Topics in trees and Catalan numbers
See Chapter 8.1.2.1. These slides have more details than the book.

Prof. Tesler

Math 184A
Winter 2017
A rooted tree is a tree with one vertex selected as the root.

It can be drawn in any manner, but it is common to put the root at the top and grow the tree down in levels (or at the left and grow it rightward in levels, etc.).

The leaves are the vertices of degree 0 or 1: 1,5,6,7,10,9.

The internal vertices (or internal nodes) are the vertices of degree > 1: 2,3,4,8.
Rooted trees: relationships among vertices

Parents/children
- 4 has *children* 3, 8, 5, 6.
- 3, 8, 5, 6 each have *parent* 4.
- 3, 8, 5, 6 are *siblings*.
- 8 has parent 4 and children 7, 10, 9.

Depth
- The *depth* of v is the length of the path from the root to v.
- The *height* of the tree is the maximum depth.
Ordered trees

- An ordered tree puts the children of each node into a specific order (pictorially represented as left-to-right).
- The diagrams shown above are the same as unordered trees, but are different as ordered trees.
In a \(k \)-ary tree, every vertex has \textit{between} 0 and \(k \) children.

In a \textit{full} \(k \)-ary tree, every vertex has \textit{exactly} 0 or \(k \) children.

\textit{Binary} = 2-ary, \textit{Trinary} = 3-ary, etc.

\textit{Lemma}: A full binary tree with \(n \) leaves has \(n - 1 \) internal nodes, hence \(2n - 1 \) vertices and \(2n - 2 \) edges in total.
A *Dyck word* (pronounced “Deek”) is a string of n 1’s and n 2’s such that in every prefix, the number of 1’s \geq the number of 2’s.

Example ($n = 5$): 1121211222

<table>
<thead>
<tr>
<th>Prefix</th>
<th># 1’s</th>
<th># 2’s</th>
<th>#1’s \geq # 2’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>0</td>
<td>0</td>
<td>0 \geq 0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1 \geq 0</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>0</td>
<td>2 \geq 0</td>
</tr>
<tr>
<td>112</td>
<td>2</td>
<td>1</td>
<td>2 \geq 1</td>
</tr>
<tr>
<td>1121</td>
<td>3</td>
<td>1</td>
<td>3 \geq 1</td>
</tr>
<tr>
<td>11212</td>
<td>3</td>
<td>2</td>
<td>3 \geq 2</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1121211222</td>
<td>5</td>
<td>5</td>
<td>5 \geq 5</td>
</tr>
</tbody>
</table>
Let W_n be the set of all Dyck words on n 1’s and n 2’s, and $C_n = |W_n|$ be the number of them.

$$
\begin{array}{cccc}
W_0 & W_1 & W_2 & W_3 \\
\emptyset & 12 & 1122 & 111222 \\
& 1212 & 112122 & \\
& 112212 & \\
& 121122 & \\
& 121212 & \\
\end{array}
$$

$$
C_n = |W_n| \\
\begin{array}{cccc}
1 & 1 & 2 & 5 \\
\end{array}
$$

Catalan numbers $C_n = |W_n|$

- One formula (to be proved later) is
 $$
 C_n = \frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{n! (n+1)!}
 $$

- $C_3 = \frac{1}{4} \binom{6}{3} = \frac{20}{4} = 5$
Balanced parentheses

Replacing $1 = (\text{ and } 2 =)$ gives n pairs of balanced parentheses:

<table>
<thead>
<tr>
<th>W_0</th>
<th>W_1</th>
<th>W_2</th>
<th>W_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>12 = ()</td>
<td>1122 = (())</td>
<td>111222 = (((())))</td>
</tr>
<tr>
<td></td>
<td>1212 = ()()</td>
<td></td>
<td>112122 = ()(()())</td>
</tr>
<tr>
<td></td>
<td></td>
<td>121212 = ()()()</td>
<td>112212 = ()(()())</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>121122 = ()(()())</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>121212 = ()(()())</td>
</tr>
</tbody>
</table>

$C_n = |W_n| \quad \begin{array}{cccc} 1 & 1 & 2 & 5 \end{array}$
Ordered trees

Given Dyck word w, form an ordered tree as follows:
- Draw the root.
- Read w from left to right.
 - For 1, add a new rightmost child to the current vertex and move to it.
 - For 2, go up to the parent of the current vertex.
- For any prefix of w with a 1’s and b 2’s, the depth of the vertex you reach is $a - b \geq 0$, so you do not go “above” the root.
 - At the end, $a = b = n$ and the depth is $a - b = 0$ (the root).
- Conversely, trace an ordered tree counterclockwise from the root.
 - Label each edge 1 going down its left side, and 2 going up its right.
- Thus, W_n is in bijection with ordered trees on n edges (hence $n + 1$ vertices), so C_n counts these too.
Recursion for Catalan numbers

For $n > 0$, any Dyck word can be uniquely written $u = 1x2y$ where x, y are smaller Dyck words:

- $u = 112122112212 \in W_6$
- $x = 1212 \in W_2$
- $y = 112212 \in W_3$

or

- $x = ()()$
- $y = (())()$

For $u \in W_n$ (with $n > 0$), this decomposition gives $x \in W_i$, $y \in W_{n-1-i}$ where $i = 0, \ldots, n-1$.

We have $C_0 = 1$ and recursion $C_n = \sum_{i=0}^{n-1} C_i C_{n-1-i}$ ($n > 0$).

- $C_0 = 1$
- $C_1 = C_0 C_0 = 1 \cdot 1 = 1$
- $C_2 = C_0 C_1 + C_1 C_0 = 1 \cdot 1 + 1 \cdot 1 = 2$
- $C_3 = C_0 C_2 + C_1 C_1 + C_2 C_0 = 1 \cdot 2 + 1 \cdot 1 + 2 \cdot 1 = 5$
What are all ways to parenthesize a product of \(n \) letters so that each multiplication is binary?
E.g., \((a(bc))(de)\) uses only binary multiplications, but \((abc)(de)\) is invalid since \(abc\) is a product of three things.

For a product of \(n \) letters, we have \(n - 1 \) binary multiplications:

<table>
<thead>
<tr>
<th>(n = 1)</th>
<th>(n = 2)</th>
<th>(n = 3)</th>
<th>(n = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(ab)</td>
<td>(a(bc))</td>
<td>(((ab)c)d)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>((ab)c)</td>
<td>((a(bc))d)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(a((bc)d))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(a(b(cd)))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>((ab)(cd))</td>
</tr>
</tbody>
</table>

Count 1 1 2 5
Complete binary parenthesization

- To parenthesize a product of n letters:
 - Let x be a complete binary parenthesization of the first i letters.
 - Same for y on the other $j = n - i$ letters.
 - Form $(x)(y)$.
 - If x or y consists of only one letter, omit the parentheses around it.

- The possible values of i are $i = 1, 2, \ldots, n - 1$.

- Let $b_n = \#$ complete binary parenthesizations of n letters. Then

 $$
 b_1 = 1 \quad b_n = \sum_{i=1}^{n-1} b_i b_{n-i}
 $$

- Similar recursion to Catalan numbers, but n is shifted: $b_n = C_{n-1}$.
Ordered full binary trees

Ordered full binary trees with $n = 4$ leaves

Bijection: ordered full binary trees with n leaves \leftrightarrow complete binary parenthesizations of n factors

Each internal node is labelled by the product of its children’s labels, with parentheses inserted for factors on more than one letter. There are C_{n-1} full binary trees with n leaves.
Bijection: Dyck words $W_n \leftrightarrow$ binary tree with $n + 1$ leaves

Under the following recursive rules, the word written at the root corresponds to the tree.

Word to tree

$B(\emptyset) = \bullet$

Tree to word

Leaf: \emptyset

Internal nodes: $B(1x2y) = \frac{B(x) \cdot B(y)}{} = ...$

$B(x)$ $B(y)$
Triangulating regular polygons

- Draw a regular n-gon with a horizontal base on the bottom.

- A *triangulation* is to draw non-crossing diagonals connecting its vertices, until the whole shape is partitioned into triangles.

- In total there are $n - 3$ diagonals.
Triangulating regular polygons

The number of triangulations of an \(n \)-gon is \(C_{n-2} \).
Draw any triangulation of an \(n \)-gon.
Leave the base empty, and label the other sides by the \(n - 1 \) factors \(a, b, c, \ldots \) in clockwise order.
When two sides of a triangle are labeled, label the third side by their product, using parentheses as needed to track the order of multiplications.
The base is labelled by a complete binary parenthesization on \(n - 1 \) factors. This procedure is reversible.
The number of triangulations is \(C_{(n-1)-1} = C_{n-2} \).
Draw any triangulation of an \(n \)-gon (black).

Form a tree (blue) as follows:
- Place a vertex in each triangle, and a vertex outside each side of the \(n \)-gon. The root is under the base.
- Edges: connect vertices across edges of the triangles.

Trees are oriented differently than before, but it’s equivalent:
- The root is at the bottom instead of the top.
- Leaves go clockwise from the root, rather than left to right. We illustrate this with the labels \(a, b, c, \ldots \) for complete parenthesizations.

The number of triangulations is \(C_{n-1} - 1 = C_{n-2} \).
Recall that $C_0 = 1$ and

$$C_n = \sum_{i=0}^{n-1} C_i C_{n-1-i} \quad (n > 0)$$

Let $f(t) = \sum_{n=0}^{\infty} C_n t^n$. Then

$$(f(t))^2 = \sum_{n=0}^{\infty} \left(\sum_{i=0}^{n} C_i C_{n-i} \right) t^n$$

$$t(f(t))^2 = \sum_{n=1}^{\infty} \left(\sum_{i=0}^{n-1} C_i C_{n-1-i} \right) t^n = \sum_{n=1}^{\infty} C_n t^n = f(t) - 1$$

$$t(f(t))^2 - f(t) + 1 = 0 \quad \text{so} \quad f(t) = \frac{1 \pm \sqrt{1 - 4t}}{2t} = \frac{1 \pm (1 - 2t + \cdots)}{2t}$$

Since the series of $f(t)$ starts at $1t^0$, the solution is $f(t) = \frac{1 - \sqrt{1-4t}}{2t}$.
On homework, you computed the binomial series for $\sqrt{1 + x}$:

$$(1 + x)^{1/2} = \cdots = 1 - 2 \sum_{n=1}^{\infty} \frac{(-1/4)^n (2n - 2)!}{n!(n - 1)!} x^n$$

Set $x = -4t$:

$$\sqrt{1 - 4t} = 1 - 2 \sum_{n=1}^{\infty} \frac{(-1/4)^n (2n - 2)!}{n!(n - 1)!} (-4t)^n$$

$$= 1 - 2 \sum_{n=1}^{\infty} \frac{(2n - 2)!}{n!(n - 1)!} t^n$$

Thus, $f(t) = \frac{1 - \sqrt{1 - 4t}}{2t} = \sum_{n=1}^{\infty} \frac{(2n - 2)!}{n!(n - 1)!} t^{n-1} = \sum_{n=0}^{\infty} \frac{(2n)!}{(n + 1)!n!} t^n$

Since $f(t) = \sum_{n=0}^{\infty} C_n t^n$, we proved $C_n = \frac{(2n)!}{(n+1)!n!} = \frac{1}{n+1} \binom{2n}{n}$.
The **weight** of a word $u \in W_n$ is $w(u) = n$.

For $n > 0$, decompose $u = 1x2y$ where x, y are Dyck words. Then

$$w(u) = w(12) + w(x) + w(y) = 1 + w(x) + w(y)$$

The product formula gives that the generating function for the weight of all Dyck words with $n \geq 1$ is $t \cdot f(t) \cdot f(t)$:

$$\sum_{n=1}^{\infty} C_n t^n = \sum_x \sum_y t^{w(1x2y)} = \sum_x \sum_y t^{1+w(x)+w(y)}$$

$$= t \left(\sum_x t^{w(x)} \right) \left(\sum_y t^{w(y)} \right) = t \cdot f(t) \cdot f(t).$$

This generating function is also

$$\sum_{n=1}^{\infty} C_n t^n = f(t) - 1.$$

Thus, $t(f(t))^2 = f(t) - 1$, giving the same equation as before.
\(C_n \) counts the structures above in yellow.

Edges: We showed bijections between some of them, as well as correspondences with recursions and generating functions.

Hundreds of types of objects are known to be counted by Catalan numbers.