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5.1. Compositions

@ A strict composition of n is a tuple of positive integers that sum to .
The strict compositions of 4 are

(4) (3,1) (1,3) (2,2) (2,1,1) (1,2,1) (1,1,2) (1,1,1,1)

@ It'satuple,so (2,1,1),(1,2,1), (1,1,2) are all distinct.
Later, we’ll consider integer partitions, in which we regard those as
equivalent and only use the one with decreasing entries, (2,1, 1).

@ A weak composition of n is a tuple of nonnegative integers that
sum to n.
(1,0,0, 3) is a weak composition of 4.

@ If strict or weak is not specified, a composition means a strict
composition.
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Notation and drawings of compositions

@ Juple notation: 3+ 1+ 1 and 1+ 3 4+ 1 both evaluate to 5.
To properly distinguish between them, we represent them as
tuples, (3,1,1) and (1,3, 1), since tuples are distinguishable.

@ Drawings:
Sum Tuple Dots and bars
3+1+1 (3,1,1) e
1+3+1  (1,3,1) AR
0+4+1  (0,4,1) -
4+1+0 (4,1,0) R
4+0+1  (4,0,1) -
4+0+0+1 (4,0,0,1)  ----[[]-

@ If there is a bar at the beginning/end, the first/last part is O.
If there are any consecutive bars, some part(s) in the middle are 0.
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How many strict compositions of » into k parts?

@ A composition of n into k parts has n dots and k — 1 bars.

e Draw n dots: X XXX

e There are n — 1 spaces between the dots.

@ Choose k£ — 1 of the spaces and put a bar in each of them.
@ Forn=15,k=23: o|/oe|oe

@ The bars split the dots into parts of sizes > 1, because there are
no bars at the beginning or end, and no consecutive bars.

@ Thus, there are (}_ ) strict compositions of n into k parts, for n,k> 1.
@ Forn=5andk=3,weget(3_,) =(;) =6.

Total # of strict compositions of » > 1 into any number of parts

@ 2! by placing bars in any subset (of any size) of the n— 1 spaces.

@ Oir, Z (Z_J, so the total is 2! :Z (Z_ D

k=1
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How many weak compositions of » into k parts?

Review: We covered this when doing the Multinomial Theorem

@ The diagram has »n dots and k — 1 bars in any order. No restriction
on bars at the beginning/end/consecutively since parts=0 is OK.

@ There are n+ k— 1 symbols.
Choose n of them to be dots (or kK — 1 of them to be bars):

n+k—1 B n+k—1
n - k—1
@ Forn =5 and k = 3, we have
54+43—1 7 5+43—1 7
()@ e (2)=0)

@ The total number of weak compositions of n of all sizes is infinite,
since we can insert any number of 0's into a strict composition of .
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Relation between weak and strict compositions

@ Let (ay,...,a;) be a weak composition of n (parts > 0).
@ Add 1 to each part to get a strict composition of n + &:
(a1 +D)+(a+1)++(axg+1)=(a1+-+a) +thk=n+k
The parts of (a; +1,...,ar+ 1) are > 1 and sum to n + k.

@ (2,0,3) is a weak composition of 5.
(3,1,4) is a strict composition of 5 + 3 = 8.

@ This is reversible and leads to a bijection between
Weak compositions of n into k parts
+—  Strict compositions of n + k into k parts

(Forwards: add 1 to each part; reverse: subtract 1 from each part.)

@ Thus, the number of weak compositions of n into k parts

= The number of strict compositions of n + k into k parts

= (")

Prof. Tesler Ch. 5: Compositions and Partitions Math 184A / Winter 2019

6/47



5.2. Set partitions

@ A partition of a set A is a set of nonempty subsets of A called
blocks, such that every element of A is in exactly one block.

@ A set partition of {1,2,3,4,5, 6,7} into three blocks is
{{1,3,6},{2,7},{4,5}}.

@ This is a set of sets. Since sets aren’t ordered, the blocks can be
put in another order, and the elements within each block can be
written in a different order:

{{1,3,6},{2,7},{4,5}} = {{5,4},{6,1,3},{7,2}}.

@ Define S(n, k) as the number of partitions of an n-element set into
k blocks. This is called the Stirling Number of the Second Kind.
We will find a recursion and other formulas for S(n, k).

@ Must use capital ‘S’ in S(n, k); later we'll define a separate function
s(n, k) with lowercase ‘s’.
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How do partitions of [xn] relate to partitions of [n — 1]?

Define [0] =0 and [n] ={1,2,...,n} for integers n > 0.
It is convenient to use [n] as an example of an n-element set.

Examine what happens when we cross out n in a set partition of
[n], to obtain a set partition of [n — 1] (here, n =5):

{L,34,12,4,55  — {1,3}4,12,4))
11,3,5512,4) — Wl 35,12, 4}
{1,3},12,44,150 — {{1,3},{2,4))

For all three of the set partitions on the left, removing 5 yields the
set partition {{1, 3},{2, 4}}.

In the first two, 5 was in a block with other elements, and removing
it yielded the same number of blocks.

In the third, 5 was in its own block, so we also had to remove the
block {5} since only nonempty blocks are allowed.
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How do partitions of [xn] relate to partitions of [n — 1]?

@ Reversing that, there are three ways to insert 5 into {{1, 3},{2, 4}}:

({{1,3,5},{2,4}}  insertin 15 block;
{1,3},{2,4)) = ¢ {{1,3},{2,4,5}}  insertin 2" block;
{{1,3},{2,4},{5}} insertas new block.

@ Inserting n in an existing block keeps the same number of blocks.
@ Inserting {n} as a new block increases the number of blocks by 1.
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Recursion for S(n, k)

Insert n into a partition of [n — 1] to obtain a partition of [n] into k blocks:

@ Case: partitions of [r#] in which » is not in a block alone:
Choose a partition of [n — 1] into k blocks (S(n — 1, k) choices)
Insert n into any of these blocks (k choices)

Subtotal: k- S(n— 1,k)

@ Case: partitions of [z] in which » is in a block alone:
Choose a partition of [n — 1] into kK — 1 blocks (S(n — 1,k — 1) ways)
and add a new block {n} (one way)

Subtotal: S(n—1,k—1)
@ Total: Sn,k) =k-Sn—1,k)+Sn—1,k—1)

@ Thisrecursionrequiresn—1>0andk—1>0,son,k > 1.
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Initial conditions for S(#, k)

Whenn=0o0rk=0

n = 0: Partitions of 0

@ It is not valid to partition the null set as {0}, since that has an

empty block.
@ However, it is valid to partition it as {} = (). There are no blocks, so
there are no empty blocks. The union of no blocks equals 0.

@ This is the only partition of (), so S(0,0)=1 and S(0, k)=0 for k>0.

Y

k = 0: partitions into O blocks

@ S(n,0) =0whenn >0
since every partition of [#] must have at least one block.

Not an initial condition, but related:

@ S(n,k)=0fork >n
since the partition of [n] with the most blocks is {{1},...,{n}}.
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Table of values of S(n, k): Recursion

Compute S(n, k) from the recursion and initial conditions:
S$(0,0) =1 S(n, k) =k-S(n—1,k)
S(n,0)=0ifn>0 +S(n—1,k—1)
S(0,k) =0ifk >0 fn>1landk > 1
S(n, k) k=0 k=1 k=2 k=73 k=4
n=>0 1 0 0 0 0
n—=1 0
n—=>2 0 S(n—1,k—1) S(n—1,k)
n—=4 0
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Table of values of S(n, k)

Compute S(n, k) from the recursion and initial conditions:
S$(0,0) =1 S(n, k) =k-S(n—1,k)
S(n,0)=0ifn>0 +S(n—1,k—1)
S(0,k) =0ifk >0 fn>1landk > 1
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n=>0 1 0 0 0 0
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n=>2 0 1 1 0 0
n=>3 0 1 3 1 0
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Example and Bell numbers

@ S(n, k) is the number of set partitions of [n] into k blocks. For n = 4:
k=1 k=2 k=73 k=4

dL2,30440 ) oy 3y
1,2,4},{3}}
{1,3},{2}, {4}}
wl,3,4},2}} {1,4},{2},{2}}
(1,2,3,48 H2.3.4L(00 70" oy
{121,348 00
{2,4},{1},{3})

{1,3},{2,4})
{1,4},{2,3}} 13,41, 11},12}

S4,1)=1 S(4,2)=7 S(4,3) =6 S4,4) =1

@ The Bell number B, is the total number of set partitions of [»] into
any number of blocks:

U1),127, {3}, 14}

B, =S(n,0)+S(n,1)+---+S(n,n)

@ Total: B4, =1+7+6+1=15
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Table of Stirling numbers and Bell numbers

Compute S(n, k) from the recursion and initial conditions:
$(0,0) =1 Sn,k) =k-S(n—1,k)
S(n,0)=0ifn>0 +S(n—1k—1)
S(0,k) =0ifk>0 >land k >

Sn,k) | k=0 k=1 k=2 k=3 k=4 k=5 | Row total B,
n=>0 1 0 0 0 0 0 1
n=1 0 1 0 0 0 0 1

= 0 1 1 0 0 0 2
n= 0 1 3 1 0 0 5
n==4 0 1 7 6 1 0 15
n=>5 0 1 15 25 10 1 52
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Simplex locks

Prof. Tesler

@ Simplex brand locks were a popular
combination lock with 5 buttons.

@ The combination 13-25-4 means:

e Push buttons 1 and 3 together.
e Push buttons 2 and 5 together.
e Push 4 alone.

e Turn the knob to open.

@ Buttons cannot be reused.

@ We first consider the case that all buttons are
used, and separately consider the case that
some buttons aren’t used.
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Represent the combination 13-25-4 as an ordered set partition

@ We may represent 13-25-4 as an ordered set partition

(11,3},{2,5},{4})

@ Block {1, 3} is first, block {2, 5} is second, and block {4} is third.
e Blocks are sets, so can replace {1, 3} by {3, 1}, or {2, 5} by {5, 2}.
e Parentheses on the outer level make it an ordered tuple:

({1,3},{2,5},{4})

@ By contrast, a set partition is a set of blocks:

1{1,34,{2, 5}, {4} }

@ Braces on the outer level make it a set instead of an ordered tuple.
e Reordering blocks just changes how we write it but doesn’t give a
new set partition:  {{1,3},{2,5},{4}} = {{5,2},{4},{1,3}}
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Number of combinations

@ Let n = # of buttons (which must all be used)
k = # groups of button pushes.

@ There are S(n, k) ways to split the buttons into & blocks
x k! ways to order the blocks
= k!-S(n, k) combinations.

@ The # of combinations on n = 5 buttons and k = 3 groups of
pushes is

31.8(5,3) = 6-25 =150
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Represent the combination 13-25-4 as a surjective (onto) function

@ Define a function f(i) = j, where button i is in push number j:

i =button number j =push number
1

3
2
3
4
5
@ This gives a surjective (onto) function £ : [5] — [3].

@ The blocks of buttons pushed are
1t () ={1,3) 2" N2)={2,5) 3% (3)={4)

2
1
3
2

The number of surjective (onto) functions f : [n] — k] isk!-S(n, k).

Split [#] into kK nonempty blocks in one of S(n, k) ways.
Choose one of k! orders for the blocks: (f—'(1),...,f '(k)). [
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How many combinations don’t use all the buttons?

@ The combination 3-25 does not use 1 and 4.

@ Trick: write it as 3-25-(14), with all unused buttons in one
“phantom” push at the end.

@ There are three groups of buttons and we don’t use the 3" group.

Q # combinations with 2 pushes that don’t use all buttons
= # combinations with 3 pushes that do use all buttons.

@ For set partition {{3},{2,5},{1, 4}}, the 3! orders of the blocks give:

Ordered 3-tuple Actual combination + phantom push

(13,12, 5},11,4}) 3-25 3-25-(14)
({3},11,4},{2, 5}) 3-14 3-14-(25)
(12,5},13},11,4}) 25-3 25-3-(14)
({2,5},{1,4},{3}) 25-14 25-14-(3)
(11,4},{3},12, 5)) 14-3 14-3-(25)
({1,4},{2,5},{3}) 14-25 14-25-(3)
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How many combinations don’t use all the buttons?

@ Putting all unused buttons into one phantom push at the end gives
a bijection between

e Combinations with £ — 1 pushes that don’t use all » buttons, and
e Combinations with & pushes that do use all n buttons.

Lemma (General case)
Forn,k > 1:

The # combinations with k — 1 pushes that don’t use all n buttons
= the # combinations with k pushes that do use all n buttons
=k!-S(n,k).
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Counting the total number of functions f : [n] — (k]

We will count the number of functions f : [n] — [k] in two ways.

(k choices of f(1)) x (k choices of f(2)) x --- x (k choices of f(n)) = k"
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Counting the total number of functions f : [n] — (k]

Second method: Classify functions by their images and inverses

@ Consider f: [10] — {a, b, ¢, d, e}-
=1 2 3 4
a c Cc a

O O

I
£(i)

@ The domainis [10].

@ The codomain (or target) is{a, b, c,d, e}.

@ The image is image(f) ={f(1),...,f(10)} ={a,c,d}.
It's a subset of the codomain.

@ The inverse blocks are

fHa) =1{1,4,8} Ye)=12,3,5,7,9)
f'(d) =1{6,10} fb)=f""e) =0

@ f:[10] —{a,b,c,d,e}is notonto, but f:[10] — {a,c,d}is onto.
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Counting the total number of functions f : [n] — (k]

Second method, continued

@ Consider f : [10] — {a, b, c,d, e}:
=1 2 3 4 5 6
f)=1a ¢ ¢c a ¢ d

@ f:[10] —{a,b,c,d,e}is notonto, but f:[10] — {a,c,d}is onto.
@ There are S(10,3) - 3! surjective functions f :[10] — {a, ¢, d}.
@ Classify all f:[10] — {a, b, c,d, e} according to T = image( f).

@ There are (3) subsets T C {a, b, c,d, ¢} of size |T| = 3.
Each T has $(10, 3) - 3! surjective functions f : [10] — T.
So §(10,3) - 3! (3) functions f:[10] — {a, ..., e} have |image(f)| = 3.

=5-4-3=(5)3

@ Simplify: 31 ( ) =3!- 5—2 —
[10] — [ 5] have |image(f)| = 3.

So S(10,3) - (5)3 functions f :

Prof. Tesler Ch. 5: Compositions and Partitions Math 184A / Winter 2019 32/47



Counting the total number of functions f : [n] — (k]

Second method, continued

@ In general, S(n,i) - (k); functions f : [n] — |k] have |image(f)| = i.

@ Summing over all possible image sizesi =0, ..., n gives the total
number of functions f : [n] — [k]

> S(n,i)- (k);
i=0

@ Putting this together with the first method gives

K*=) S(n,i)-(k); forallintegers n,k >0
i—0
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Counting the total number of functions f : [n] — (k]

Second method, continued

K*=> S(ni)-(k); forallintegersn,k >0
i—0

@ i = |image(f)| = [{f(1),...,f(n)}| <n,s0i< n.
@ Also, i < k since image( f) C [k].

@ In the sum, upper bound i = n may be replaced by & or min(n, k).
Any terms added or removed in the sum by changing the upper
bound don't affect the result since those terms equal 0:

S(n,i) =0 fori > n
(k)i =20 fori > k.
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Identity for real numbers

The identity

K*=) S(n,i)-(k); forallintegers n,k >0
=0

generalizes to

X' = S(n,i) - (x); for all real x and integern > 0.
i=0
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Identity for real numbers

Theorem
n

X' = S(n,i) - (x); for all real x and integern > 0.
i=0
Forn = 2:

S(2,0)(x)o+S(2,1)(x); +S5(2,2)(x) =0-1+1-x+1-x(x—1)
—0+x+ (x*—x)=x°
Forn = 3:
S(3,0)(x)o + S(3, 1) (x)1 + S(3,2) (x)2 + S(3, 3) (x)3
—0-1+1-x+3-x(x—1)4+1-x(x—1)(x—2)
= 0+x+3(x*—x) + (x> —3x% + 2x)
=+ 3-3)*+(1-3+2x =x
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Lemma from Abstract Algebra

Iff(x) and g(x) are polynomials of degree < n that agree on more than
n distinct values of x, then f(x) = g(x) as polynomials.

@ Let h(x) =f(x) — g(x). This is a polynomial of degree < n.

@ If h(x) = 0 identically, then f(x) = g(x) as polynomials.
Assume h(x) is not identically O.

@ Letxy,...,x, (with m > n) be distinct values at which f(x;) = g(x;).
Then h(x;) = f(x;) —g(x;) =0fori=1,...,m, so h(x) factors as
h(x) = plx)(x —x)™ (x —x2)" -+ (x — X)) ™ - - -
for some polynomial p(x) # 0 and some integers ry,...,r, > 1.
@ Then h(x) has degree > m > n.

But 2(x) has degree < n, a contradiction.
Thus, h(x) =0, so f(x) = g(x). O
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Identity for real numbers

Theorem
n

X' = S(n,i) - (x); for all real x and integern > 0.
=0

@ Both sides of the equation are polynomials in x of degree n.
@ They agree at an infinite number of values x =0, 1, ...
@ Since oo > n, they're identical polynomials. O

Prof. Tesler Ch. 5: Compositions and Partitions Math 184A / Winter 2019 38 /47



5.3. Integer partitions

@ The compositions (2,1,1), (1,2,1), (1, 1,2) are different.
Sometimes the number of 1’s, 2’s, 3’s, ... matters but not the order.

@ An integer partition of n is a tuple (ay, ..., a;) of positive integers
thatsumton, witha; 2 a, > --- > a > 1.
The partitions of 4 are:
(4) (3,1) (2,2) (2,1,1) (1,1,1,1)

@ Define p(n) = # integer partitions of n
pr(n) = # integer partitions of n into exactly k parts
p(4)=35
pi(4)=1 pr(4) =2 p3(4)=1 p4(4)=1

@ We will learn a method to compute these in Chapter 8.
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Type of a set partition

@ Consider this set partition of [10]:

{11,4),17,6},15},18,2, 3}, 9}, {10}
@ The block lengths in the order it was written are 2,2,1,3,1, 1.

@ But the blocks of a set partition could be written in other orders.
To make this unique, the type of a set partition is a tuple of the
block lengths listed in decreasing order: (3,2,2,1,1,1).

@ For a set of size n partitioned into k blocks, the type is an integer
partition of n in k parts.
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How many set partitions of [10] have type (3,2,2,1,1,1)7

@ Split [10] into sets A,B,C, D, E, F of sizes 3,2,2,1, 1, 1, respectively,

inone of (55,5 1,) = 33 E = 151200 ways.

@ But{A, B,C, D,E,F} ={A, C,B, F,E,D}, sowe overcounted:

@ B, C could be reordered C, B: 2! ways.
@ D, E,F could be permuted in 3! ways.
e If there are m; blocks of size i, we overcounted by a factor of m;!.

@ Dividing by the overcounts gives

(320.,1,1) _ 151200

1213 1.2.6

12600

General formula

For an n element set, the number of set partitions of type (a;, as, ..., ax)
where n = a; +ap + - - - + a; and m; of the a’'s equal i, is

(al,az ..... ak) _ n'

mi!lmp! - - (117 g 1) (2172 mp ) - -
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Ferrers diagrams and Young diagrams

Ferrers diagram of (6,3,3,1) Young diagram

e 6 o o o o
e o6 o
e O o
o
Consider a partition (ay, ..., a;) of n.

Ferrers diagram: a; dots in the ith row.

Young diagram: squares instead of dots.

The total number of dots or squares is n.

@ Our book calls both of these Ferrers diagrams, but often they are
given separate names.
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Conjugate Partition

@ Reflect a Ferrers diagram across its main diagonal:

® o o
e 6 o o o e O
e o o — o o
o o
o
w=(53,1) ' =(3,2,2,1,1)

@ This transforms a partition 7t to its conjugate partition, denoted 7.

@ The ith row of 7t turns into the ith column of 7t’:
the red, green, and blue rows of 7t turn into columns of 7’.
Also, the ith column of 7t turns into the ith row of 7t’.

@ Theorem: (1) =
@ Theorem: If 7t has k parts, then the largest part of 7’ is k.
Here: mhas 3 parts <> the first column of 7t has length 3
+ the first row 7’ is 3
+~ the largest part of 7t’ is 3
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@ The number of partitions of n into exactly k parts (px(n))
= the number of partitions of n where the largest part = k.

@ The number of partitions of n into < k parts
= the number of partitions of n into parts that are each < k

Proof: Conjugation is a bijection between the two types of partitions.

Example: Partitions of 6 into 3 or < 3 parts

7t with exactly 3 parts mt with < 3 parts
(4,1,1)  (3,2,1) (2,2,2) (4,2) (5,1) (6)
E... E:. EE ::.. :.... 000000
o0eo o0 b =
o ::. 00 | N : o
o ° 00 o ° o
[ o ° :
(3,1,1,1) (3,2,1) (3,3) (2,2,1,1) (2,1,1,1,1) (1,1,1,1,1,1)
7/ has largest part = 3 n’ has largest part < 3

y
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Balls and boxes

Many combinatorial problems can be modeled as placing balls into
boxes:

Indistinguishable balls: @@ - @

Distinguishable balls: 90 O

Indistinguishable boxes:

Distinguishable boxes:
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Balls and boxes
Indistinguishable balls

@ Integer partitions: (3,2,1)

Indistinguishable balls.
Indistinguishable boxes.

@ Compositions: (1,3,2)
9 XX
A B

Indistinguishable balls.
Distinguishable boxes (which give the order).

Q9
C
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Balls and boxes
Distinguishable balls

@ Set partitions: {{6},{2,4,5},{1,3}}

o 000 00

Distinguishable balls.
Indistinguishable boxes (so the blocks are not in any order).

@ Surjective (onto) functions / ordered set partitions:
6 Q00| | 00
B C

A

Distinguishable balls and distinguishable boxes.

Gives surjective function f: [6] — {A, B, C}

fle)=Aa  f2)=f4)=f5)=8B  f(1)=f8)=C

or an ordered set partition ({6},{2,4, 5},{1, 3})
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