 4 are

$$
(4) \quad(3,1) \quad(1,3) \quad(2,2) \quad(2,1,1) \quad(1,2,1) \quad(1,1,2) \quad(1,1,1,1)
$$

- It's a tuple, so $(2,1,1),(1,2,1),(1,1,2)$ are all distinct. Later, we'll consider integer partitions, in which we regard those as equivalent and only use the one with decreasing entries, $(2,1,1)$.
- A weak composition of n is a tuple of nonnegative integers that sum to n.

$$
(1,0,0,3) \text { is a weak composition of } 4 \text {. }
$$

- If strict or weak is not specified, a composition means a strict composition.

Notation and drawings of compositions

- Tuple notation: $3+1+1$ and $1+3+1$ both evaluate to 5 . To properly distinguish between them, we represent them as tuples, $(3,1,1)$ and ($1,3,1$), since tuples are distinguishable.
- Drawings:

Sum	Tuple	Dots and bars
$3+1+1$	$(3,1,1)$	$\cdots \cdot\|\cdot\| \cdot$
$1+3+1$	$(1,3,1)$	$\cdot\|\cdots\| \cdot$
$0+4+1$	$(0,4,1)$	$\|\cdots \cdot\| \cdot$
$4+1+0$	$(4,1,0)$	$\cdots \cdot\|\cdot\|$
$4+0+1$	$(4,0,1)$	$\cdots \cdot \mid \cdot$
$4+0+0+1$	$(4,0,0,1)$	$\cdots \cdot\|\mid \cdot$

- If there is a bar at the beginning/end, the first/last part is 0 . If there are any consecutive bars, some part(s) in the middle are 0.

How many strict compositions of n into k parts?

- A composition of n into k parts has n dots and $k-1$ bars.
- Draw n dots:
- There are $n-1$ spaces between the dots.
- Choose $k-1$ of the spaces and put a bar in each of them.
- For $n=5, k=3$:
- The bars split the dots into parts of sizes $\geqslant 1$, because there are no bars at the beginning or end, and no consecutive bars.
- Thus, there are $\binom{n-1}{k-1}$ strict compositions of n into k parts, for $n, k \geqslant 1$.
- For $n=5$ and $k=3$, we get $\binom{5-1}{3-1}=\binom{4}{2}=6$.

Total \# of strict compositions of $n \geqslant 1$ into any number of parts

- 2^{n-1} by placing bars in any subset (of any size) of the $n-1$ spaces.
- Or, $\sum_{k=1}^{n}\binom{n-1}{k-1}$, so the total is $2^{n-1}=\sum_{k=1}^{n}\binom{n-1}{k-1}$.

How many weak compositions of n into k parts?

Review: We covered this when doing the Multinomial Theorem

- The diagram has n dots and $k-1$ bars in any order. No restriction on bars at the beginning/end/consecutively since parts=0 is OK.
- There are $n+k-1$ symbols.

Choose n of them to be dots (or $k-1$ of them to be bars):

$$
\binom{n+k-1}{n}=\binom{n+k-1}{k-1}
$$

- For $n=5$ and $k=3$, we have

$$
\binom{5+3-1}{5}=\binom{7}{5}=21 \quad \text { or } \quad\binom{5+3-1}{3-1}=\binom{7}{2}=21 .
$$

- The total number of weak compositions of n of all sizes is infinite, since we can insert any number of 0 's into a strict composition of n.

Relation between weak and strict compositions

- Let $\left(a_{1}, \ldots, a_{k}\right)$ be a weak composition of n (parts $\geqslant 0$).
- Add 1 to each part to get a strict composition of $n+k$:

$$
\left(a_{1}+1\right)+\left(a_{2}+1\right)+\cdots+\left(a_{k}+1\right)=\left(a_{1}+\cdots+a_{k}\right)+k=n+k
$$

The parts of $\left(a_{1}+1, \ldots, a_{k}+1\right)$ are $\geqslant 1$ and sum to $n+k$.

- $(2,0,3)$ is a weak composition of 5 .
$(3,1,4)$ is a strict composition of $5+3=8$.
- This is reversible and leads to a bijection between Weak compositions of n into k parts
\longleftrightarrow Strict compositions of $n+k$ into k parts (Forwards: add 1 to each part; reverse: subtract 1 from each part.)
- Thus, the number of weak compositions of n into k parts
$=$ The number of strict compositions of $n+k$ into k parts
$=\binom{n+k-1}{k-1}$.

5.2. Set partitions

- A partition of a set A is a set of nonempty subsets of A called blocks, such that every element of A is in exactly one block.
- A set partition of $\{1,2,3,4,5,6,7\}$ into three blocks is

$$
\{\{1,3,6\},\{2,7\},\{4,5\}\} .
$$

- This is a set of sets. Since sets aren't ordered, the blocks can be put in another order, and the elements within each block can be written in a different order:

$$
\{\{1,3,6\},\{2,7\},\{4,5\}\}=\{\{5,4\},\{6,1,3\},\{7,2\}\} .
$$

- Define $S(n, k)$ as the number of partitions of an n-element set into k blocks. This is called the Stirling Number of the Second Kind. We will find a recursion and other formulas for $S(n, k)$.
- Must use capital ' S ' in $S(n, k)$; later we'll define a separate function $s(n, k)$ with lowercase ' s '.

How do partitions of [n] relate to partitions of $[n-1]$?

- Define $[0]=\emptyset$ and $[n]=\{1,2, \ldots, n\}$ for integers $n>0$. It is convenient to use $[n]$ as an example of an n-element set.
- Examine what happens when we cross out n in a set partition of [n], to obtain a set partition of $[n-1]$ (here, $n=5$):

$$
\begin{aligned}
\{\{1,3\},\{2,4,5\}\} & \rightarrow\{\{1,3\},\{2,4\}\} \\
\{\{1,3,5\},\{2,4\}\} & \rightarrow\{1,3\},\{2,4\}\} \\
\{\{1,3\},\{2,4\},\{5\}\} & \rightarrow\{\{1,3\},\{2,4\}\}
\end{aligned}
$$

- For all three of the set partitions on the left, removing 5 yields the set partition $\{\{1,3\},\{2,4\}\}$.
- In the first two, 5 was in a block with other elements, and removing it yielded the same number of blocks.
- In the third, 5 was in its own block, so we also had to remove the block \{5\} since only nonempty blocks are allowed.

How do partitions of [n] relate to partitions of $[n-1]$?

- Reversing that, there are three ways to insert 5 into $\{\{1,3\},\{2,4\}\}$:

$$
\{\{1,3\},\{2,4\}\} \rightarrow \begin{cases}\{\{1,3,5\},\{2,4\}\} & \text { insert in } 1^{\text {st }} \text { block; } \\ \{\{1,3\},\{2,4,5\}\} & \text { insert in } 2^{\text {nd }} \text { block; } \\ \{\{1,3\},\{2,4\},\{5\}\} & \text { insert as new block. }\end{cases}
$$

- Inserting n in an existing block keeps the same number of blocks.
- Inserting $\{n\}$ as a new block increases the number of blocks by 1 .

Recursion for $S(n, k)$

Insert n into a partition of $[n-1]$ to obtain a partition of $[n]$ into k blocks:

- Case: partitions of $[\boldsymbol{n}]$ in which \boldsymbol{n} is not in a block alone: Choose a partition of $[n-1]$ into k blocks Insert n into any of these blocks

$$
\text { Subtotal: } k \cdot S(n-1, k)
$$

- Case: partitions of $[\boldsymbol{n}]$ in which \boldsymbol{n} is in a block alone:

Choose a partition of $[n-1]$ into $k-1$ blocks ($S(n-1, k-1$) ways) and add a new block $\{n\}$
(one way)

$$
\text { Subtotal: } S(n-1, k-1)
$$

- Total: $\quad S(n, k)=k \cdot S(n-1, k)+S(n-1, k-1)$
- This recursion requires $n-1 \geqslant 0$ and $k-1 \geqslant 0$, so $n, k \geqslant 1$.

Initial conditions for $S(n, k)$

When $n=0$ or $k=0$

$n=0$: Partitions of \emptyset

- It is not valid to partition the null set as $\{\emptyset\}$, since that has an empty block.
- However, it is valid to partition it as $\}=\emptyset$. There are no blocks, so there are no empty blocks. The union of no blocks equals \emptyset.
- This is the only partition of \emptyset, so $S(0,0)=1$ and $S(0, k)=0$ for $k>0$.
$k=0$: partitions into 0 blocks
- $S(n, 0)=0$ when $n>0$ since every partition of $[n]$ must have at least one block.

Not an initial condition, but related:

- $S(n, k)=0$ for $k>n$ since the partition of $[n]$ with the most blocks is $\{\{1\}, \ldots,\{n\}\}$.

Table of values of $S(n, k)$: Initial conditions

Compute $S(n, k)$ from the recursion and initial conditions:

Table of values of $S(n, k)$: Recursion

Compute $S(n, k)$ from the recursion and initial conditions:

Table of values of $S(n, k)$

Compute $S(n, k)$ from the recursion and initial conditions:

Table of values of $S(n, k)$

Compute $S(n, k)$ from the recursion and initial conditions:

$\begin{aligned} & S(0, \\ & S(n, \\ & S(0, \end{aligned}$	1 0 if n 0 if k		$k)=k$	$n-1, k$ $n-1$, $\geqslant 1$	$k \geqslant 1$
$S(n, k)$	$k=0$	$k=1$	$k=2$	$k=3$	$k=4$
$n=0$	1	0	0	0	0
$n=1$	0	1	0		
$n=2$	0				
$n=3$	0				
$n=4$	0				

Table of values of $S(n, k)$

Compute $S(n, k)$ from the recursion and initial conditions:

$S(0,0)=1$			$S(n, k)=k \cdot S(n-1, k)$		
$S(n, 0)=0$ if $n>0$			$+S(n-1, k-1)$		
$S(0, k)=0$ if $k>$			if $n \geqslant 1$ and $k \geqslant 1$		
$S(n, k)$	$k=0$	$k=1$	$k=2$	$k=3$	$k=4$
$n=0$	1	0	0	0	0
$n=1$	0	1	0	0	0
$n=2$	0				
$n=3$	0				
$n=4$	0				

Table of values of $S(n, k)$

Compute $S(n, k)$ from the recursion and initial conditions:

Table of values of $S(n, k)$

Compute $S(n, k)$ from the recursion and initial conditions:

$S(0,0)=1$			$S(n, k)=k \cdot S(n-1, k)$		
$S(n, 0)=0$ if $n>0$			$+S(n-1, k-1)$		
$S(0, k)=0$ if $k>0$			if $n \geqslant 1$ and $k \geqslant 1$		
$S(n, k)$	$k=0$	$k=1$	$k=2$	$k=3$	$k=4$
$n=0$	1	0	0	0	0
$n=1$	0	1	0	0	0
$n=2$	0	1	1		
$n=3$	0				
$n=4$	0				

Table of values of $S(n, k)$

Compute $S(n, k)$ from the recursion and initial conditions:

Table of values of $S(n, k)$

Compute $S(n, k)$ from the recursion and initial conditions:

Table of values of $S(n, k)$

Compute $S(n, k)$ from the recursion and initial conditions:

Example and Bell numbers

- $S(n, k)$ is the number of set partitions of $[n]$ into k blocks. For $n=4$:
$k=1$
$k=2$
$k=3$
$k=4$

					$\{\{1,2,3\},\{4\}\}$	$\{\{1,2\},\{3\},\{4\}\}$	
	$\{\{1,2,4\},\{3\}\}$	$\{1,2\},\{2\},\{4\}\}$					
	$\{\{1,3,4\},\{2\}\}$	$\{1,3,,\{2\},\{2\}\}$					
$\{\{1,2,3,4\}\}$	$\{\{2,3,4\},\{1\}\}$	$\{1,4\},\{2\},\{3\},\{4\}\}$					
	$\{\{1,2\},\{3,4\}\}$	$\{2,3\},\{1\},\{4\}\}$					
	$\{\{1,3\},\{2,4\}\}$	$\{2,4\},\{1\},\{3\}\}$					
	$\{\{1,4\},\{2,3\}\}$	$\{\{3,4\},\{1\},\{2\}\}$					
$S(4,1)=1$	$S(4,2)=7$	$S(4,3)=6$	$S(4,4)=1$				

- The Bell number B_{n} is the total number of set partitions of $[n]$ into any number of blocks:

$$
B_{n}=S(n, 0)+S(n, 1)+\cdots+S(n, n)
$$

- Total: $B_{4}=1+7+6+1=15$

Table of Stirling numbers and Bell numbers

Compute $S(n, k)$ from the recursion and initial conditions:

$$
\begin{array}{lr}
S(0,0)=1 & S(n, k)=k \cdot S(n-1, k) \\
S(n, 0)=0 \text { if } n>0 & +S(n-1, k-1) \\
S(0, k)=0 \text { if } k>0 & \text { if } n \geqslant 1 \text { and } k \geqslant 1
\end{array}
$$

$S(n, k)$	$k=0$	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	Row total B_{n}
$n=0$	1	0	0	0	0	0	1
$n=1$	0	1	0	0	0	0	1
$n=2$	0	1	1	0	0	0	2
$n=3$	0	1	3	1	0	0	5
$n=4$	0	1	7	6	1	0	15
$n=5$	0	1	15	25	10	1	52

Simplex locks

- Simplex brand locks were a popular combination lock with 5 buttons.
- The combination 13-25-4 means:
- Push buttons 1 and 3 together.
- Push buttons 2 and 5 together.
- Push 4 alone.
- Turn the knob to open.
- Buttons cannot be reused.
- We first consider the case that all buttons are used, and separately consider the case that some buttons aren't used.

Represent the combination 13-25-4 as an ordered set partition

- We may represent 13-25-4 as an ordered set partition

$$
(\{1,3\},\{2,5\},\{4\})
$$

- Block $\{1,3\}$ is first, block $\{2,5\}$ is second, and block $\{4\}$ is third.
- Blocks are sets, so can replace $\{1,3\}$ by $\{3,1\}$, or $\{2,5\}$ by $\{5,2\}$.
- Parentheses on the outer level make it an ordered tuple:

$$
(\{1,3\},\{2,5\},\{4\})
$$

- By contrast, a set partition is a set of blocks:

$$
\{\{1,3\},\{2,5\},\{4\}\}
$$

- Braces on the outer level make it a set instead of an ordered tuple.
- Reordering blocks just changes how we write it but doesn't give a new set partition: $\{\{1,3\},\{2,5\},\{4\}\}=\{\{5,2\},\{4\},\{1,3\}\}$

Number of combinations

- Let $n=\#$ of buttons (which must all be used)
$k=\#$ groups of button pushes.
- There are $S(n, k)$ ways to split the buttons into k blocks
$\times k$! ways to order the blocks
$=k!\cdot S(n, k)$ combinations.
- The \# of combinations on $n=5$ buttons and $k=3$ groups of pushes is

$$
3!\cdot S(5,3)=6 \cdot 25=\mathbf{1 5 0}
$$

Represent the combination 13-25-4 as a surjective (onto) function

- Define a function $f(i)=j$, where button i is in push number j :

$i=$ button number	$j=$ push number
1	1
2	2
3	1
4	3
5	2

- This gives a surjective (onto) function $f:[5] \rightarrow[3]$.
- The blocks of buttons pushed are

$$
1^{\text {st }}: f^{-1}(1)=\{1,3\} \quad 2^{\text {nd }}: f^{-1}(2)=\{2,5\} \quad 3^{\text {rd }}: f^{-1}(3)=\{4\}
$$

Theorem

The number of surjective (onto) functions $f:[n] \rightarrow[k]$ is $k!\cdot S(n, k)$.

Proof.

Split [n] into k nonempty blocks in one of $S(n, k)$ ways.
Choose one of k ! orders for the blocks: $\left(f^{-1}(1), \ldots, f^{-1}(k)\right)$.

How many combinations don't use all the buttons?

- The combination 3-25 does not use 1 and 4.
- Trick: write it as 3-25-(14), with all unused buttons in one "phantom" push at the end.
- There are three groups of buttons and we don't use the $3^{\text {rd }}$ group.
- \# combinations with 2 pushes that don't use all buttons = \# combinations with 3 pushes that do use all buttons.
- For set partition $\{\{3\},\{2,5\},\{1,4\}\}$, the 3 ! orders of the blocks give:

Ordered 3-tuple Actual combination + phantom push

$(\{3\},\{2,5\},\{1,4\})$	$3-25$	$3-25-(14)$
$(\{3\},\{1,4\},\{2,5\})$	$3-14$	$3-14-(25)$
$(\{2,5\},\{3\},\{1,4\})$	$25-3$	$25-3-(14)$
$(\{2,5\},\{1,4\},\{3\})$	$25-14$	$25-14-(3)$
$(\{1,4\},\{3\},\{2,5\})$	$14-3$	$14-3-(25)$
$(\{1,4\},\{2,5\},\{3\})$	$14-25$	$14-25-(3)$

How many combinations don't use all the buttons?

- Putting all unused buttons into one phantom push at the end gives a bijection between
- Combinations with $k-1$ pushes that don't use all n buttons, and
- Combinations with k pushes that do use all n buttons.

Lemma (General case)

For $n, k \geqslant 1$:
The \# combinations with $k-1$ pushes that don't use all n buttons
= the \# combinations with k pushes that do use all n buttons
$=k!\cdot S(n, k)$.

Counting the total number of functions $f:[n] \rightarrow[k]$

We will count the number of functions $f:[n] \rightarrow[k]$ in two ways.

First method

$(k$ choices of $f(1)) \times(k$ choices of $f(2)) \times \cdots \times(k$ choices of $f(n))=k^{n}$

Counting the total number of functions $f:[n] \rightarrow[k]$

Second method: Classify functions by their images and inverses

- Consider $f:[10] \rightarrow\{a, b, c, d, e\}$:

$$
\begin{aligned}
\mathrm{i} & \left.=\left\lvert\, \begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\mathrm{f}(\mathrm{i}) & = & \mathrm{a} & \mathrm{c} & \mathrm{c} & \mathrm{a} & \mathrm{c} & \mathrm{~d} & \mathrm{c} & \mathrm{a} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right.\right)
\end{aligned}
$$

- The domain is [10].
- The codomain (or target) is $\{a, b, c, d, e\}$.
- The image is image $(f)=\{f(1), \ldots, f(10)\}=\{a, c, d\}$. It's a subset of the codomain.
- The inverse blocks are

$$
\begin{array}{ll}
f^{-1}(a)=\{1,4,8\} & f^{-1}(c)=\{2,3,5,7,9\} \\
f^{-1}(d)=\{6,10\} & f^{-1}(b)=f^{-1}(e)=\emptyset
\end{array}
$$

- $f:[10] \rightarrow\{a, b, c, d, e\}$ is not onto, but $f:[10] \rightarrow\{a, c, d\}$ is onto.

Counting the total number of functions $f:[n] \rightarrow[k]$

 Second method, continued- Consider $f:[10] \rightarrow\{a, b, c, d, e\}$:

$$
\begin{array}{rl}
\mathrm{i} & = \\
\mathrm{f}(\mathrm{i}) & =1 \\
\mathrm{a} & 2 \\
\mathrm{c} & \mathrm{c} \\
\mathrm{c} & \mathrm{a}
\end{array} \mathrm{c}
$$

- $f:[10] \rightarrow\{a, b, c, d, e\}$ is not onto, but $f:[10] \rightarrow\{a, c, d\}$ is onto.
- There are $S(10,3) \cdot 3$! surjective functions $f:[10] \rightarrow\{a, c, d\}$.
- Classify all $f:[10] \rightarrow\{a, b, c, d, e\}$ according to $T=\operatorname{image}(f)$.
- There are $\binom{5}{3}$ subsets $T \subseteq\{a, b, c, d, e\}$ of size $|T|=3$.

Each T has $S(10,3) \cdot 3$! surjective functions $f:[10] \rightarrow T$.
So $S(10,3) \cdot 3!\cdot\binom{5}{3}$ functions $f:[10] \rightarrow\{a, \ldots, e\}$ have $|\operatorname{image}(f)|=3$.

- Simplify: $\quad 3!\cdot\binom{5}{3}=3!\cdot \frac{5!}{3!2!}=\frac{5!}{2!}=5 \cdot 4 \cdot 3=(5)_{3}$ So $S(10,3) \cdot(5)_{3}$ functions $f:[10] \rightarrow[5]$ have $|\operatorname{image}(f)|=3$.

Counting the total number of functions $f:[n] \rightarrow[k]$

 Second method, continued- In general, $S(n, i) \cdot(k)_{i}$ functions $f:[n] \rightarrow[k]$ have $|\operatorname{image}(f)|=i$.
- Summing over all possible image sizes $i=0, \ldots, n$ gives the total number of functions $f:[n] \rightarrow[k]$

$$
\sum_{i=0}^{n} S(n, i) \cdot(k)_{i}
$$

- Putting this together with the first method gives

$$
k^{n}=\sum_{i=0}^{n} S(n, i) \cdot(k)_{i} \quad \text { for all integers } n, k \geqslant 0
$$

Counting the total number of functions $f:[n] \rightarrow[k]$

 Second method, continued$$
k^{n}=\sum_{i=0}^{n} S(n, i) \cdot(k)_{i} \quad \text { for all integers } n, k \geqslant 0
$$

- $i=|\operatorname{image}(f)|=|\{f(1), \ldots, f(n)\}| \leqslant n$, so $i \leqslant n$.
- Also, $i \leqslant k$ since image $(f) \subseteq[k]$.
- In the sum, upper bound $i=n$ may be replaced by k or $\min (n, k)$. Any terms added or removed in the sum by changing the upper bound don't affect the result since those terms equal 0 :

$$
\begin{aligned}
S(n, i)=0 & \text { for } i>n \\
(k)_{i}=0 & \text { for } i>k .
\end{aligned}
$$

Identity for real numbers

The identity

$$
k^{n}=\sum_{i=0}^{n} S(n, i) \cdot(k)_{i} \quad \text { for all integers } n, k \geqslant 0
$$

generalizes to
Theorem

$$
x^{n}=\sum_{i=0}^{n} S(n, i) \cdot(x)_{i} \quad \text { for all real } x \text { and integer } n \geqslant 0
$$

Identity for real numbers

Theorem

$$
x^{n}=\sum_{i=0}^{n} S(n, i) \cdot(x)_{i} \quad \text { for all real } x \text { and integer } n \geqslant 0 .
$$

Examples

For $n=2$:

$$
\begin{aligned}
S(2,0)(x)_{0}+S(2,1)(x)_{1}+S(2,2)(x)_{2} & =0 \cdot 1+1 \cdot x+1 \cdot x(x-1) \\
& =0+x+\left(x^{2}-x\right)=x^{2}
\end{aligned}
$$

For $n=3$:

$$
\begin{aligned}
S(3,0)(x)_{0} & +S(3,1)(x)_{1}+S(3,2)(x)_{2}+S(3,3)(x)_{3} \\
& =0 \cdot 1+1 \cdot x+3 \cdot x(x-1)+1 \cdot x(x-1)(x-2) \\
& =0+x+3\left(x^{2}-x\right)+\left(x^{3}-3 x^{2}+2 x\right) \\
& =x^{3}+(3-3) x^{2}+(1-3+2) x=x^{3}
\end{aligned}
$$

Lemma from Abstract Algebra

Lemma

If $f(x)$ and $g(x)$ are polynomials of degree $\leqslant n$ that agree on more than n distinct values of x, then $f(x)=g(x)$ as polynomials.

Proof.

- Let $h(x)=f(x)-g(x)$. This is a polynomial of degree $\leqslant n$.
- If $h(x)=0$ identically, then $f(x)=g(x)$ as polynomials.

Assume $h(x)$ is not identically 0 .

- Let x_{1}, \ldots, x_{m} (with $m>n$) be distinct values at which $f\left(x_{i}\right)=g\left(x_{i}\right)$. Then $h\left(x_{i}\right)=f\left(x_{i}\right)-g\left(x_{i}\right)=0$ for $i=1, \ldots, m$, so $h(x)$ factors as $h(x)=p(x)\left(x-x_{1}\right)^{r_{1}}\left(x-x_{2}\right)^{r_{2}} \cdots\left(x-x_{m}\right)^{r_{m}} \ldots$
for some polynomial $p(x) \neq 0$ and some integers $r_{1}, \ldots, r_{m} \geqslant 1$.
- Then $h(x)$ has degree $\geqslant m>n$.

But $h(x)$ has degree $\leqslant n$, a contradiction.
Thus, $h(x)=0$, so $f(x)=g(x)$.

Identity for real numbers

Theorem

$$
x^{n}=\sum_{i=0}^{n} S(n, i) \cdot(x)_{i} \quad \text { for all real } x \text { and integer } n \geqslant 0
$$

Proof.

- Both sides of the equation are polynomials in x of degree n.
- They agree at an infinite number of values $x=0,1, \ldots$
- Since $\infty>n$, they're identical polynomials.

5.3. Integer partitions

- The compositions $(2,1,1),(1,2,1),(1,1,2)$ are different. Sometimes the number of 1's, 2's, 3's, ... matters but not the order.
- An integer partition of n is a tuple $\left(a_{1}, \ldots, a_{k}\right)$ of positive integers that sum to n, with $a_{1} \geqslant a_{2} \geqslant \cdots \geqslant a_{k} \geqslant 1$.
The partitions of 4 are:

$$
(4) \quad(3,1) \quad(2,2) \quad(2,1,1) \quad(1,1,1,1)
$$

- Define

$$
\begin{aligned}
p(n) & =\# \text { integer partitions of } n \\
p_{k}(n) & =\# \text { integer partitions of } n \text { into exactly } k \text { parts } \\
p(4) & =5 \\
p_{1}(4) & =1 \quad p_{2}(4)=2 \quad p_{3}(4)=1 \quad p_{4}(4)=1
\end{aligned}
$$

- We will learn a method to compute these in Chapter 8.

Type of a set partition

- Consider this set partition of [10]:

$$
\{\{1,4\},\{7,6\},\{5\},\{8,2,3\},\{9\},\{10\}\}
$$

- The block lengths in the order it was written are $2,2,1,3,1,1$.
- But the blocks of a set partition could be written in other orders. To make this unique, the type of a set partition is a tuple of the block lengths listed in decreasing order: $(3,2,2,1,1,1)$.
- For a set of size n partitioned into k blocks, the type is an integer partition of n in k parts.

How many set partitions of [10] have type (3, 2, 2, 1, 1, 1)?

- Split [10] into sets A, B, C, D, E, F of sizes $3,2,2,1,1,1$, respectively, in one of $\binom{10}{3,2,2,1,1,1}=\frac{10!}{3!2!^{2} 1!^{3}}=151200$ ways.
- But $\{A, B, C, D, E, F\}=\{A, C, B, F, E, D\}$, so we overcounted:
- B, C could be reordered C, B : 2 ! ways.
- D, E, F could be permuted in 3 ! ways.
- If there are m_{i} blocks of size i, we overcounted by a factor of m_{i} !.
- Dividing by the overcounts gives

$$
\frac{\binom{10}{3,2,2,1,1,1}}{1!2!3!}=\frac{151200}{1 \cdot 2 \cdot 6}=\mathbf{1 2 6 0 0}
$$

General formula

For an n element set, the number of set partitions of type $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ where $n=a_{1}+a_{2}+\cdots+a_{k}$ and m_{i} of the a 's equal i, is

$$
\frac{\binom{n}{a_{1}, a_{2}, \ldots, a_{k}}}{m_{1}!m_{2}!\cdots}=\frac{n!}{\left(1!^{m_{1}} m_{1}!\right)\left(2!^{m_{2}} m_{2}!\right) \cdots}
$$

Ferrers diagrams and Young diagrams

Ferrers diagram of $(6,3,3,1) \quad$ Young diagram

- Consider a partition $\left(a_{1}, \ldots, a_{k}\right)$ of n.
- Ferrers diagram: a_{i} dots in the i th row.
- Young diagram: squares instead of dots.
- The total number of dots or squares is n.
- Our book calls both of these Ferrers diagrams, but often they are given separate names.

Conjugate Partition

- Reflect a Ferrers diagram across its main diagonal:

- This transforms a partition π to its conjugate partition, denoted π^{\prime}.
- The i th row of π turns into the i th column of π^{\prime} : the red, green, and blue rows of π turn into columns of π^{\prime}. Also, the i th column of π turns into the i th row of π^{\prime}.
- Theorem: $\left(\pi^{\prime}\right)^{\prime}=\pi$
- Theorem: If π has k parts, then the largest part of π^{\prime} is k. Here: π has 3 parts \leftrightarrow the first column of π has length 3
\leftrightarrow the first row π^{\prime} is 3
\leftrightarrow the largest part of π^{\prime} is 3

Theorem

(1) The number of partitions of n into exactly k parts $\left(p_{k}(n)\right)$
$=$ the number of partitions of n where the largest part $=k$.
(2) The number of partitions of n into $\leqslant k$ parts
$=$ the number of partitions of n into parts that are each $\leqslant k$.
Proof: Conjugation is a bijection between the two types of partitions.

Example: Partitions of 6 into 3 or $\leqslant 3$ parts

π with exactly 3 parts

$(3,1,1,1) \quad(3,2,1) \quad(3,3)$ π^{\prime} has largest part $=3$
π with <3 parts

Balls and boxes

Many combinatorial problems can be modeled as placing balls into boxes:

Indistinguishable balls:

Distinguishable balls:
(1) (2)...

Indistinguishable boxes:

Distinguishable boxes:

Balls and boxes

Indistinguishable balls

- Integer partitions: $(3,2,1)$

Indistinguishable balls.
Indistinguishable boxes.

- Compositions: (1,3,2)

Indistinguishable balls.
Distinguishable boxes (which give the order).

Balls and boxes

Distinguishable balls

- Set partitions: $\{\{6\},\{2,4,5\},\{1,3\}\}$

Distinguishable balls.
Indistinguishable boxes (so the blocks are not in any order).

- Surjective (onto) functions / ordered set partitions:

Distinguishable balls and distinguishable boxes.
Gives surjective function $f:[6] \rightarrow\{A, B, C\}$

$$
f(6)=A \quad f(2)=f(4)=f(5)=B \quad f(1)=f(3)=C
$$

or an ordered set partition ($\{6\},\{2,4,5\},\{1,3\}$)

