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Computer network Friends
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We have a network of items and connections between them. Examples:

Telephone networks, computer networks

Transportation networks (bus/subway/train/plane)

Social networks

Family trees, evolutionary trees

Molecular graphs (atoms and chemical bonds)

Various data structures in Computer Science
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Graphs
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The dots are called vertices or nodes (singular: vertex, node)

V = set of vertices = {1, 2, 3, 4, 5}

The connections between vertices are called edges.
Represent an edge as a set {i, j} of two vertices.
E.g., the edge between 2 and 5 is {2, 5} = {5, 2}.

E = set of edges =
{
{1, 2} , {2, 3} , {2, 5} , {3, 4} , {3, 5} , {4, 5}

}
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Simple graphs
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A simple graph is G = (V, E):

V is the set of vertices.
It can be any set; {1, . . . , n} is just an example.

E is the set of edges, of form {u, v}, where u, v ∈ V and u , v.
Every pair of vertices has either 0 or 1 edges between them.

The drawings above represent the same abstract graph since they
have the same V and E, even though the drawings look different.
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Degrees
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The degree of a vertex is the number of edges on it.

d(1) = 1 d(2) = 3 d(3) = 3 d(4) = 2 d(5) = 3

Sum of degrees = 1 + 3 + 3 + 2 + 3 = 12
Number of edges = 6
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Sum of degrees

Theorem
The sum of degrees of all vertices is twice the number of edges:∑

v∈V

d(v) = 2 |E|

Proof.
Let S = { (v, e) : v ∈ V, e ∈ E, vertex v is in edge e }

Count |S| by vertices: Each vertex v is contained in d(v) edges,so
|S| =

∑
v∈V

d(v).

Count |S| by edges: Each edge has two vertices, so
|S| =

∑
e∈E

2 = 2 |E| .
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Multigraphs
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Some networks have multiple edges between two vertices.
Notation {3, 4} is ambiguous, so write labels on the edges: c, d, e.

There can be an edge from a vertex to itself, called a loop (such
as h above). A loop has one vertex, so {2, 2} = {2}.

A simple graph does not have multiple edges or loops.
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Multigraphs
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Computer network with multiple connections between machines.

Transportation network with multiple routes between stations.

But: A graph of Facebook friends is a simple graph. It does not
have multiple edges, since you’re either friends or you’re not. Also,
you cannot be your own Facebook friend, so no loops.
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Multigraphs
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V = {1, 2, 3, 4}
E = {a, b, c, d, e, f , g, h}

φ(a) = {1, 2}
φ(b) = {2, 3}

φ(c) = φ(d) = φ(e) = {3, 4}
φ(f ) = φ(g) = {1, 4}

φ(h) = {2}
A multigraph is G = (V, E,φ), where:

V is the set of vertices. It can be any set.

E is the set of edge labels (with a unique label for each edge).

φ : E → { {u, v} : u, v ∈ V }

is a function from the edge labels to the pairs of vertices.
φ(L) = {u, v} means the edge with label L connects u and v.
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Adjacency matrix of a multigraph

Let n = |V |

The adjacency matrix of a multigraph is an n× n matrix A = (auv).
Entry auv is the number of edges between vertices u, v ∈ V.

h
1

2

34
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b

c

fg

d

e

A =


1

1
0

2
1

3
0

4
2

2 1 2 1 0
3 0 1 0 3
4 2 0 3 0



auv = avu for all vertices u, v. Thus, A is a symmetric matrix (A = AT ).
The sum of entries in row u is the degree of u.
Technicality: A loop on vertex v counts as

1 edge in E,
degree 2 in d(v) and in avv (it touches vertex v twice),

With these rules, graphs with loops also satisfy
∑

v∈V d(v) = 2 |E|.
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Adjacency matrix of a simple graph

In a simple graph:
All entries of the adjacency matrix are 0 or 1 (since there either is
or is not an edge between each pair of vertices).
The diagonal is all 0’s (since there are no loops).

3

5 2

1

4

A =


1

1
0

2
1

3
0

4
0

5
0

2 1 0 1 0 1
3 0 1 0 1 1
4 0 0 1 0 1
5 0 1 1 1 0
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Directed graph (a.k.a. digraph)
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A directed edge is a connection with a direction.
One-way transportation routes.
Broadcast TV and satellite TV are one-way connections from the
broadcaster to your antenna.
Familiy tree: parent→ child
An unrequited Facebook friend request.
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Directed graph (a.k.a. digraph)
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V = {1, 2, 3, 4, 5}

E = {(1, 5), (2, 1), (3, 2), (3, 4), (4, 5), (5, 2), (5, 4)}

Represent a directed edge u→ v by an ordered pair (u, v).
E.g., 3→ 2 is (3, 2), but we do not have 2→ 3, which is (2, 3).

A directed graph is simple if each (u, v) occurs at most once, and
there are no loops.

Represent it as G = (V, E).
V is a set of vertices. It can be any set.
E is the set of edges. Each edge has form (u, v) with u, v ∈ V, u , v.
It is permissible to have both (4, 5) and (5, 4), since they are distinct.
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Degrees in a directed graph
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For a vertex v, the indegree is the number of edges going into v,
and the outdegree is the number of edges going out from v.

v indegree(v) outdegree(v)
1 1 1
2 2 1
3 0 2
4 2 1
5 2 2

Total 7 7

The sum of indegrees is |E| and the sum of outdegrees is |E|.
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Adjacency matrix of a directed graph

5

1

2

34

A =


1

1
0

2
0

3
0

4
0

5
1

2 1 0 0 0 0
3 0 1 0 1 0
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Let n = |V |

The adjacency matrix of a directed graph is an n× n matrix
A = (auv) with u, v ∈ V.

Entry auv is the number of edges directed from u to v.

auv and avu are not necessarily equal, so A is usually not symmetric.

The sum of entries in row u is the outdegree of u.
The sum of entries in column v is the indegree of v.

Prof. Tesler Ch. 9. Graph Theory Math 184A / Winter 2019 15 / 51



Directed multigraph
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A =


1

1
1

2
0

3
0

4
0

5
1

2 1 0 0 0 0
3 0 1 0 1 0
4 0 0 0 0 1
5 0 2 0 1 0


V = {1, . . . , 5} φ(a) = (2, 1) φ(d) = (3, 2) φ(g) = (3, 4)
E = {a, . . . , i} φ(b) = (1, 5) φ(e) = (5, 2) φ(h) = (4, 5)

φ(c) = (1, 1) φ(f ) = (5, 2) φ(i) = (5, 4)

A directed multigraph may have loops and multiple edges.
Represent it as G = (V, E,φ).
Name the edges with labels. Let E be the set of the labels.
φ(L) = (u, v) means the edge with label L goes from u to v.

Technicality: A loop counts once in indegree, outdegree, and avv.
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Complete graph Kn

5
K

The complete graph on n vertices, denoted Kn, is a graph with n
vertices and an edge for all pairs of distinct vertices.

How many edges are in Kn?
(

n
2

)
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How many simple graphs are there on n vertices?

How many simple undirected graphs are there on n vertices?

The edges are a subset of
{
{u, v} : u, v ∈ V, u , v

}
, so 2

(n
2) .

For n = 5: 25·4/2 = 210 = 1024

How many simple directed graphs are there on n vertices?

The edges are a subset of
{
(u, v) : u, v ∈ V, u , v

}
, so 2n(n−1).

For n = 5: 25·4 = 220 = 1048576

Prof. Tesler Ch. 9. Graph Theory Math 184A / Winter 2019 18 / 51



Isomorphic graphs
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Graphs G and H are isomorphic if there are bijections
ν : V(G)→ V(H) and ε : E(G)→ E(H) that are compatible:

Undirected: Every edge e = {x, y} in G has ε(e) = {ν(x),ν(y)} in H
Directed: Every edge e = (x, y) in G has ε(e) = (ν(x),ν(y)) in H

The graphs are equivalent up to renaming the vertices and edges.

Vertices: ν(1) = 10 ν(2) = 20 ν(3) = 30 ν(4) = 40 ν(5) = 50

Edges: ε(a) = h ε(b) = i ε(c) = j ε(d) = k ε(e) = l
ε(f ) = m ε(g) = n

Compatibility: a = {1, 2} and ε(a) = h = {10, 20} = {ν(1),ν(2)}
. . . (Need to check all edges) . . .

Prof. Tesler Ch. 9. Graph Theory Math 184A / Winter 2019 19 / 51



Unlabeled graphs

In an unlabeled graph, omit the labels on the vertices and edges.

If labeled graphs are isomorphic, then removing the labels gives
equivalent unlabeled graphs.

This simplifies some problems by reducing the number of graphs
(e.g., 1044 unlabeled simple graphs on 7 vertices vs. 221 labeled).
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Application: Polyhedra

http://commons.wikimedia.org/wiki/File:Dodecahedron.svg

A dodecahedron is a 3D shape with 20 vertices, 30 edges, and 12
pentagonal faces.
Unlabeled graphs are used in studying other polyhedra (Ch. 12),
polygons and tilings in 2D, and other geometric configurations.
We can treat them as unlabeled, or pick one labeling if needed.
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How many labelings of an unlabeled graph?

P4 (Path on 4 vertices)

Given an unlabeled graph on n vertices, how many ways can we
label the vertices 1, . . . , n?

Assign vertex labels 1, . . . , n in one of n! ways. . .
. . . but some of them are equal as abstract graphs (same vertices
and edges)! Each abstract graph should only be counted once.

=

3 421 2 134

Both have V = {1, 2, 3, 4}, E = {{1, 2} , {2, 3} , {3, 4}}, so they’re equal.

For a simple path of n > 1 vertices (n = 4 above), reversing the
order of the labels gives the same abstract graph, so n!/2 ways.
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How many labelings of an unlabeled graph?

S4: Star on 4 vertices

Sn : Star with one vertex at the center
and n − 1 spokes around it.

How many distinct labelings does S4 have, using vertex labels 1, 2, 3, 4?
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How many labelings of an unlabeled graph?

How many distinct labelings are there, using vertex labels 1, 2, 3, 4?

/3 3

2 4

1

421

2

3

1==

4

Pick a number to go at the center.
Place the other three numbers in any order around it.
With 3 at center, we get edges {{3, 1} , {3, 2} , {3, 4}} regardless of
the order of 1, 2, 4 around the outside.
So there are 4 labelings, corresponding to the number at the center.
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How many labelings of an unlabeled graph?
General case

Permuting positions of vertex labels in a graph is a group action.
Labelings are equivalent when they give the same abstract graph.
The labelings using 1, . . . , n once each form a single orbit.
Divide n! by the number of permutations that stabilize a labeling.

B

w x y z

A
w

x

y z

A: The stabilizer of a labeling is to keep it the same or to reverse it.
Both give E = {{w, x} , {x, y} , {y, z}}.
For n > 2, path Pn has n!/2 labelings.

B: The stabilizer is to keep w the same and permute x, y, z arbitrarily.
These give E = {{w, x} , {w, y} , {w, z}}. Thus, 4!/3! = 4 labelings.
For n > 3, star Sn has n!/(n − 1)! = n labelings.
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Subgraphs
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Let G = (V, E) be a graph.
A subgraph is G ′ = (V ′, E ′) where V ′ ⊆ V, E ′ ⊆ E, and the
edges of E ′ only involve vertices of V ′.
If we remove a vertex v, we must remove all edges incident with it.
We may also remove additional edges.
For multigraphs and directed graphs, it’s similar.
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Subgraphs
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BobAmy
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Green subgraph: Amy, Bob, Cindy, Dan, Emily and all their edges
is a K5.
Pink subgraph: Cindy, Frank, Gina, Harry, and some of their edges.
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Walks — Example: Transit map
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In a bus network, you can get from station 1 to 3 via

Route c from station 1 to station 2
Route f from station 2 to station 5
Route g from station 5 to station 4
Route i from station 4 to station 3

As a sequence of edges: c, f , g, i (4 edges)
vertices: 1, 2, 5, 4, 3 (5 vertices)

The length of this is the number of edges, 4.
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Walks
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Trace along edges from vertex x to y, without lifting your pen.

A walk from vertex x to y is a sequence of edges, each connected
to the next by a vertex:

e1 = {x, v1} e2 = {v1, v2} e3 = {v2, v3} · · · ek = {vk−1, y}

In a directed graph, edge directions must be respected:

e1 = (x, v1) e2 = (v1, v2) e3 = (v2, v3) · · · ek = (vk−1, y)

The length of the walk is the number of edges, k (not the number
of vertices, k + 1).
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Walks
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In a walk , edges and vertices may be re-used.
A trail is a walk with all edges distinct.
A path is a walk with all vertices and edges distinct.
A walk/trail/path is open if the start and end vertices are different,
and closed if they are the same (this is allowed in a closed path,
but no other vertices may be repeated).
In our book, a cycle is a closed path.
But some authors use cycle for a closed walk, so always check
the definition an author is using.
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Example: Paths in a computer network

ISP

PC1

PC2

PC3

Hard drive

Printer

Modem Remote server

For PC1 to print a page from a website, first it retrieves the page
Remote server→ · · · → ISP→ Modem→ PC1

and then it sends it to the printer
PC1→ Modem→ Printer

PC3 can directly print on the printer w/o going through the Modem.
For PC1 to read a file from the hard drive, it goes through a path

Hard drive→ PC3→ Modem→ PC1

Prof. Tesler Ch. 9. Graph Theory Math 184A / Winter 2019 31 / 51



Example: Graph of friends

Amy

Emily

Gina Harry

Cindy

Frank

Dan

Irene

Bob

The length of a walk/trail/path is the number of edges in it.
The distance between vertices is the length of the shortest path.

Amy’s friends: Bob, Cindy, Dan, Emily
Each is distance 1 from Amy.

Amy and Frank’s mutual friends: Bob, Cindy
They are the middle vertex on a path of length 2 from Amy to Frank.

Amy’s friends of friends: Frank, Gina, Irene
Each is distance 2 from Amy.

“Six degrees of separation”: A popular concept is that everyone
is 6 6 steps away from everyone in the world. (It’s probably false.)
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Bipartite graph (Ch. 11.2)

BA

A bipartite graph is a graph in which:

The set of vertices can be split as V = A ∪ B, where A ∩ B = ∅.
Every edge has the form {a, b} where a ∈ A and b ∈ B.

Note that there may be vertices a ∈ A, b ∈ B that do not have an edge.
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Cycle in a bipartite graph

A cycle in a bipartite graph must have even length:
A cycle has consecutive vertices v0, v1, . . . , vn with v0 = vn.
For a cycle in a bipartite graph, the vertices alternate coming from

A, B, A, B, . . . or B, A, B, A, . . . .
Since v0 = vn, they’re both in A or both in B, so n is even.
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Connected graph

2 components1 component 2 components

An undirected graph is connected if for all vertices u, v, there is a
path from u to v.
The graph on the left is connected. The other two are not.
A graph may be split into connected components.

Partition the graph into subgraphs. Vertices u, v are in the same
connected component iff there is a path from u to v.
A vertex with no edges is in its own connected component.
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Walks using all vertices or all edges
1
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Hamiltonian cycleHamiltonian path
1,2,3,4,5 1,2,3,4,5,1 1,2,3,4,5,1,3,5,2,4,1

Eulerian cycle

A Hamiltonian path is a path that uses every vertex exactly once.
An Eulerian trail is a trail that uses every edge exactly once.
Note: Euler is pronounced “oiler.”
When the starting point is the same as the ending point, these are
called a Hamiltonian cycle and Eulerian cycle, respectively.
A Hamiltonian cycle starts and ends at the same vertex, but all
other vertices are used just once.
These are used in many algorithms in Computer Science.
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Dinner seating arrangements

Sit 8 people at a circular table so that no one knows their
neighbors. X indicates people who do not know each other and
thus may be seated next to each other.

1 2 3 4 5 6 7 8
1 X X X X
2 X X
3 X X X
4 X X X
5 X X X X
6 X X X
7 X X X
8 X X X X

Form a graph on vertices {1, . . . , 8}, with an edge {i, j} if i and j may
be seated next to each other.
The table is essentially the adjacency matrix: X = 1, blank = 0.
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Dinner seating arrangements

1 2 3 4 5 6 7 8
1 X X X X
2 X X
3 X X X
4 X X X
5 X X X X
6 X X X
7 X X X
8 X X X X

8

21

3

4

56

7

The solutions correspond to Hamiltonian cycles!
Start with 1 and successively follow edges to vertices not yet
used, until we return to 1 at the end.
E.g., try 1, 8, 6, 3, 7, 4; but then we’re stuck because we can’t yet
go back to 1!
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Dinner seating arrangements
21
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One Hamiltonian cycle is 1, 5, 2, 8, 6, 3, 7, 4, 1.

If someone gives you a solution, it is easy to verify if it’s correct.
But testing all n! possibilities is impractical unless n is small.

There is no known efficient method, guaranteed to work in all
graphs, to either find a Hamiltonian cycle or prove there isn’t one.
In Computer Science, it is classified as an NP-complete problem
(CSE 101, or Chapter 20 of our book).
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Dinner seating arrangements

A group of n people will have a series of dinners with everyone at
the same circular table. How many dinners can be arranged so
that no one repeats sitting next to the same person?

After d such dinners, each person will have sat next to 2d people
out of the n − 1 people besides themself, so 2d 6 n − 1.

An upper bound on the number of dinners possible is
⌊n−1

2

⌋
.
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Dinner seating arrangements
1
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If n is an odd prime, (n − 1)/2 is achievable!

For each x = 1, 2, . . . , (n − 1)/2, form a Hamiltonian cycle in Kn:
1, 1 + x, 1 + 2x, . . . , 1 + (n − 1)x, 1 + nx ≡ 1 (mod n)

There are no repeated numbers besides 1 at the start and end:
If 1 + ax ≡ 1 + bx mod n then (a − b)x ≡ 0 mod n.
Since n is prime, the only solution in this range is a = b.
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Eulerian Trails and the Seven Bridges of Königsberg

http://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

In the 1700s, a river in Köningsberg, Prussia, split the city into four
land masses (including two islands), connected by seven bridges.

Can you walk through town and cross every bridge exactly once?
No backtracking, no partial bridge-crossings, etc.

In 1735, Leonhard Euler proved it is impossible, and created the
foundations of graph theory.
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Seven Bridges of Königsberg

http://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

Replace each land mass by a vertex and each bridge by an edge.

For every vertex (except the first and last, if different) each time
we enter on one edge, we exit on another. If we use up all the
edges in this fashion, the degree is even.

If the starting and ending vertices are different, they have odd
degrees since the first/last edge do not have an in/out pair.

Here, all vertices have odd degree, so such a walk is impossible.
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Necessary conditions for Eulerian trails and cycles

An Eulerian trail from vertex x to y (x , y) uses every edge once.

If x = y: An Eulerian cycle is a cycle that uses every edge once.

All the edges need to be in the same connected component.

Each time we enter a vertex on one edge, we exit on a separate
edge. So all vertices in this connected component must have even
degree, except if x , y then x, y have odd degrees.

y

x
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Eulerian cycles

Theorem (Eulerian cycles)
A connected graph has an Eulerian cycle if and only if all vertices have
even degrees.

Proof, Step 1: Construct a cycle starting at any vertex x.
We showed necessity; now we’ll show sufficiency.
Start at any vertex, v0 = x.
Pick any edge on x, say e1, and follow it to the next vertex, v1.
Pick any unused edge on v1, say e2. Follow it to the next vertex, v2.
Continue alternately picking vertices & edges

v0, e1, v1, e2, v2, . . . , ek, vk,
until forced to stop at a vertex vk with no un-
used edge to follow.

x
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Eulerian cycles, Proof, Step 1, continued
Construct a cycle starting at any vertex x

x

So far we selected v0 = x, e1, v1, e2, v2, . . . , ek, vk.

We used an even number of edges at every vertex on this trail
(one edge in, another out), except the first and last vertices (x, vk).

If vk , x, then we used an odd number of edges on vk.
But vk has even degree, so there’s an unused edge on it, and we
did not have to stop!

Thus, vk = x, and that vertex uses an even number of edges too:
first (e1), last (ek), and possibly in/out pairs in-between.
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Eulerian cycles, Proof, Step 1, continued
Construct a cycle starting at any vertex x

x

We constructed a cycle based at x, but it may not use all edges of the
graph.
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Eulerian cycles, Proof, Step 2

w w

C

D

x x

We have a cycle C, but an Eulerian cycle must use all edges.
What if some edges are unused? Since the graph is connected,
there is an unused edge that touches some vertex w on C.
Form a new cycle D based at w, using the same algorithm as in
Step 1. No edges in Step 1 may be re-used.
Splice D into C at w to make C larger.
Repeat until all edges are in C. Now it’s an Eulerian cycle!
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Eulerian trails

Theorem
A connected graph G has an Eulerian trail from x to y (x , y) if and only
if x, y have odd degrees while all other vertices have even degree.

Proof.
Form graph G ′ by adding an edge {x, y} to G.
Now all vertices have even degree, so there is an Eulerian cycle.
Remove the new edge {x, y} to form an Eulerian trail from x to y. �

Generalization
For both Eulerian cycles and trails, we may replace “connected graph”
by “a graph whose vertices with nonzero degree form a single
connected component” . We may add isolated vertices since they have
no edges, so no walks go through them.
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Strongly connected components in a directed graph

Strongly connected

1 2 3

654

1 2 3

654

Not strongly connected

A directed graph is strongly connected iff for every pair of vertices
x , y, there is a directed path from x to y and also one from y to x.

A vertex is balanced if its indegree and outdegree are equal.
A graph is balanced if all vertices are balanced.

Left graph: None of the vertices are balanced.
Right graph: 1, 3, 4, 6 are balanced, and 2, 5 are unbalanced.

Does either graph have an Eulerian trail or cycle?
Left: Can’t go in then out of 1, so no. (Not balanced.)
Right: Start/end at the two unbalanced vertices: 2,4,1,5,2,6,3,5
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Eulerian cycles in a directed graph

Theorem
A directed graph has an Eulerian cycle iff it is balanced and all
vertices with degree , 0 form a strongly connected component.
If a directed graph is balanced and the undirected version of the
graph is connected, the directed graph is strongly connected.
A directed graph has an Eulerian trail from x to y (x , y) iff

outdegree(x) = indegree(x) + 1
indegree(y) = outdegree(y) + 1
indegree(v) = outdegree(v) for all other vertices
The vertices with nonzero degree form a connected component in
the undirected version of the graph.

Proof (sketch)
For Eulerian cycles in undirected graphs, when we entered a vertex,
even degrees ensured there was an edge on which to exit.
Balance ensures that for directed graphs.
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